Series 2: Development of a Multiplex Amplicon Next Generation Sequencing Assay for Rapid Assessment of Resistance-Associated Mutations in M. tuberculosis Clinical Cases
Abstract
1. Introduction
2. Materials and Methods
2.1. Samples
2.2. Assay Parameters
2.3. Bioinformatics
2.4. AMR Reference Method
2.5. Phenotypic Susceptibility Testing
2.6. Validation Parameters
2.7. Statistics
2.8. Clinical Review of Turnaround Times
3. Results
3.1. Analytical Accuracy, Sensitivity, and Specificity of AMR Variant Detection in Validation Samples
3.2. Concordance of Drug Resistance Type Between NGS and WGS
3.3. Limit of Detection
3.4. Precision
3.5. Phenotypic vs. Genotypic Susceptibility Testing Results
3.6. Post-Implementation Clinical Samples
3.7. Detection of M. bovis/M. bovis BCG-Specific pncA Mutation
3.8. Results of Clinical Review of Turnaround Times
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Barberis, I.; Bragazzi, N.L.; Galluzzo, L.; Martini, M. The History of Tuberculosis: From the First Historical Records to the Isolation of Koch’s Bacillus. J. Prev. Med. Hyg. 2017, 58, E9–E12. [Google Scholar] [PubMed]
- Implementing the End TB Strategy: The Essentials, 2022 Update. Available online: https://www.who.int/publications/i/item/9789240065093 (accessed on 16 April 2025).
- The Untold Story: New Report Reveals 7000 Additional TB Deaths During COVID-19 Pandemic. Available online: https://www.who.int/europe/news/item/21-03-2024-the-untold-story--new-report-reveals-7000-additional-tb-deaths-during-covid-19-pandemic (accessed on 16 April 2025).
- World Health Organisation. Global Tuberculosis Report 2020, 1st ed.; World Health Organisation: Geneva, Switzerland, 2020; ISBN 978-92-4-001313-1. [Google Scholar]
- Walker, T.M.; Miotto, P.; Köser, C.U.; Fowler, P.W.; Knaggs, J.; Iqbal, Z.; Hunt, M.; Chindelevitch, L.; Farhat, M.; Cirillo, D.M.; et al. The 2021 WHO Catalogue of Mycobacterium Tuberculosis Complex Mutations Associated with Drug Resistance: A Genotypic Analysis. Lancet Microbe 2022, 3, e265–e273. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Catalogue of Mutations in Mycobacterium Tuberculosis Complex and Their Association with Drug Resistance, 2nd ed.; World Health Organization: Geneva, Switzerland, 2023; Available online: https://www.who.int/publications/i/item/9789240082410 (accessed on 1 July 2025).
- Cooper, R. Appendix B: De-Isolation Review and Recommendations. Can. J. Respir. Crit. Care Sleep Med. 2022, 6, 248–255. [Google Scholar] [CrossRef]
- Shah, M.; Dansky, Z.; Nathavitharana, R.; Behm, H.; Brown, S.; Dov, L.; Fortune, D.; Gadon, N.L.; Gardner Toren, K.; Graves, S.; et al. NTCA Guidelines for Respiratory Isolation and Restrictions to Reduce Transmission of Pulmonary Tuberculosis in Community Settings. Clin. Infect. Dis. 2024, ciae199. [Google Scholar] [CrossRef]
- WHO. Consolidated Guidelines on Tuberculosis: Module 3: Diagnosis: Rapid Diagnostics for Tuberculosis Detection, 3rd ed.; World Health Organization: Geneva, Switzerland, 2024; Available online: https://www.who.int/publications/i/item/9789240089488 (accessed on 1 July 2025).
- Target Product Profile for Next-Generation Drug-Susceptibility Testing at Peripheral Centres. Available online: https://www.who.int/publications/i/item/9789240032361 (accessed on 1 July 2025).
- Schwab, T.C.; Perrig, L.; Göller, P.C.; De la Hoz, F.F.G.; Lahousse, A.P.; Minder, B.; Günther, G.; Efthimiou, O.; Omar, S.V.; Egger, M.; et al. Targeted Next-Generation Sequencing to Diagnose Drug-Resistant Tuberculosis: A Systematic Review and Meta-Analysis. Lancet Infect. Dis. 2024, 24, 1162–1176. [Google Scholar] [CrossRef]
- Gliddon, H.D.; Frampton, D.; Munsamy, V.; Heaney, J.; Pataillot-Meakin, T.; Nastouli, E.; Pym, A.S.; Steyn, A.J.C.; Pillay, D.; McKendry, R.A. A Rapid Drug Resistance Genotyping Workflow for Mycobacterium tuberculosis, Using Targeted Isothermal Amplification and Nanopore Sequencing. Microbiol. Spectr. 2021, 9, e0061021. [Google Scholar] [CrossRef]
- Song, J.; Du, W.; Liu, Z.; Che, J.; Li, K.; Che, N. Application of Amplicon-Based Targeted NGS Technology for Diagnosis of Drug-Resistant Tuberculosis Using FFPE Specimens. Microbiol. Spectr. 2022, 10, e01358-21. [Google Scholar] [CrossRef]
- Barbosa-Amezcua, M.; Cuevas-Córdoba, B.; Fresno, C.; Haase-Hernández, J.I.; Carrillo-Sánchez, K.; Mata-Rocha, M.; Muñoz-Torrico, M.; Bäcker, C.; González-Covarrubias, V.; Alaez-Verson, C.; et al. Rapid Identification of Drug Resistance and Phylogeny in M. Tuberculosis, Directly from Sputum Samples. Microbiol. Spectr. 2022, 10, e0125222. [Google Scholar] [CrossRef]
- Leung, K.S.-S.; Tam, K.K.-G.; Ng, T.T.-L.; Lao, H.-Y.; Shek, R.C.-M.; Ma, O.C.K.; Yu, S.-H.; Chen, J.-X.; Han, Q.; Siu, G.K.-H.; et al. Clinical Utility of Target Amplicon Sequencing Test for Rapid Diagnosis of Drug-Resistant Mycobacterium tuberculosis from Respiratory Specimens. Front. Microbiol. 2022, 13, 974428. [Google Scholar] [CrossRef]
- Murphy, S.G.; Smith, C.; Lapierre, P.; Shea, J.; Patel, K.; Halse, T.A.; Dickinson, M.; Escuyer, V.; Rowlinson, M.C.; Musser, K.A. Direct Detection of Drug-Resistant Mycobacterium tuberculosis Using Targeted next Generation Sequencing. Front. Public Health 2023, 11, 1206056. [Google Scholar] [CrossRef]
- Canada, P.H.A. of Antimicrobial Resistance: Seasonal Update—Canada.ca. Available online: https://health-infobase.canada.ca/carss/amr/results.html?ind=11 (accessed on 16 April 2025).
- Lu, W.; Feng, Y.; Wang, J.; Zhu, L. Evaluation of MTBDRplus and MTBDRsl in Detecting Drug-Resistant Tuberculosis in a Chinese Population. Dis. Markers 2016, 2016, 2064765. [Google Scholar] [CrossRef]
- Oudghiri, A.; Karimi, H.; Chetioui, F.; Zakham, F.; Bourkadi, J.E.; Elmessaoudi, M.D.; Laglaoui, A.; Chaoui, I.; El Mzibri, M. Molecular Characterization of Mutations Associated with Resistance to Second-Line Tuberculosis Drug among Multidrug-Resistant Tuberculosis Patients from High Prevalence Tuberculosis City in Morocco. BMC Infect. Dis. 2018, 18, 98. [Google Scholar] [CrossRef]
- Bakhtiyariniya, P.; Khosravi, A.D.; Hashemzadeh, M.; Savari, M. Detection and Characterization of Mutations in Genes Related to Isoniazid Resistance in Mycobacterium tuberculosis Clinical Isolates from Iran. Mol. Biol. Rep. 2022, 49, 6135–6143. [Google Scholar] [CrossRef] [PubMed]
- Lee, A.S.; Teo, A.S.; Wong, S.Y. Novel Mutations in ndh in Isoniazid-Resistant Mycobacterium tuberculosis Isolates. Antimicrob. Agents Chemother. 2001, 45, 2157–2159. [Google Scholar] [CrossRef] [PubMed]
- Valvatne, H.; Syre, H.; Kross, M.; Stavrum, R.; Ti, T.; Phyu, S.; Grewal, H.M.S. Isoniazid and Rifampicin Resistance-Associated Mutations in Mycobacterium tuberculosis Isolates from Yangon, Myanmar: Implications for Rapid Molecular Testing. J. Antimicrob. Chemother. 2009, 64, 694–701. [Google Scholar] [CrossRef]
- Streicher, E.M.; Maharaj, K.; York, T.; Van Heerden, C.; Barnard, M.; Diacon, A.; Mendel, C.M.; Bosman, M.E.; Hepple, J.A.; Pym, A.S.; et al. Rapid Sequencing of the Mycobacterium tuberculosis pncA Gene for Detection of Pyrazinamide Susceptibility. J. Clin. Microbiol. 2014, 52, 4056–4057. [Google Scholar] [CrossRef]
- Cheng, A.F.B.; Yew, W.W.; Chan, E.W.C.; Chin, M.L.; Hui, M.M.M.; Chan, R.C.Y. Multiplex PCR Amplimer Conformation Analysis for Rapid Detection of gyrA Mutations in Fluoroquinolone-Resistant Mycobacterium tuberculosis Clinical Isolates. Antimicrob. Agents Chemother. 2004, 48, 596–601. [Google Scholar] [CrossRef]
- Hu, Y.; Xu, L.; He, Y.L.; Pang, Y.; Lu, N.; Liu, J.; Shen, J.; Zhu, D.M.; Feng, X.; Wang, Y.W.; et al. Prevalence and Molecular Characterization of Second-Line Drugs Resistance among Multidrug-Resistant Mycobacterium tuberculosis Isolates in Southwest of China. BioMed Res. Int. 2017, 2017, 4563826. [Google Scholar] [CrossRef]
- EP12|Evaluation of Qualitative, Binary Output Examination Performance. Available online: https://clsi.org/shop/standards/ep12/ (accessed on 15 April 2025).
- Gaio, D.; Anantanawat, K.; To, J.; Liu, M.; Monahan, L.; Darling, A.E. Hackflex: Low-Cost, High-Throughput, Illumina Nextera Flex Library Construction. Microb. Genom. 2022, 8, 000744. [Google Scholar] [CrossRef]
- Kense, A.; Jorgensen, D.; Hird, T.; KhunKhun, R.; Lam, M.; Kibsey, P.; Rodrigues, M.; Sekirov, I. Discordance in rifampin resistance determination between a commercial molecular test, whole genome sequencing, and phenotypic testing, for a provincially circulating Mycobacterium tuberculosis strain. J. Assoc. Med. Microbiol. Infect. Dis. Can. 2024, 9, 1–135. [Google Scholar] [CrossRef]
- Mathys, V.; van de Vyvere, M.; de Droogh, E.; Soetaert, K.; Groenen, G. False-Positive Rifampicin Resistance on Xpert® MTB/RIF Caused by a Silent Mutation in the rpoB Gene. Int. J. Tuberc. Lung Dis. 2014, 18, 1255–1257. [Google Scholar] [CrossRef] [PubMed]
- Mokaddas, E.; Ahmad, S.; Eldeen, H.S.; Al-Mutairi, N. Discordance between Xpert MTB/RIF Assay and Bactec MGIT 960 Culture System for Detection of Rifampin-Resistant Mycobacterium tuberculosis Isolates in a Country with a Low Tuberculosis (TB) Incidence. J. Clin. Microbiol. 2015, 53, 1351–1354. [Google Scholar] [CrossRef] [PubMed]
- WHO. Announces Updated Critical Concentrations for Susceptibility Testing to Rifampicin. Available online: https://www.who.int/news/item/05-02-2021-who-announces-updated-critical-concentrations-for-susceptibility-testing-to-rifampicin (accessed on 1 July 2025).
- Technical Report on Critical Concentrations for Drug Susceptibility Testing of Medicines Used in the Treatment of Drug-Resistant Tuberculosis. Available online: https://www.who.int/publications/i/item/WHO-CDS-TB-2018.5 (accessed on 1 July 2025).
- Antimycobacterial Susceptibility Testing Group. Updating the Approaches to Define Susceptibility and Resistance to Anti-Tuberculosis Agents: Implications for Diagnosis and Treatment. Eur. Respir. J. 2022, 59, 2200166. [Google Scholar] [CrossRef]
- Rupasinghe, P.; Ashraf, A.; Barreda, N.; Parveen, S.; Zubair, M.; Calderon, R.; Asif, S.; Hirani, N.; Chingisova, L.; Bulane, A.; et al. Reduced Critical Concentration Might Not Have Improved MGIT-Based DST’s Sensitivity to Rifampicin. Antimicrob. Agents Chemother. 2024, 68, e0170123. [Google Scholar] [CrossRef]
- Jain, R.; Gupta, G.; Mitra, D.K.; Guleria, R. Diagnosis of Extra Pulmonary Tuberculosis: An Update on Novel Diagnostic Approaches. Respir. Med. 2024, 225, 107601. [Google Scholar] [CrossRef]
Purpose | Target | Primer Name | Primer Sequence (5′-3′) | Final Conc. (μM) | Size (bp) | Refs. |
---|---|---|---|---|---|---|
Rif. | rpoB | rpoB-F | CTTGCACGAGGGTCAGACCA | 0.1 | 503 | [18] |
rpoB-R | ATCTCGTCGCTAACCACGCC | 0.1 | ||||
Iso. | katG | katG-F | AACGACGTCGAAACAGCGGC | 0.06 | 415 | [18] |
katG-R | GCGAACTCGTCGGCCAATTC | 0.06 | ||||
inhA/ fabG1 | inhA P3.1 | CTCCGGTAACCAGGACTGAACG | 0.2 | 205 | [19] | |
inhA P5 | CGCAGCCAGGGCCTCGCTG | 0.2 | ||||
ndh | ndh-F | ATCACCACCGCCGCTGAAGC | 0.06 | 454 | [20,21] | |
ndh1AS | AATTCCGAGACGACGCACTG | 0.06 | ||||
ahpC | oxyR_ahpC-F_2009 | GCCTGGGTGTTCGTCACTGGT | 0.04 | 449 | [20,22] | |
oxyR_ahpC-R | GGTCGCGTAGGCAGTGCCCC | 0.04 | ||||
Pyr. | pncA | XDR_KApncA-F | GCGTCATGGACCCTATATCTGTGG | 0.9 | 694 | [23] |
XDR_KApncA-R | GTGAACAACCCGACCCAGC | 0.9 | ||||
Eth. | embB | XDR_embB-3f | CTGACCGACGCCGTGGTGATAT | 0.5 | 461 | [18] |
XDR_embB-4r | TGAATGCGGCGGTAACGACG | 0.5 | ||||
Fluoro. | gyrA | XDR_gyrA-F | TCGACTATGCGATGAGCGTG | 0.15 | 273 | [24,25] |
XDR_NML_gyrA-2 | GGGCTTCGGTGTACCTCAT | 0.15 |
AMR by tbProfiler | WGS | ||
---|---|---|---|
DR | No DR | ||
NGS | DR | 42 | 2 |
no DR | 1 | 187 |
Sample | DR Type | Discrepants | ||
---|---|---|---|---|
NGS | WGS | NGS | WGS | |
18s262 | MDR-TB | MDR-TB | ||
18s423 | MDR-TB | MDR-TB | ||
18s514 | MDR-TB | MDR-TB | inhA p.I194T | |
19s078 | RR-TB | RR-TB | ||
20s291 | RR-TB | RR-TB | ||
20s304 | MDR-TB | MDR-TB | pncA p.P54S | |
22s250 | MDR-TB | MDR-TB | ||
22s291 | Pre-XDR-TB | Pre-XDR-TB | ||
22s305 | MDR-TB | MDR-TB | ||
22s317 | Pre-XDR-TB | Pre-XDR-TB | embB p.Q497R | |
22s320 | RR-TB | RR-TB | ||
22s431 | Pre-XDR-TB | Pre-XDR-TB | ||
23s071 | MDR-TB | MDR-TB | ||
23s137 | RR-TB | MDR-TB | inhA p.I194T | |
PS1 | Sensitive | HR-TB | inhA c.-154G > A | |
PS3 | Pre-XDR-TB | Pre-XDR-TB | embB p.M306V | |
PS4 | Sensitive | HR-TB | katG p.S315T | |
PS7 | Sensitive | HR-TB | inhA c.-154G > A | |
PS9 | Sensitive | HR-TB | inhA c.-154G > A | |
SPEC-34 | Sensitive | Other | ||
SPEC-35 | Sensitive | Sensitive | ||
SPEC-36 | Sensitive | Sensitive | ||
SPEC-37 | Sensitive | Sensitive | ||
SPEC-38 | HR-TB | HR-TB | ||
SPEC-39 | Sensitive | Sensitive | ||
SPEC-40 | Sensitive | Sensitive | ||
SPEC-41 | Sensitive | Sensitive | ||
SPEC-43 | Sensitive | Sensitive | ||
SPEC-44 | Sensitive | Sensitive |
Dilution | Replicates Pass | Amplicons Detected | MPT64 Ct |
---|---|---|---|
10−2 | 3 (3) | 8 | 24.33 |
10−3 | 3 (3) | 8 | 27.83 |
10−4 | 9 (9) | 8 | 31.29 |
10−5 | 9 (9) | 8 | 35.81 |
10−6 | 2 (3) | 3, 4 | 37.16 |
10−7 | 1 (3) | 0 | Und |
Sample | Ethambutol | Pyrazinamide | Fluoroquinolones | ||||
---|---|---|---|---|---|---|---|
NML | tbProfiler | NML | tbProfiler | NML (moxi.) | NML (oflo.) | tbProfiler | |
NML-XDR-1 | Sensitive | - | Sensitive | - | Resistant | Resistant | gyrA p.D94Y |
NML-XDR-2 | Resistant | embB p.G406D | Resistant | pncA p.D49A (0.99) | Resistant | Resistant | gyrA p.D94H |
NML-XDR-4 | Sensitive | - | Resistant | pncA p.D12A | Sensitive | Sensitive | - |
NML-XDR-5 | Sensitive | - | Resistant | pncA p.H57D | Sensitive | Sensitive | - |
NML-XDR-7 | Sensitive | - | Resistant | pncA p.H57D | Sensitive | - | |
NML-XDR-8 | Sensitive | - | Resistant | pncA p.V180G | Sensitive | Sensitive | - |
NML-XDR-9 | Sensitive | - | Sensitive | - | Sensitive | Sensitive | - |
NML-XDR-10 | Resistant | embB p.M306V | Resistant | pncA p.W119G | Sensitive | Sensitive | - |
NML-XDR-11 | Resistant | embB p.M306I | Sensitive | - | Sensitive | Sensitive | - |
NML-XDR-12 | Sensitive | - | Resistant | pncA p.V180G | Sensitive | Sensitive | - |
NML-XDR-13 | Sensitive | - | Sensitive | - | Resistant | Resistant | gyrA p.D94Y |
NML-XDR-15 | sensitive | - | Resistant | pncA p.H57D | Sensitive | - |
Sample | Rifampicin | Isoniazid | Ethambutol | Pyrazinamide | Ofloxacin | |||||
---|---|---|---|---|---|---|---|---|---|---|
MGIT 960 | tbProfiler | MGIT 960 | tbProfiler | MGIT 960 | tbProfiler | MGIT 960 | tbProfiler | MGIT 960 | tbProfiler | |
18s262 | R | rpoB p.S450L | R | inhA c.-777C > T | S | embB p.G406D | S | - | S | - |
18s423 | R | rpoB p.S450; rpoB p.T400A | R | inhA c.-770T > C | S | - | R | - | S | - |
18s514 | S | rpoB p.L452P | R | inhA c.-777C > T | S | - | S | - | S | - |
19s078 | S | rpoB p.I480V | S | - | S | - | ND | - | S | - |
20s291 | S | rpoB p.H445Q | S | - | S | - | ND | - | S | - |
20s304 | R | rpoB p.S450L | R | katG p.S315T | R | embB p.M306V | ND | pncA p.P54S | S | - |
22s250 | R | rpoB p.Q432K | R | katG p.S315T | S | - | R | pncA p.V139G | S | - |
22s291 | R | rpoB p.S450L | R | katG p.S315T | R | embB p.M306V | R | pncA p.L182S | R | gyrA p.A90V (0.99) |
22s305 | R | rpoB p.S450L | R | inhA c.-777C > T | S | embB p.M306I | S | - | S | - |
22s317 | R | rpoB p.S450L | R | inhA c.-777C > T; katG p.S315T | R | - | R | pncA p.G132A | R | gyrA p.D94G |
22s320 | R | rpoB p.D435V | S | - | S | - | S | - | S | - |
22s431 | R | rpoB p.S450L | R | katG p.S315T | R | embB p.M306V | R | pncA p.D63G | R | gyrA p.D94A |
23s071 | R | rpoB p.S450L | R | katG p.S315T | S | - | S | - | S | - |
23s137 | R | rpoB p.Q432P | R | - | S | - | S | - | S | - |
PS1 | S | - | R | - | S | - | S | - | S | - |
PS3 | R | rpoB p.S450L | R | katG p.S315T | R | embB p.M306V | R | pncA p.L182S | R | gyrA p.A90V |
PS4 | S | - | R | - | S | - | ND | - | S | - |
PS7 | S | - | R | - | S | - | ND | - | S | - |
PS9 | S | - | R | - | S | - | ND | - | S | - |
SPEC-34 | S | - | S | - | S | - | ND | - | S | - |
SPEC-35 | S | - | S | - | S | - | ND | - | S | - |
SPEC-36 | S | - | S | - | S | - | ND | - | S | - |
SPEC-37 | S | - | S | - | S | - | ND | - | S | - |
SPEC-38 | S | - | R | inhA c.-777C > T | S | - | S | - | S | - |
SPEC-39 | S | - | S | - | S | - | ND | - | S | - |
SPEC-40 | S | - | S | - | S | - | ND | - | S | - |
SPEC-41 | S | - | S | - | S | - | ND | - | S | - |
SPEC-43 | S | - | S | - | S | - | ND | - | S | - |
SPEC-44 | S | - | S | - | S | - | ND | - | S | - |
Sample | NGS | Amplicons | DR Type | DR Variants | Phenotypic AST |
---|---|---|---|---|---|
Direct | |||||
CS_1 | PASS | 8 | Sensitive | Sensitive | |
CS_2 | PASS | 8 | Sensitive | Sensitive | |
CS_3 | PASS | 8 | HR-TB | inhA c.-777C > T | - |
CS_5 | PASS | 8 | Sensitive | Sensitive | |
CS_8 | PASS | 8 | Sensitive | Sensitive | |
CS_9 | PASS | 8 | MDR-TB | rpoB p.S450L katG p.S315T | Rif-, Iso-, Eth-resistant |
CS_23 | PASS | 8 | Sensitive | Moxi-resistant | |
CS_24 | PASS | 8 | Sensitive | Sensitive | |
CS_25 | PASS | 8 | Sensitive | Sensitive | |
CS_26 | PASS | 8 | Sensitive | Sensitive | |
CS_27 | PASS | 8 | Other | gyrA p.Ala90Val | Oflo-resistant |
CS_28 | PASS | 8 | Sensitive | Sensitive | |
CS_29 | PASS | 8 | Sensitive | - | |
CS_30 | PASS | 8 | Sensitive | Sensitive | |
CS_31 | PASS | 8 | Sensitive | Sensitive | |
CS_35 | PASS | 8 | Other | pncA p.His57Asp | Pyr-resistant |
CS_36 | PASS | 8 | Sensitive | Sensitive | |
CS_37 | PASS | 8 | Sensitive | - | |
CS_38 | PASS | 8 | Sensitive | Sensitive | |
CS_41 | PASS | 8 | Other | pncA p.His57Asp | Pyr-resistant |
CS_43 | PASS | 8 | Other | pncA p.His57Asp | - |
CS_4 | REV/P | 7 | Sensitive | Sensitive | |
CS_6 | REV/P | 5 | Sensitive | Sensitive | |
CS_7 | REV/P | 7 | RR-TB | rpoB p.S450L | Rif-resistant |
CS_32 | REV/P | 7 | Other | pncA p.His57Asp | Pyr-resistant |
CS_33 | REV/P | 5 | RR-TB | rpoB p.Ser450Leu | - |
CS_34 | REV/P | 7 | Sensitive | - | |
CS_40 | REV/P | 3 | Sensitive | - | |
CS_42 | REV/P | 2 | Sensitive | - | |
Culture | |||||
23H1076 | PASS | 8 | Sensitive | Sensitive | |
23H1106 | PASS | 8 | Sensitive | Sensitive | |
23H1107 | PASS | 8 | Other | pncA p.H57D | Pyr-resistant |
23H1169 | PASS | 8 | Sensitive | Sensitive | |
23H911 | PASS | 8 | Sensitive | Sensitive | |
23H974 | PASS | 8 | Sensitive | Sensitive | |
23H915 | REV/P | 7 | Sensitive | - | |
24H61 | REV/P | 7 | Other | pncA p.H57D | Pyr-resistant |
Sample | Mutation | NGS | Reference |
---|---|---|---|
Validation samples | |||
NML-XDR-15 | p.His57Asp | Presumptive BCG | Mycobacterium_bovis_BC |
NML-XDR-5 | p.His57Asp | Presumptive BCG | Mycobacterium_bovis_BC |
NML-XDR-7 | p.His57Asp | Presumptive BCG | Mycobacterium_bovis_BC |
Post-implementation samples | |||
23H1107 | p.His57Asp | Presumptive BCG | |
24H61 | p.His57Asp | Presumptive BCG | |
CS_35 | p.His57Asp | Presumptive BCG | |
CS_41 | p.His57Asp | Presumptive BCG | |
CS_43 | p.His57Asp | Presumptive BCG | |
CS_32 | p.His57Asp | Presumptive BCG |
Pulmonary TB n (% Total) | EPTB n (% Total) | |
---|---|---|
AFB-Pos and mpt64 ≤ 33 | 42 (33.6%) | 9 (40.9%) |
AFB-Pos and mpt64 > 33 | 28 (22.4%) | 3 (13.6%) |
AFB-Pos and mpt64 Ct results N/A | 55 (44%) | 10 (45%) |
Pulmonary TB | EPTB | |||
---|---|---|---|---|
AFB-Pos | All Cases | AFB-Pos | All Cases | |
TAT from sample collection (days) | 29 | 34 | 30 | 40 |
TAT from AFB smear results (days) | 25 | 29 | 19 | 29 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cabrera, A.; Lee, T.; Kolehmainen, K.; Hird, T.; Jorgensen, D.; Lo, C.K.-F.; Hamze, H.; O’Dwyer, A.; Fornika, D.; KhunKhun, R.K.; et al. Series 2: Development of a Multiplex Amplicon Next Generation Sequencing Assay for Rapid Assessment of Resistance-Associated Mutations in M. tuberculosis Clinical Cases. Trop. Med. Infect. Dis. 2025, 10, 194. https://doi.org/10.3390/tropicalmed10070194
Cabrera A, Lee T, Kolehmainen K, Hird T, Jorgensen D, Lo CK-F, Hamze H, O’Dwyer A, Fornika D, KhunKhun RK, et al. Series 2: Development of a Multiplex Amplicon Next Generation Sequencing Assay for Rapid Assessment of Resistance-Associated Mutations in M. tuberculosis Clinical Cases. Tropical Medicine and Infectious Disease. 2025; 10(7):194. https://doi.org/10.3390/tropicalmed10070194
Chicago/Turabian StyleCabrera, Adriana, Tracy Lee, Kathleen Kolehmainen, Trevor Hird, Danielle Jorgensen, Calvin Ka-Fung Lo, Hasan Hamze, Alan O’Dwyer, Dan Fornika, Rupinder Kaur KhunKhun, and et al. 2025. "Series 2: Development of a Multiplex Amplicon Next Generation Sequencing Assay for Rapid Assessment of Resistance-Associated Mutations in M. tuberculosis Clinical Cases" Tropical Medicine and Infectious Disease 10, no. 7: 194. https://doi.org/10.3390/tropicalmed10070194
APA StyleCabrera, A., Lee, T., Kolehmainen, K., Hird, T., Jorgensen, D., Lo, C. K.-F., Hamze, H., O’Dwyer, A., Fornika, D., KhunKhun, R. K., Rodrigues, M., Prystajecky, N., Tyson, J., Zlosnik, J. E. A., & Sekirov, I. (2025). Series 2: Development of a Multiplex Amplicon Next Generation Sequencing Assay for Rapid Assessment of Resistance-Associated Mutations in M. tuberculosis Clinical Cases. Tropical Medicine and Infectious Disease, 10(7), 194. https://doi.org/10.3390/tropicalmed10070194