Seasonal and Interannual Variations (2019–2023) in the Zooplankton Community and Its Size Composition in Funka Bay, Southwestern Hokkaido
Abstract
1. Introduction
2. Materials and Methods
2.1. Field Sampling
2.2. ZooScan Measurement
2.3. Data Analysis
3. Results
3.1. Hydrography
3.2. Zooplankton Abundance, Biovolume, and NBSS
3.3. Zooplankton Community
4. Discussion
4.1. Zooplankton Community
4.2. Zooplankton Community Observed During Warm Period
4.3. Interannual Changes in Zooplankton Community
4.4. Energy Transfer to Higher Trophic Levels via Zooplankton
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Thorpe, R.B. We need to talk about the role of zooplankton in marine food webs. J. Fish Biol. 2024, 105, 444–458. [Google Scholar] [CrossRef] [PubMed]
- Bisinicu, E.; Harcota, G.E. Baseline assessment of Black Sea food web integrity using a zooplankton-based approach under the marine strategy framework directive. J. Mar. Sci. Eng. 2025, 13, 713. [Google Scholar] [CrossRef]
- Bisinicu, E.; Harcota, G.-E.; Lazar, L. Interactions between environmental factors and the mesozooplankton community from the Romanian Black Sea waters. Tur. J. Zool. 2023, 47, 202–215. [Google Scholar] [CrossRef]
- Badouvas, N.; Tsagarakis, K.; Somarakis, S.; Karachle, P.K. Feeding habits and prey composition of six mesopelagic fish species from an isolated Central Mediterranean Basin. Fishes 2025, 10, 182. [Google Scholar] [CrossRef]
- Bișinicu, E.; Harcotă, G.-E.; Lazăr, L.; Niță, V.; Țoțoiu, A.; Țiganov, G. Fish abundance and mesozooplankton resource: A study on Sprattus sprattus (Linnaeus, 1758) (Actinopterygii: Clupeidae) in the Romanian Black Sea Waters. Acta Zool. Bulg. 2024, 76, 215–224. [Google Scholar] [CrossRef]
- Wang, Y.-C.; Lee, M.-A.; He, J.-S. Feeding habits of Mene maculata (Teleostei: Menidae) in the southwestern waters of Taiwan, western Pacific Ocean. Fishes 2025, 10, 182. [Google Scholar] [CrossRef]
- Gorsky, G.; Ohman, M.D.; Picheral, M.; Gasparini, S.; Stemmann, L.; Romagnan, J.B.; Cawood, A.; Pesant, S.; García-Comas, C.; Prejger, F. Digital zooplankton image analysis using the ZooScan integrated system. J. Plankton Res. 2010, 32, 285–303. [Google Scholar] [CrossRef]
- Vandromme, P.; Stemmann, L.; García-Comas, C.; Berline, L.; Sun, X.; Gorsky, G. Assessing biases in computing size spectra of automatically classified zooplankton from imaging systems: A case study with the ZooScan integrated system. Methods Oceanogr. 2012, 1–2, 3–21. [Google Scholar]
- Sprules, W.G.; Munawar, M. Plankton size spectra in relation to ecosystem productivity, size, and perturbation. Can. J. Fish. Aquat. Sci. 1986, 43, 1789–1794. [Google Scholar] [CrossRef]
- Moore, S.K.; Suthers, I.M. Evaluation and correction of subresolved particles by the optical plankton counter in three Australian estuaries with pristine to highly modified catchments. J. Geophys. Res. 2006, 111, C05S04. [Google Scholar] [CrossRef]
- Zhou, M. What determines the slope of a plankton biomass spectrum? J. Plankton Res. 2006, 28, 437–448. [Google Scholar] [CrossRef]
- Espinasse, B.; Carlotti, F.; Zhou, M.; Devenon, J.L. Defining zooplankton habitats in the Gulf of Lion (NW Mediterranean Sea) using size structure and environmental conditions. Mar. Ecol. Prog. Ser. 2014, 506, 31–46. [Google Scholar] [CrossRef]
- Romagnan, J.-B.; Legendre, L.; Guidi, L.; Jamet, J.-L.; Jamet, D.; Mousseau, L.; Pedrotti, M.-L.; Picheral, M.; Gorsky, G.; Sardet, C.; et al. Comprehensive model of annual plankton succession based on the whole-plankton time series approach. PLoS ONE 2015, 10, e0119219. [Google Scholar] [CrossRef]
- Romagnan, J.-B.; Aldamman, L.; Gasparini, S.; Nival, P.; Aubert, A.; Jamet, J.-L.; Stemmann, L. High frequency mesozooplankton monitoring: Can imaging systems and automated sample analysis help us describe and interpret changes in zooplankton community composition and size structure-An example from a coastal site. J. Mar. Syst. 2016, 162, 18–28. [Google Scholar] [CrossRef]
- Feuilloley, G.; Fromentin, J.M.; Saraux, C.; Irisson, J.O.; Jalabert, L.; Stemmann, L. Temporal fluctuations in zooplankton size, abundance, and taxonomic composition since 1995 in the North Western Mediterranean Sea. ICES J. Mar. Sci. 2022, 79, 882–900. [Google Scholar] [CrossRef]
- Vandromme, P.; Nogueira, E.; Huret, M.; Lopez-Urrutia, Á.; González-Nuevo, G.; Sourisseau, M.; Petitgas, P. Springtime zooplankton size structure over the continental shelf of the Bay of Biscay. Ocean Sci. 2014, 10, 821–835. [Google Scholar] [CrossRef]
- Marcolin, C.R.; Gaeta, S.; Lopes, R.M. Seasonal and interannual variability of zooplankton vertical distribution and biomass size spectra off Ubatuba, Brazil. J. Plankton Res. 2015, 37, 808–819. [Google Scholar] [CrossRef]
- Zhang, W.; Sun, X.; Zheng, S.; Zhu, M.; Liang, J.; Du, J.; Yang, C. Plankton abundance, biovolume, and normalized biovolume size spectra in the northern slope of the South China Sea in autumn 2014 and summer 2015. Deep-Sea Res. II 2019, 167, 79–92. [Google Scholar] [CrossRef]
- Kamba, M. Feeding habits and vertical distribution of walleye pollock, Theragra chalcogramma (Pallas), in early life stage in Uchiura Bay, Hokkaido. Res. Inst. North Pac. Fish. Hokkaido Univ. 1977, 175–197. [Google Scholar]
- Nakatani, T. Studies on the early life history of walleye pollock Theragra chalcogramma in Funka Bay and vicinity, Hokkaido. Mem. Fac. Fish. Hokkaido Univ. 1988, 35, 1–46. [Google Scholar]
- Nakatani, T. Year class strength and early life history of the Pacific population of walleye pollock, Gadus chalcogrammus, in Japan. Mem. Fac. Fish. Sci. Hokkaido Univ. 2016, 58, 1–11. [Google Scholar]
- Nakatani, T.; Maeda, T. Early life history of walleye pollock. Sci. Rep. Hokkaido Fish. Exp. Stat. 1993, 42, 15–22. [Google Scholar]
- Hashimoto, Y.; Maeda, A.; Oono, Y.; Kano, Y.; Takatsu, T. Feeding habits of two flatfish species larvae in Funka Bay, Japan: Importance of Oikopleura as prey. Bull. Plankton Soc. Jpn. 2011, 58, 165–177. [Google Scholar]
- Nakatani, T. Relationship between hydrographic conditions in Funka Bay, Hokkaido, during winter and year class strength of the Japanese Pacific population of walleye pollock Gadus chalcogrammus from 1991 to 2013. Mem. Fac. Fish. Sci. Hokkaido Univ. 2017, 59, 19–43. [Google Scholar]
- Ohtani, K. Studies on the change of the hydrographic conditions in the Funka Bay: II. Characteristics of the waters occupying the Funka Bay. Bull. Fac. Fish. Hokkaido Univ. 1971, 22, 58–66. [Google Scholar]
- Ooki, A.; Shida, R.; Otsu, M.; Onishi, H.; Kobayashi, N.; Iida, T.; Nomura, D.; Suzuki, K.; Yamaoka, H.; Takatsu, T. Isoprene production in seawater of Funka Bay, Hokkaido, Japan. J. Oceanogr. 2019, 75, 485–501. [Google Scholar] [CrossRef]
- Hirakawa, K. Seasonal change of population structure of a boreal oceanic copepod, Eucalanus bungii bungii Johnson in Funka Bay, Hokkaido, Japan. Bull. Fac. Fish. Hokkaido Univ. 1976, 27, 71–77. [Google Scholar]
- Hirakawa, K. Seasonal change of population structure of a calanoid copepod, Calanus pacificus, in Funka Bay, Hokkaido. Bull. Plankton Soc. Jpn. 1979, 26, 49–58. [Google Scholar]
- Hirakawa, K. Seasonal Distribution of the Planktonic Copepods, and Life Histories of Calanus pacificus, Calanus plumchrus, and Eucalanus bungii bungii in the Waters of Funka Bay, Southern Hokkaido, Japan. Ph.D. Thesis, Hokkaido University, Hokkaido, Japan, 1983. [Google Scholar]
- Dohi, K. Seasonal change of tintinnid community in Funka Bay. Bull. Plankton Soc. Jpn. 1982, 29, 77–87. [Google Scholar]
- Shiga, N. Seasonal and vertical distributions of Appendicularia in Volcano Bay, Hokkaido, Japan. Bull. Mar. Sci. 1985, 37, 425–439. [Google Scholar]
- Yokouchi, K. Reproduction and larval ecology of the sandworm Neanthes virens (Sars) from southern Hokkaido. Bull. Plankton Soc. Jpn. 1985, 32, 1–13. [Google Scholar]
- Yamaoka, H.; Takatsu, T.; Suzuki, K.; Kobayashi, N.; Ooki, A.; Nakaya, M. Annual and seasonal changes in the assemblage of planktonic copepods and appendicularians in Funka Bay before and after intrusion of Coastal Oyashio Water. Fish. Sci. 2019, 85, 1077–1087. [Google Scholar] [CrossRef]
- Teraoka, T.; Amei, K.; Fukai, Y.; Matsuno, K.; Onishi, H.; Ooki, A.; Takatsu, T.; Yamaguchi, A. Seasonal changes in taxonomic, size composition, and normalised biomass size spectra (NBSS) of mesozooplankton communities in Funka Bay, southwestern Hokkaido: Insights from ZooScan analysis. Plankton Benthos Res. 2022, 17, 369–382. [Google Scholar] [CrossRef]
- Kida, S.; Takayama, K.; Sasaki, Y.N.; Matsuura, H.; Hirose, N. Increasing trend in Japan Sea throughflow transport. J. Oceanogr. 2021, 77, 145–153. [Google Scholar] [CrossRef]
- Abe, H.; Yahiro, Y.; Hasegawa, T.; Hirawake, T.; Onishi, H.; Ooki, A.; Takatsu, T.; Sasaki, K.; Wakita, M.; Kaneko, H.; et al. Intrusion of Coastal Oyashio water to Funka Bay and Tsugaru Strait occasionally disturbed by Kuroshio-originating warm core ring. J. Oceanogr. 2023, 79, 349–366. [Google Scholar] [CrossRef]
- Kuroda, H.; Setou, T. Extensive marine heatwaves at the sea surface in the Northwestern Pacific Ocean in summer 2021. Remote Sens. 2021, 13, 3989. [Google Scholar] [CrossRef]
- Welschmeyer, N.A. Fluorometric analysis of chlorophyll a in the presence of chlorophyll b and pheopigments. Limnol. Oceanogr. 1994, 39, 1985–1992. [Google Scholar] [CrossRef]
- Miyaguchi, H.; Fujiki, T.; Kikuchi, T.; Kuwahara, V.S.; Toda, T. Relationship between the bloom of Noctiluca scintillans and environmental factors in the coastal waters of Sagami Bay, Japan. J. Plankton Res. 2006, 28, 313–324. [Google Scholar] [CrossRef]
- Ara, K.; Nakamura, S.; Takahashi, R.; Shiomoto, A.; Hiromi, J. Seasonal variability of the red tide-forming heterotrophic dinoflagellate Noctiluca scintillans in the neritic area of Sagami Bay, Japan: Its role in the nutrient-environment and aquatic ecosystem. Plankton Benthos Res. 2013, 8, 9–30. [Google Scholar] [CrossRef]
- Suzuki, T.; Yamamoto, K.; Narasaki, T. Predation pressure of Noctiluca scintillans on diatoms and thecate dinoflagellates off the western coast of Kyushu, Japan. Plankton Benthos Res. 2013, 8, 186–190. [Google Scholar] [CrossRef]
- Onbé, T. Seasonal fluctuations in the abundance of populations of marine cladocerans and their resting eggs in the Inland Sea of Japan. Mar. Biol. 1985, 87, 83–88. [Google Scholar] [CrossRef]
- Onbé, T.; Ikeda, T. Marine cladocerans in Toyama Bay, southern Japan Sea: Seasonal occurrence and day-night vertical distributions. J. Plankton Res. 1995, 17, 595–609. [Google Scholar] [CrossRef]
- Iguchi, N.; Kidokoro, H. Horizontal distribution of Thetys vagina Tilesius (Tunicata, Thaliacea) in the Japan Sea during spring 2004. J. Plankton Res. 2006, 28, 537–541. [Google Scholar] [CrossRef]
- Iguchi, N. Zooplankton in Toyama Bay, southern Japan Sea. Bull. Coast. Oceanogr. 2020, 58, 77–79. [Google Scholar]
- Chiba, S.; Ono, T.; Tadokoro, K.; Midorikawa, T.; Saino, T. Increased stratification and decreased lower trophic level productivity in the Oyashio Region of the North Pacific: A 30-year retrospective study. J. Oceanogr. 2004, 60, 149–162. [Google Scholar] [CrossRef]
- Tadokoro, K.; Chiba, S.; Ono, T.; Midorikawa, T.; Saino, T. Interannual variation in Neocalanus biomass in the Oyashio waters of the western North Pacific. Fish. Oceanogr. 2005, 14, 210–222. [Google Scholar] [CrossRef]
- Kobari, T.; Tadokoro, K.; Sugisaki, H.; Itoh, H. Response of Eucalanus bungii to oceanographic conditions in the western subarctic Pacific Ocean: Retrospective analysis of the Odate Collections. Deep-Sea Res. II 2007, 54, 2748–2759. [Google Scholar] [CrossRef]
- Fuji, T.; Nakayama, S.-I.; Hashimoto, M.; Miyamoto, H.; Kamimura, Y.; Furuichi, S.; Oshima, K.; Suyama, S. Biological interactions potentially alter the large-scale distribution pattern of the small pelagic fish, Pacific saury Cololabis saira. Mar. Ecol. Prog. Ser. 2023, 704, 99–117. [Google Scholar] [CrossRef]
- Tian, Y.; Fu, C.; Yatsu, A.; Watanabe, Y.; Liu, Y.; Li, J.; Liu, D.; Pang, Y.; Cheng, J.; Ho, C.-H.; et al. Long-term variability in the fish assemblage around Japan over the last century and early warning signals of regime shifts. Fish Fish. 2023, 24, 675–694. [Google Scholar] [CrossRef]
- Alldredge, A.L. Discarded appendicularian houses as sources of food, surface habitats, and particulate organic matter in planktonic environments. Limnol. Oceanogr. 1976, 21, 14–24. [Google Scholar] [CrossRef]
- Flood, P.R. Architecture of, and water circulation and flow rate in, the house of the planktonic tunicate Oikopleura labradoriensis. Mar. Biol. 1991, 111, 95–111. [Google Scholar] [CrossRef]
- Choe, N.; Deibel, D. Temporal and vertical distributions of three appendicularian species (Tunicata) in Conception Bay, Newfoundland. J. Plankton Res. 2008, 30, 969–979. [Google Scholar] [CrossRef]
- Doubleday, A.J.; Hopcroft, R.R. Interannual patterns during spring and late summer of larvaceans and pteropods in the coastal Gulf of Alaska, and their relationship to pink salmon survival. J. Plankton Res. 2015, 37, 134–150. [Google Scholar] [CrossRef]
- Miyamoto, T.; Takatsu, T.; Nakatani, T.; Maeda, T.; Takahashi, T. Distribution and food habits of eggs and larvae of Hippoglossoides dubius in Funka Bay and its offshore waters, Hokkaido. Bull. Jpn. Soc. Fish. Oceanogr. 1993, 57, 1–14. [Google Scholar]
- Herman, A.W.; Harvey, M. Application of normalized biomass size spectra to laser optical plankton counter net intercomparisons of zooplankton distributions. J. Geophys. Res. 2006, 111, C05S05. [Google Scholar] [CrossRef]
- Zhou, M.; Tande, K.S.; Zhu, Y.; Basedow, S. Productivity, trophic levels, and size spectra of zooplankton in northern Norwegian shelf regions. Deep-Sea Res. II 2009, 56, 1934–1944. [Google Scholar] [CrossRef]
- Kudo, I.; Hisatoku, T.; Yoshimura, T.; Maita, Y. Primary productivity and nitrogen assimilation with identifying the contribution of urea in Funka Bay, Japan. Estuar. Coast. Shelf Sci. 2015, 158, 12–19. [Google Scholar] [CrossRef]
Taxa/Species | Mean Abundance (Ind.·m−3) | One-Way ANOVA | |||||||
---|---|---|---|---|---|---|---|---|---|
A (19) | B (3) | C (2) | D (15) | E (10) | F (2) | G (6) | H (5) | ||
Amphipoda | 0 | 0 | 0.38 | 0.54 | 0.48 | 0.22 | 0 | 0 | NS |
Appendicularia | 64.87 | 28.32 | 10.97 | 87.09 | 271.02 | 14.88 | 77.64 | 16.58 | NS |
Chaetognatha | 10.51 | 0 | 16.81 | 17.19 | 5.12 | 3.30 | 1.28 | 0.33 | NS |
Cladocera | 23.12 | 3.28 | 4.01 | 0.48 | 1.15 | 0 | 0.12 | 0.08 | ** |
Cnidaria | 6.95 | 0 | 14.85 | 4.25 | 2.48 | 1.99 | 0 | 0.07 | NS |
Other Copepoda | 349.05 | 263.73 | 247.99 | 941.58 | 1057.37 | 205.26 | 556.21 | 47.51 | *** |
Eucalanus bungii | 0.52 | 1.96 | 6.30 | 21.97 | 0 | 0 | 0 | 0 | * |
Metridia pacifica | 0.78 | 3.44 | 0 | 5.60 | 4.92 | 0.84 | 6.19 | 0.35 | NS |
Neocalanus spp. | 1.15 | 7.17 | 1.21 | 12.06 | 5.18 | 0.19 | 0 | 0 | *** |
Euphausiacea | 1.00 | 2.81 | 0 | 2.50 | 1.67 | 0.79 | 0.24 | 0 | NS |
Limacina | 0.20 | 0.40 | 5.34 | 2.07 | 0.63 | 0.19 | 0.59 | 0 | NS |
Thaliacea | 10.52 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | NS |
Bivalvia larvae | 4.05 | 0.71 | 124.57 | 30.20 | 4.13 | 49.80 | 74.71 | 1.03 | ** |
Echinodermata larvae | 6.70 | 22.50 | 53.94 | 26.00 | 19.13 | 0 | 3.02 | 0.44 | ** |
Polychaeta larvae | 5.85 | 30.56 | 31.71 | 31.89 | 113.39 | 8.34 | 8.29 | 0.28 | ** |
Noctiluca scintillans | 171.76 | 0 | 0.54 | 2.23 | 0 | 0.60 | 0 | 0.28 | * |
Others | 26.10 | 0.96 | 0 | 30.84 | 2.13 | 4.66 | 2.39 | 0 | NS |
Total | 683.15 | 365.84 | 518.62 | 1216.48 | 1488.78 | 291.04 | 730.69 | 66.95 | NS |
Parameters | Groups | One-Way ANOVA | |||||||
---|---|---|---|---|---|---|---|---|---|
A (19) | B (3) | C (2) | D (15) | E (10) | F (2) | G (6) | H (5) | ||
Temperature (°C) | 12.29 | 3.70 | 7.31 | 5.50 | 3.32 | 6.75 | 5.40 | 7.79 | **** |
Salinity | 33.37 | 32.72 | 32.71 | 33.02 | 33.20 | 33.91 | 33.60 | 33.77 | **** |
Chl. a (mg m−3) | 0.50 | 2.55 | 0.46 | 2.13 | 3.50 | 0.36 | 0.99 | 0.71 | NS |
Total zooplankton | |||||||||
abundance (ind.·m−3) | 683.2 | 365.8 | 518.6 | 1216.5 | 1488.8 | 291.0 | 730.7 | 67.0 | NS |
biovolume (mm3·m−3) | 73.4 | 169.8 | 62.2 | 240.3 | 258.3 | 48.4 | 82.7 | 4.6 | NS |
NBSS | |||||||||
Intercept | 0.84 | 0.84 | 0.85 | 0.91 | 1.50 | 0.66 | 0.89 | −0.32 | **** |
Slope | −0.94 | −0.77 | −0.84 | −0.93 | −0.75 | −0.84 | −0.95 | −1.06 | NS |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, H.; Ooki, A.; Takatsu, T.; Yamaguchi, A. Seasonal and Interannual Variations (2019–2023) in the Zooplankton Community and Its Size Composition in Funka Bay, Southwestern Hokkaido. Oceans 2025, 6, 49. https://doi.org/10.3390/oceans6030049
Zhang H, Ooki A, Takatsu T, Yamaguchi A. Seasonal and Interannual Variations (2019–2023) in the Zooplankton Community and Its Size Composition in Funka Bay, Southwestern Hokkaido. Oceans. 2025; 6(3):49. https://doi.org/10.3390/oceans6030049
Chicago/Turabian StyleZhang, Haochen, Atsushi Ooki, Tetsuya Takatsu, and Atsushi Yamaguchi. 2025. "Seasonal and Interannual Variations (2019–2023) in the Zooplankton Community and Its Size Composition in Funka Bay, Southwestern Hokkaido" Oceans 6, no. 3: 49. https://doi.org/10.3390/oceans6030049
APA StyleZhang, H., Ooki, A., Takatsu, T., & Yamaguchi, A. (2025). Seasonal and Interannual Variations (2019–2023) in the Zooplankton Community and Its Size Composition in Funka Bay, Southwestern Hokkaido. Oceans, 6(3), 49. https://doi.org/10.3390/oceans6030049