Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (4,002)

Search Parameters:
Keywords = community shifts

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 572 KiB  
Article
Active RIS-Assisted Uplink NOMA with MADDPG for Remote State Estimation in Wireless Sensor Networks
by Rongzhen Li and Lei Xu
Sensors 2025, 25(15), 4878; https://doi.org/10.3390/s25154878 (registering DOI) - 7 Aug 2025
Abstract
Non-orthogonal multiple access (NOMA) and reconfigurable intelligent surfaces (RISs) are recognized as key technologies for beyond 5G and 6G wireless communications. To address the high computational complexity and non-convex optimization challenges, this letter proposes an optimization framework based on the Multi-Agent Deep Deterministic [...] Read more.
Non-orthogonal multiple access (NOMA) and reconfigurable intelligent surfaces (RISs) are recognized as key technologies for beyond 5G and 6G wireless communications. To address the high computational complexity and non-convex optimization challenges, this letter proposes an optimization framework based on the Multi-Agent Deep Deterministic Policy Gradient (MADDPG) algorithm. The proposed framework jointly makes use of sensor grouping, power allocation, an RIS computation strategy, and phase shifts to minimize the remote state estimation (RSE) error. Simulation results demonstrate that the MADDPG algorithm, when applied in an RIS-assisted NOMA system, significantly reduces the RSE error. Full article
16 pages, 2159 KiB  
Article
A Comparison of eDNA Metabarcoding and Microscopy Techniques to Analyze Algal Diversity in Lake Titicaca, Peru
by Maribel Baylón and Jorge L. Ramirez
Diversity 2025, 17(8), 560; https://doi.org/10.3390/d17080560 - 7 Aug 2025
Abstract
The monitoring of algal communities has traditionally relied on optical microscopy. However, this technique is time-consuming and requires significant expertise to accurately identify species. In recent years, molecular techniques such as environmental DNA (eDNA) metabarcoding have facilitated the identification of algal communities. This [...] Read more.
The monitoring of algal communities has traditionally relied on optical microscopy. However, this technique is time-consuming and requires significant expertise to accurately identify species. In recent years, molecular techniques such as environmental DNA (eDNA) metabarcoding have facilitated the identification of algal communities. This study aims to compare both approaches for assessing planktonic microalgal communities in three areas of Lake Titicaca, using inverted light microscopy and eDNA metabarcoding. We found that the taxonomic composition obtained using the two methods differs significantly for Bacillariophyta, Chlorophyta, Charophyta, and Cyanobacteria, although genus- and order-level richness was similar across both approaches. A pronounced shift in species composition between techniques was revealed, with few shared genera and a high proportion of unassigned sequences (>50%) for Bacillariophyta. While microscopy provided more accurate estimates of microalgal density, metabarcoding revealed greater diversity, particularly among nanoplanktonic microalgae from the phyla Cryptophyta, Ochrophyta, Haptophyta, and Rhodophyta. To improve the accuracy and complementarity of these methodologies, it is essential to expand regional reference databases and work toward standardizing both approaches, allowing them to be used synergistically rather than independently. Full article
(This article belongs to the Special Issue Diversity and Ecology of Freshwater Plankton)
Show Figures

Figure 1

28 pages, 4027 KiB  
Review
Isotopes in Archeology: Perspectives on Post-Mortem Alteration and Climate Change
by Antonio Simonetti and Michele R. Buzon
Geosciences 2025, 15(8), 307; https://doi.org/10.3390/geosciences15080307 - 7 Aug 2025
Abstract
Isotopic investigations focused on determining the mobility and provenance of ancient human civilizations and sourcing of archeological artifacts continue to gain prominence in archeology. Most studies focus on the premise that the geographic variation in isotope systems of interest (e.g., Sr, Pb, Nd, [...] Read more.
Isotopic investigations focused on determining the mobility and provenance of ancient human civilizations and sourcing of archeological artifacts continue to gain prominence in archeology. Most studies focus on the premise that the geographic variation in isotope systems of interest (e.g., Sr, Pb, Nd, O) in the natural environment is recorded in both human hard tissues of local individuals and raw materials sourced for artifacts within the same region. The introduction of multi-collection–inductively coupled plasma mass spectrometry (MC-ICP-MS) and laser ablation systems are techniques that consume smaller sample sizes compared to previous mass spectrometric approaches due to their higher ionization efficiency and increased sensitivity. This development has facilitated the isotopic measurement of trace elements present at low abundances (e.g., Pb, Nd, <1-to-low ppm range) particularly in human tooth enamel. Accurate interpretation of any isotope ratio measurement for the proveniencing of such low-abundance samples requires the adequate evaluation of post-mortem diagenetic alteration. A synopsis of practices currently in use for identifying post-mortem alteration in human archeological samples is discussed here. Post-mortem shifts in radiogenic isotope signatures resulting from secondary alteration are distinct from those potentially related to the impact of climate change on the bioavailable budgets for these elements. This topic is of interest to the archeological community and discussed here in the context of Holocene-aged samples from burial sites within the Nile River Valley System, and preferred dust source areas from the neighboring Sahara Desert. Full article
Show Figures

Figure 1

12 pages, 1451 KiB  
Article
Effects of Freshwater Restoration on Phytoplankton and Zooplankton Communities in the Yellow River Delta
by Jia Jia, Meng Xia, Yang Zhang, Shimin Tian, Yawei Hu, Zhanshuo Zhang, Xuejie Zhai, Bo Qu and Lingang Hao
Water 2025, 17(15), 2348; https://doi.org/10.3390/w17152348 - 7 Aug 2025
Abstract
Managed freshwater replenishment is a significant restoration method in the Yellow River Delta. However, their impacts on plankton communities, which are key bioindicators of aquatic ecosystem health and sensitive to the changes in the environment, remain poorly quantified. In this study, we conducted [...] Read more.
Managed freshwater replenishment is a significant restoration method in the Yellow River Delta. However, their impacts on plankton communities, which are key bioindicators of aquatic ecosystem health and sensitive to the changes in the environment, remain poorly quantified. In this study, we conducted plankton surveys across wetlands subjected to freshwater restoration durations ranging from 5 to 22 years. We assessed shifts in phytoplankton and zooplankton community structure, biomass, diversity, and their relationships with environmental drivers. Results revealed distinct temporal dynamics: phytoplankton biomass and diversity followed a “U-shaped” trajectory (initial decline followed by recovery), while zooplankton biomass decreased but diversity increased with restoration duration. Canonical Correspondence Analysis (CCA) and Partial Least Squares Path Modeling (PLS-PM) identified salinity (Cl, SO42−) and dissolved nitrate (NO3) as primary environmental controls for both groups. Cyanobacteria dominated phytoplankton biomass initially but declined with restoration age, while rotifers replaced copepods as the dominant zooplankton taxon over time. These findings demonstrate that freshwater restoration restructures plankton communities through salinity-mediated physiological constraints and altered nutrient availability, with implications for ecosystem function and adaptive management in anthropogenically influenced deltas. Full article
Show Figures

Figure 1

21 pages, 7477 KiB  
Article
Bidirectional Hypoxic Extracellular Vesicle Signaling Between Müller Glia and Retinal Pigment Epithelium Regulates Retinal Metabolism and Barrier Function
by Alaa M. Mansour, Mohamed S. Gad, Samar Habib and Khaled Elmasry
Biology 2025, 14(8), 1014; https://doi.org/10.3390/biology14081014 - 7 Aug 2025
Abstract
The retina is highly sensitive to oxygen and blood supply, and hypoxia plays a key role in retinal diseases such as diabetic retinopathy (DR) and age-related macular degeneration (AMD). Müller glial cells, which are essential for retinal homeostasis, respond to injury and hypoxia [...] Read more.
The retina is highly sensitive to oxygen and blood supply, and hypoxia plays a key role in retinal diseases such as diabetic retinopathy (DR) and age-related macular degeneration (AMD). Müller glial cells, which are essential for retinal homeostasis, respond to injury and hypoxia with reactive gliosis, characterized by the upregulation of the glial fibrillary acidic protein (GFAP) and vimentin, cellular hypertrophy, and extracellular matrix changes, which can impair retinal function and repair. The retinal pigment epithelium (RPE) supports photoreceptors, forms part of the blood–retinal barrier, and protects against oxidative stress; its dysfunction contributes to retinal degenerative diseases such as AMD, retinitis pigmentosa (RP), and Stargardt disease (SD). Extracellular vesicles (EVs) play a crucial role in intercellular communication, protein homeostasis, and immune modulation, and have emerged as promising diagnostic and therapeutic tools. Understanding the role of extracellular vesicles’ (EVs’) signaling machinery of glial cells and the retinal pigment epithelium (RPE) is critical for developing effective treatments for retinal degeneration. In this study, we investigated the bidirectional EV-mediated crosstalk between RPE and Müller cells under hypoxic conditions and its impact on cellular metabolism and retinal cell integrity. Our findings demonstrate that RPE-derived extracellular vesicles (RPE EVs) induce time-dependent metabolic reprogramming in Müller cells. Short-term exposure (24 h) promotes pathways supporting neurotransmitter cycling, calcium and mineral absorption, and glutamate metabolism, while prolonged exposure (72 h) shifts Müller cell metabolism toward enhanced mitochondrial function and ATP production. Conversely, Müller cell-derived EVs under hypoxia influenced RPE metabolic pathways, enhancing fatty acid metabolism, intracellular vesicular trafficking, and the biosynthesis of mitochondrial co-factors such as ubiquinone. Proteomic analysis revealed significant modulation of key regulatory proteins. In Müller cells, hypoxic RPE-EV exposure led to reduced expression of Dyskerin Pseudouridine Synthase 1 (DKc1), Eukaryotic Translation Termination Factor 1 (ETF1), and Protein Ser/Thr phosphatases (PPP2R1B), suggesting alterations in RNA processing, translational fidelity, and signaling. RPE cells exposed to hypoxic Müller cell EVs exhibited elevated Ribosome-binding protein 1 (RRBP1), RAC1/2, and Guanine Nucleotide-Binding Protein G(i) Subunit Alpha-1 (GNAI1), supporting enhanced endoplasmic reticulum (ER) function and cytoskeletal remodeling. Functional assays also revealed the compromised barrier integrity of the outer blood–retinal barrier (oBRB) under hypoxic co-culture conditions. These results underscore the adaptive but time-sensitive nature of retinal cell communication via EVs in response to hypoxia. Targeting this crosstalk may offer novel therapeutic strategies to preserve retinal structure and function in ischemic retinopathies. Full article
Show Figures

Graphical abstract

15 pages, 1107 KiB  
Article
Maximising Achievable Rate Using Intelligent Reflecting Surface in 6G Wireless Communication Systems
by Afrin Jahan Eva, Md. Sahal, Rabita Amin, Muhammad R. A. Khandaker, Risala Tasin Khan, Faisal Tariq and ASM Ashraf Mahmud
Appl. Sci. 2025, 15(15), 8732; https://doi.org/10.3390/app15158732 - 7 Aug 2025
Abstract
Intelligent reflecting surface (IRS) is a promising technique which aims to shift the paradigm of uncontrollable wireless environment to a controllable one by adding the function of reconfigurability using multiple passive reflecting elements. In this work, optimal beamforming design for maximising achievable rate [...] Read more.
Intelligent reflecting surface (IRS) is a promising technique which aims to shift the paradigm of uncontrollable wireless environment to a controllable one by adding the function of reconfigurability using multiple passive reflecting elements. In this work, optimal beamforming design for maximising achievable rate with respect to variable location of the IRS is considered. In particular, a single-cell wireless system that employs an IRS to aid communication between the user and an access point (AP) equipped with multiple antennas is adopted. An optimisation problem is formulated which aims to maximise the achievable rate, subject to signal-to-interference-plus-noise ratio (SINR) constraint of each individual user as well as the total transmit power constraint at the AP. The problem is solved by jointly optimising the transmit beamforming using active aerial array at the AP and the reflection coefficients using passive phase shifting at the IRS. Since the original optimisation problem is strictly non-convex, the problem is solved optimally by solving a corresponding power minimisation problem. Rigorous simulations have been carried out and the results demonstrate that the IRS-enabled system outperforms benchmark systems and employs significantly fewer RF power amplifiers. Full article
(This article belongs to the Special Issue Future Wireless Communication)
Show Figures

Figure 1

40 pages, 87432 KiB  
Article
Optimizing Urban Mobility Through Complex Network Analysis and Big Data from Smart Cards
by Li Sun, Negin Ashrafi and Maryam Pishgar
IoT 2025, 6(3), 44; https://doi.org/10.3390/iot6030044 - 6 Aug 2025
Abstract
Urban public transportation systems face increasing pressure from shifting travel patterns, rising peak-hour demand, and the need for equitable and resilient service delivery. While complex network theory has been widely applied to analyze transit systems, limited attention has been paid to behavioral segmentation [...] Read more.
Urban public transportation systems face increasing pressure from shifting travel patterns, rising peak-hour demand, and the need for equitable and resilient service delivery. While complex network theory has been widely applied to analyze transit systems, limited attention has been paid to behavioral segmentation within such networks. This study introduces a frequency-based framework that differentiates high-frequency (HF) and low-frequency (LF) passengers to examine how distinct user groups shape network structure, congestion vulnerability, and robustness. Using over 20 million smart-card records from Beijing’s multimodal transit system, we construct and analyze directed weighted networks for HF and LF users, integrating topological metrics, temporal comparisons, and community detection. Results reveal that HF networks are densely connected but structurally fragile, exhibiting lower modularity and significantly greater efficiency loss during peak periods. In contrast, LF networks are more spatially dispersed yet resilient, maintaining stronger intracommunity stability. Peak-hour simulation shows a 70% drop in efficiency and a 99% decrease in clustering, with HF networks experiencing higher vulnerability. Based on these findings, we propose differentiated policy strategies for each user group and outline a future optimization framework constrained by budget and equity considerations. This study contributes a scalable, data-driven approach to integrating passenger behavior with network science, offering actionable insights for resilient and inclusive transit planning. Full article
(This article belongs to the Special Issue IoT-Driven Smart Cities)
Show Figures

Figure 1

17 pages, 926 KiB  
Review
Advancing Heart Failure Care Through Disease Management Programs: A Comprehensive Framework to Improve Outcomes
by Maha Inam, Robert M. Sangrigoli, Linda Ruppert, Pooja Saiganesh and Eman A. Hamad
J. Cardiovasc. Dev. Dis. 2025, 12(8), 302; https://doi.org/10.3390/jcdd12080302 - 5 Aug 2025
Abstract
Heart failure (HF) is a major global health challenge, characterized by high morbidity, mortality, and frequent hospital readmissions. Despite the advent of guideline-directed medical therapies (GDMTs), the burden of HF continues to grow, necessitating a shift toward comprehensive, multidisciplinary care models. Heart Failure [...] Read more.
Heart failure (HF) is a major global health challenge, characterized by high morbidity, mortality, and frequent hospital readmissions. Despite the advent of guideline-directed medical therapies (GDMTs), the burden of HF continues to grow, necessitating a shift toward comprehensive, multidisciplinary care models. Heart Failure Disease Management Programs (HF-DMPs) have emerged as structured frameworks that integrate evidence-based medical therapy, patient education, telemonitoring, and support for social determinants of health to optimize outcomes and reduce healthcare costs. This review outlines the key components of HF-DMPs, including patient identification and risk stratification, pharmacologic optimization, team-based care, transitional follow-up, remote monitoring, performance metrics, and social support systems. Incorporating tools such as artificial intelligence, pharmacist-led titration, and community health worker support, HF-DMPs represent a scalable approach to improving care delivery. The success of these programs depends on tailored interventions, interdisciplinary collaboration, and health equity-driven strategies. Full article
Show Figures

Graphical abstract

24 pages, 337 KiB  
Article
State-by-State Review: The Spread of Law Enforcement Accountability Policies
by Hossein Zare, Danielle R. Gilmore, Khushbu Balsara, Celina Renee Pargas, Rebecca Valek, Andrea N. Ponce, Niloufar Masoudi, Michelle Spencer, Tatiana Y. Warren and Cassandra Crifasi
Soc. Sci. 2025, 14(8), 483; https://doi.org/10.3390/socsci14080483 - 5 Aug 2025
Abstract
Purpose: Following George Floyd’s death, the push for law enforcement accountability policies has intensified. Despite robust legislative action, challenges in enacting and implementing meaningful reforms persist. This study analyzes police accountability policies (PAP) in the U.S. from 2020 to 2022, identifying barriers and [...] Read more.
Purpose: Following George Floyd’s death, the push for law enforcement accountability policies has intensified. Despite robust legislative action, challenges in enacting and implementing meaningful reforms persist. This study analyzes police accountability policies (PAP) in the U.S. from 2020 to 2022, identifying barriers and facilitators through expert perspectives in enforcement oversight, policy advocacy, and community engagement. Methods: The study used a dual approach: analyzing 226 police accountability bills from all 50 U.S. states, D.C., and Puerto Rico via the National Conference of State Legislatures database, and categorizing them into six key areas such as training, technology use, and certification. Additionally, a survey was conducted among experts to identify the challenges and drivers in passing police accountability legislation. Findings: A legislative analysis showed that although 48 states passed police accountability laws, California, New Jersey, Oklahoma, and Colorado have made significant strides by passing multiple pieces of legislation aimed at enhancing law enforcement accountability and ensuring better policing practices. The most common policies focused on training and technology, enacted by 16 and 12 states, respectively. However, crucial certification and decertification policies were adopted in just 13 states, highlighting the inconsistent implementation of measures critical for police accountability and transparency. The survey identified several barriers to passing PAP, including inadequate support from local governments (72.7%). Structural exclusion of poor and minority communities from policing resources was also a significant barrier (54.5%). Facilitators included community support (81.8%) and a cultural shift in policing towards viewing officers as “guardians” rather than “warriors” (63.6%). Conclusions: While some progress has been made in passing PAP, considerable gaps remain, particularly in enforcement and comprehensive reform. Resistance from law enforcement institutions, lack of community support, and structural inequalities continue to impede the adoption of effective PAP. Full article
19 pages, 1022 KiB  
Review
Leishmania in Texas: A Contemporary One Health Scoping Review of Vectors, Reservoirs, and Human Health
by Morgan H. Jibowu, Richard Chung, Nina L. Tang, Sarah Guo, Leigh-Anne Lawton, Brendan J. Sullivan, Dawn M. Wetzel and Sarah M. Gunter
Biology 2025, 14(8), 999; https://doi.org/10.3390/biology14080999 - 5 Aug 2025
Viewed by 1
Abstract
Leishmaniasis, a vector-borne neglected tropical disease, affects over 6.2 million people globally. Case acquisition is increasingly recognized in the United States, and in Texas, most reported cases are locally acquired and speciated to Leishmania mexicana. We conducted a scoping literature review to [...] Read more.
Leishmaniasis, a vector-borne neglected tropical disease, affects over 6.2 million people globally. Case acquisition is increasingly recognized in the United States, and in Texas, most reported cases are locally acquired and speciated to Leishmania mexicana. We conducted a scoping literature review to systematically assess contemporary research on Leishmania in humans, animals, reservoir hosts, or vectors in Texas after 2000. Out of 22 eligible studies, the most prevalent themes were case reports, followed by studies on domestic animals, reservoirs, and vectors, with several studies bridging multiple disciplines. Climate change, urbanization, and habitat encroachment appear to be driving the northward expansion of L. mexicana, which is primarily attributed to shifts in the habitats of key vectors (Lutzomyia anthophora) and reservoirs (Neotoma spp.). Leishmania appears to be expanding into new areas, with potential for further spread. As ecological conditions evolve, strengthening surveillance and clinician awareness is crucial to understanding disease risk and improving early detection and treatment in affected communities. Full article
Show Figures

Figure 1

12 pages, 388 KiB  
Article
Evolution of Respiratory Pathogens and Antimicrobial Resistance over the COVID-19 Timeline: A Study of Hospitalized and Ambulatory Patient Populations
by Luigi Regenburgh De La Motte, Loredana Deflorio, Erika Stefano, Matteo Covi, Angela Uslenghi, Carmen Sommese and Lorenzo Drago
Antibiotics 2025, 14(8), 796; https://doi.org/10.3390/antibiotics14080796 - 5 Aug 2025
Viewed by 38
Abstract
Background: The COVID-19 pandemic has profoundly altered the clinical and microbiological landscape of respiratory tract infections (RTIs), potentially reshaping pathogen distribution and antimicrobial resistance (AMR) profiles across care settings. Objectives: The objective of this study was to assess temporal trends in respiratory bacterial [...] Read more.
Background: The COVID-19 pandemic has profoundly altered the clinical and microbiological landscape of respiratory tract infections (RTIs), potentially reshaping pathogen distribution and antimicrobial resistance (AMR) profiles across care settings. Objectives: The objective of this study was to assess temporal trends in respiratory bacterial pathogens, antimicrobial resistance, and polymicrobial infections across three pandemic phases—pre-COVID (2018–2019), COVID (2020–2022), and post-COVID (2022–2024)—in hospitalized and ambulatory patients. Methods: We retrospectively analyzed 1827 respiratory bacterial isolates (hospitalized patients, n = 1032; ambulatory patients, n = 795) collected at a tertiary care center in Northern Italy. Data were stratified by care setting, anatomical site, and pandemic phase. Species identification and susceptibility testing followed EUCAST guidelines. Statistical analysis included chi-square and Fisher’s exact tests. Results: In hospitalized patients, a significant increase in Pseudomonas aeruginosa (from 45.5% pre-COVID to 58.6% post-COVID, p < 0.0001) and Acinetobacter baumannii (from 1.2% to 11.1% during COVID, p < 0.0001) was observed, with 100% extensively drug-resistant (XDR) rates for A. baumannii during the pandemic. Conversely, Staphylococcus aureus significantly declined from 23.6% pre-COVID to 13.7% post-COVID (p = 0.0012). In ambulatory patients, polymicrobial infections peaked at 41.2% during COVID, frequently involving co-isolation of Candida spp. Notably, resistance to benzylpenicillin in Streptococcus pneumoniae reached 80% (4/5 isolates) in hospitalized patients during COVID, and carbapenem-resistant P. aeruginosa (CRPA) significantly increased post-pandemic in ambulatory patients (0% pre-COVID vs. 23.5% post-COVID, p = 0.0014). Conclusions: The pandemic markedly shifted respiratory pathogen dynamics and resistance profiles, with distinct trends observed in hospital and community settings. Persistent resistance phenotypes and frequent polymicrobial infections, particularly involving Candida spp. in outpatients, underscore the need for targeted surveillance and antimicrobial stewardship strategies. Full article
(This article belongs to the Section Antibiotic Therapy in Infectious Diseases)
Show Figures

Figure 1

28 pages, 974 KiB  
Review
Murburn Bioenergetics and “Origins–Sustenance–Termination–Evolution of Life”: Emergence of Intelligence from a Network of Molecules, Unbound Ions, Radicals and Radiations
by Laurent Jaeken and Kelath Murali Manoj
Int. J. Mol. Sci. 2025, 26(15), 7542; https://doi.org/10.3390/ijms26157542 - 5 Aug 2025
Viewed by 255
Abstract
The paradigm-shift idea of murburn concept is no hypothesis but developed directly from fundamental facts of cellular/ecological existence. Murburn involves spontaneous and stochastic interactions (mediated by murzymes) amongst the molecules and unbound ions of cells. It leads to effective charge s [...] Read more.
The paradigm-shift idea of murburn concept is no hypothesis but developed directly from fundamental facts of cellular/ecological existence. Murburn involves spontaneous and stochastic interactions (mediated by murzymes) amongst the molecules and unbound ions of cells. It leads to effective charge separation (ECS) and formation/recruitment of diffusible reactive species (DRS, like radicals whose reactions enable ATP-synthesis and thermogenesis) and emission of radiations (UV/Vis to ELF). These processes also lead to a chemo-electromagnetic matrix (CEM), ascertaining that living cell/organism react/function as a coherent unit. Murburn concept propounds the true utility of oxygen: generating DRS (with catalytic and electrical properties) on the way to becoming water, the life solvent, and ultimately also leading to phase-based macroscopic homeostatic outcomes. Such a layout enables cells to become simple chemical engines (SCEs) with powering, coherence, homeostasis, electro-mechanical and sensing–response (PCHEMS; life’s short-term “intelligence”) abilities. In the current review, we discuss the coacervate nature of cells and dwell upon the ways and contexts in which various radiations (either incident or endogenously generated) could interact in the new scheme of cellular function. Presenting comparative evidence/arguments and listing of systems with murburn models, we argue that the new perceptions explain life processes better and urge the community to urgently adopt murburn bioenergetics and adapt to its views. Further, we touch upon some distinct scientific and sociological contexts with respect to the outreach of murburn concept. It is envisaged that greater awareness of murburn could enhance the longevity and quality of life and afford better approaches to therapies. Full article
(This article belongs to the Section Molecular Biophysics)
Show Figures

Figure 1

16 pages, 3138 KiB  
Article
Seasonal and Interannual Variations (2019–2023) in the Zooplankton Community and Its Size Composition in Funka Bay, Southwestern Hokkaido
by Haochen Zhang, Atsushi Ooki, Tetsuya Takatsu and Atsushi Yamaguchi
Oceans 2025, 6(3), 49; https://doi.org/10.3390/oceans6030049 - 4 Aug 2025
Viewed by 58
Abstract
Funka Bay, located in southwest Hokkaido, is a vital fishing area with a shallow depth of less than 100 m. Seasonal flows of the Oyashio and Tsugaru Warm Current affect the marine environment, leading to significant changes in zooplankton communities, yet limited information [...] Read more.
Funka Bay, located in southwest Hokkaido, is a vital fishing area with a shallow depth of less than 100 m. Seasonal flows of the Oyashio and Tsugaru Warm Current affect the marine environment, leading to significant changes in zooplankton communities, yet limited information is available on these variations. This study used ZooScan imaging to analyze seasonal and interannual changes in zooplankton abundance, biovolume, community structure, and size composition from 2019 to 2023. Water temperature was low in March–April and high in September–November, with chlorophyll a peaks occurring from February to April. Notable taxa such as Thaliacea, Noctiluca, and cladocerans were more common in the latter half of the year. Interannual variations included a decline in large cold-water copepods, Eucalanus bungii and Neocalanus spp., which were abundant in 2019 but decreased by 2023. Zooplankton abundance and biovolume showed synchronized seasonal changes, correlating with shifts in the Normalized Biovolume Size Spectra (NBSS) index, which measures size composition. Cluster analysis identified eight zooplankton communities, with Community A dominant from July to December across all years, while Community D was prevalent in early 2019 but was replaced in subsequent years. Community E emerged from March to April in 2021–2023. In 2019, large cold-water copepods were dominant, but from 2020 to 2023, appendicularians became the dominant group during the March–April period. The decline in large copepods is likely linked to marine heat waves, influencing yearly zooplankton community changes. Full article
Show Figures

Figure 1

25 pages, 5978 KiB  
Review
Global Research Trends on the Role of Soil Erosion in Carbon Cycling Under Climate Change: A Bibliometric Analysis (1994–2024)
by Yongfu Li, Xiao Zhang, Yang Zhao, Xiaolin Yin, Xiong Wu and Liping Su
Atmosphere 2025, 16(8), 934; https://doi.org/10.3390/atmos16080934 - 4 Aug 2025
Viewed by 176
Abstract
Against the backdrop of multifaceted strategies to combat climate change, understanding soil erosion’s role in carbon cycling is critical due to terrestrial carbon pool vulnerability. This study integrates bibliometric methods with visualization tools (CiteSpace, VOSviewer) to analyze 3880 Web of Science core publications [...] Read more.
Against the backdrop of multifaceted strategies to combat climate change, understanding soil erosion’s role in carbon cycling is critical due to terrestrial carbon pool vulnerability. This study integrates bibliometric methods with visualization tools (CiteSpace, VOSviewer) to analyze 3880 Web of Science core publications (1994–2024, inclusive), constructing knowledge graphs and forecasting trends. The results show exponential publication growth, shifting from slow development (1994–2011) to rapid expansion (2012–2024), aligning with international climate policy milestones. The Chinese Academy of Sciences led productivity (519 articles), while the US demonstrated major influence (H-index 117; 52,297 citations), creating a China–US bipolar research pattern. It was also found that Dutch journals dominate this research field. A keyword analysis revealed a shift from erosion-driven carbon transport to ecosystem service assessments. Emerging hotspots include microbial community regulation, climate–erosion feedback, and model–policy integration, though developing country collaboration remains limited. Future research should prioritize isotope tracing, multiscale modeling, and studies in ecologically vulnerable regions to enhance global soil carbon management. This study provides a novel analytical framework and forward-looking perspective for the soil erosion research on soil carbon cycling, serving as an extension of climate change mitigation strategies. Full article
Show Figures

Figure 1

23 pages, 2353 KiB  
Article
Seaweeds of the Israeli Mediterranean Sea: Nutritional and Biotechnological Potential Through Seasonal and Species Variation
by Doron Yehoshua Ashkenazi, Félix L. Figueroa, Julia Vega, Shoshana Ben-Valid, Guy Paz, Eitan Salomon, Avigdor Abelson and Álvaro Israel
Mar. Drugs 2025, 23(8), 320; https://doi.org/10.3390/md23080320 - 4 Aug 2025
Viewed by 283
Abstract
Macroalgae (seaweeds) produce unique bioactive metabolites that have enabled their survival for millions of years, offering significant potential for human benefits. In the Israeli Mediterranean Sea, no comprehensive systematic surveys of seaweeds have been published since the 1990s, and their chemical composition remains [...] Read more.
Macroalgae (seaweeds) produce unique bioactive metabolites that have enabled their survival for millions of years, offering significant potential for human benefits. In the Israeli Mediterranean Sea, no comprehensive systematic surveys of seaweeds have been published since the 1990s, and their chemical composition remains largely unexplored. This study presents an extensive survey of intertidal seaweed communities along the shallow Israeli coastline, documenting their spatial, temporal, and biochemical diversity. Of the 320 specimens collected, 55 seaweed species were identified: 29 red (Rhodophyta), 14 brown (Phaeophyceae), and 12 green (Chlorophyta). A significant shift in species abundance was documented, with a single dominant annual bloom occurring during spring, unlike previously reported biannual blooms. Chemical analysis of the dominant species revealed significant seasonal variations in compound levels, with higher protein content in winter and increased antioxidant capacity during spring. Phenolic and natural sunscreen compounds (mycosporine-like amino acids, MAAs) showed no general seasonal trend. These findings highlight the optimal environmental conditions for seaweed growth and underscore their potential for aquaculture and biotechnology. We hypothesize that the ecologically unique conditions of the Israeli Mediterranean Sea may foster resilient seaweed species enriched with distinctive chemical properties, suitable for nutritional, health, pharmaceutical, and nutraceutical applications, particularly as climate-adaptive bioresources. Full article
Show Figures

Graphical abstract

Back to TopTop