Effects of Freshwater Restoration on Phytoplankton and Zooplankton Communities in the Yellow River Delta
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area and Sampling
2.2. Environmental Factors Determination
2.3. Plankton Collection, Identification, and Enumeration
2.4. Plankton Biodiversity
2.5. Partial Least Squares Approach Path Model
3. Results
3.1. Characteristics of Environmental Factors According to the Freshwater Restoration Periods
3.2. Phytoplankton and Zooplankton Species Composition in the Yellow River Delta
3.3. Changes in the Plankton Structure According to the Freshwater Restoration
3.4. Responses of Plankton to Environmental Factors Under the Influence of Freshwater Restoration
4. Discussions
4.1. Responses of Phytoplankton to Environmental Factors Under Freshwater Restoration
4.2. Responses of Zooplankton to Environmental Factors Under Freshwater Restoration
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- He, Q.; Li, Z.A.; Daleo, P.; Lefcheck, J.S.; Thomsen, M.S.; Adams, J.B.; Bouma, T.J. Coastal wetland resilience through local, regional and global conservation. Nat. Rev. Biodivers. 2025, 1, 50–67. [Google Scholar] [CrossRef]
- Bai, J.H.; Zhao, Q.Q.; Lu, Q.Q.; Wang, J.J.; Reddy, K.R. Effects of freshwater input on trace element pollution in salt marsh soils of a typical coastal estuary, China. J. Hydrol. 2015, 520, 186–192. [Google Scholar] [CrossRef]
- Lu, W.Z.; Xiao, J.F.; Gao, H.Q.; Jia, Q.Y.; Li, Z.J.; Liang, J.; Xing, Q.H.; Mao, D.H.; Li, H.; Chu, X.J.; et al. Carbon fluxes of China’s coastal wetlands and impacts of reclamation and restoration. Glob. Change Biol. 2024, 30, 17280. [Google Scholar] [CrossRef] [PubMed]
- Dai, Y.; Yang, S.; Zhao, D.; Hu, C.M.; Xu, W.; Anderson, D.M.; Li, Y.; Song, X.P.; Boyce, D.G.; Gibson, L.; et al. Coastal phytoplankton blooms expand and intensify in the 21st century. Nature 2023, 615, 280–284. [Google Scholar] [CrossRef] [PubMed]
- James, C.C.; Barton, A.D.; Allen, L.Z.; Lampe, R.H.; Rabines, A.; Schulberg, A.; Zheng, H.; Goericke, R.; Goodwin, K.D.; Allen, A.E. Influence of nutrient supply on plankton microbiome biodiversity and distribution in a coastal upwelling region. Nat. Commun. 2022, 13, 2448. [Google Scholar] [CrossRef]
- Lizotte Michael, P. Polar Lakes and Rivers: Limnology of Arctic and Antarctic Aquatic Ecosystems; Oxford University Press: Oxford, UK, 2008. [Google Scholar]
- Liu, X.H.; Song, J.J.; Ren, Y.P.; Zhan, D.M.; Liu, T.; Liu, K.K.; Wu, H.Y.; Xu, B.D. Spatio-temporal patterns of zooplankton community in the Yellow River estuary: Effects of seasonal variability and water-sediment regulation. Mar. Environ. Res. 2023, 189, 106060. [Google Scholar] [CrossRef]
- Brierley, A.S. Plankton. Curr. Biol. 2017, 27, R478–R483. [Google Scholar] [CrossRef]
- Barton, A.D.; Pershing, A.J.; Litchman, E.; Record, N.R.; Edwards, K.F.; Finkel, Z.V.; Ward, B.A. The biogeography of marine plankton traits. Ecol. Lett. 2013, 16, 522–534. [Google Scholar] [CrossRef]
- Sun, X.W.; Zhang, H.Y.; Wang, Z.Y.; Huang, T.S.; Huang, H. Phytoplankton community response to environmental factors along a salinity gradient in a Seagoing River, Tianjin, China. Microorganisms 2022, 11, 75. [Google Scholar] [CrossRef]
- Yang, W.; Li, X.X.; Sun, T.; Pei, J.; Li, M. Macrobenthos functional groups as indicators of ecological restoration in the northern part of China’s Yellow River Delta Wetlands. Ecol. Indic. 2017, 82, 381–391. [Google Scholar] [CrossRef]
- Xiao, R.; Wang, Q.; Zhang, M.X.; Pan, W.B.; Wang, J.J. Plankton distribution patterns and the relationship with environmental gradients and hydrological connectivity of wetlands in the Yellow River Delta. Ecohydrol. Hydrobiol. 2020, 20, 584–596. [Google Scholar] [CrossRef]
- Zhao, Q.Q.; Bai, J.H.; Gao, Y.C.; Zhao, H.X.; Huang, Y.J.; Zhang, W.; Wang, J.N.; Chen, G.H. Effects of freshwater inputs on soil quality in the Yellow River Delta, China. Ecol. Indic. 2019, 98, 619–626. [Google Scholar] [CrossRef]
- Jiang, H.C.; Liu, D.Y.; Song, X.K.; Ma, Y.Q.; Wang, Y.J.; Liu, A.Y.; Cheng, L.; He, J.L.; Sun, S. Response of phytoplankton assemblages to nitrogen reduction in the Laizhou Bay, China. Mar. Pollut. Bull. 2018, 136, 524–532. [Google Scholar] [CrossRef]
- Song, J.; Hou, C.Y.; Liu, Q.; Wu, X.F.; Wang, Y.J.; Yi, Y.J. Spatial and temporal variations in the plankton community because of water and sediment regulation in the lower reaches of Yellow River. J. Clean. Prod. 2020, 261, 120972. [Google Scholar] [CrossRef]
- Fu, M.Z.; Zhao, L.L.; Zhang, Z.H.; Qu, P.; Song, H.J.; Yi, S.J.; Wang, Z.L. Phytoplankton assemblage distribution patterns under different Yellow River freshwater discharge scenarios. J. Sea Res. 2023, 192, 102348. [Google Scholar] [CrossRef]
- Patricia, C.F. Comparative Study of Ecological Indices for Assessing Human-Induced Disturbance in Coastal Wetlands of the Laurentian Great Lakes. Ecol. Indic. 2009, 9, 81–91. [Google Scholar] [CrossRef]
- GB 3838-2002; Environmental Quality Standards for Surface Water. Ministry of Ecology and Environment of China: Beijing, China, 2002.
- Hu, H.J.; Wei, Y.X. Freshwater Algae of China: Systematics, Classification and Ecology; Science Press: Beijing, China, 2002. [Google Scholar]
- Zhang, Z.S.; Huang, X.F. Methodology for Freshwater Plankton Research; Science Press: Beijing, China, 1991. [Google Scholar]
- Xiang, X.F.; Yu, G.L.; Chen, S.Z. Cladocera of the Yangtze River Basin; China Science and Technology Press: Beijing, China, 1991. [Google Scholar]
- Shannon, C.E. A mathematical theory of communication. Bell Syst. Tech. J. 1948, 27, 379–423. [Google Scholar] [CrossRef]
- Boyd, P.W.; Rynearson, T.A.; Armstrong, E.A.; Fu, F.; Hayashi, K.; Hu, Z.; Mulholland, M.R. Marine phytoplankton temperature versus growth responses from polar to tropical waters–outcome of a scientific community-wide study. PLoS ONE 2013, 8, 63091. [Google Scholar] [CrossRef]
- Marti, C.L.; Imberger, J.; Garibaldi, L.; Leoni, B. Using time scales to characterize phytoplankton assemblages in a deep subalpine lake during the thermal stratification period: Lake Iseo, Italy. Water Resour. Res. 2016, 52, 1762–1780. [Google Scholar] [CrossRef]
- O’Donnell, D.R.; Wilburn, P.; Silow, E.A.; Yampolsky, L.Y.; Litchman, E. Nitrogen and phosphorus colimitation of phytoplankton in Lake Baikal: Insights from a spatial survey and nutrient enrichment experiments. Limnol. Ocean. 2017, 62, 1383–1392. [Google Scholar] [CrossRef]
- Harris, G.P.; Trimbee, A.M. Phytoplankton population dynamics of a small reservoir: Physical/biological coupling and the time scales of community change. J. Plankton Res. 1986, 8, 1011–1025. [Google Scholar] [CrossRef]
- Xie, Y.L.; Cui, B.S.; Xie, T.; Cai, Y.Z.; Gao, F.; Chen, C.; Zhang, L. Distribution of phytoplankton and zooplankton in the Pearl River Delta river network in winter of 2021 and effects of salt tide. Wetl. Sci. 2022, 20, 666–680. (In Chinese) [Google Scholar]
- Jiang, Z.B.; Liu, J.J.; Chen, J.F.; Chen, Q.Z.; Yan, X.J.; Xuan, J.L.; Zeng, J.N. Responses of summer phytoplankton community to drastic environmental changes in the Changjiang (Yangtze River) estuary during the past 50 years. Water Res. 2014, 54, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Yu, L.; Yao, Z.; Shen, Y.; Pan, Y. The effects of turbulence on the growth of three different diatom speciess. Front. Mar. Sci. 2024, 11, 140. [Google Scholar] [CrossRef]
- Wang, K.X.; Liu, Z.G.; Zhao, G.M.; Wang, W.H.; Su, D.P.; Lu, F.; Kang, Z.Q.; Zhang, Y.; Ni, X.; Zhao, L.H. Characteristics of soil carbon, nitrogen, phosphorus in soils and their ecological stoichiometric ratios in different habitats of Yellow River Delta. Mar. Geol. Front. 2025, 41, 90–99. (In Chinese) [Google Scholar]
- Lewandowska, A.; Sommer, U. Climate change and the spring bloom: A mesocosm study on the influence of light and temperature on phytoplankton and mesozooplankton. Mar. Ecol. Progr. 2010, 405, 101–111. [Google Scholar] [CrossRef]
- Richardson, T.L.; Gibson, C.E.; Heaney, S.I. Temperature, growth and seasonal succession of phytoplankton in Lake Baikal, Siberia. Freshw. Biol. 2010, 44, 431–440. [Google Scholar] [CrossRef]
- Vrieling, E.G.; Gieskes, W.W.C.; Beelen, T.P.M.; Van Santen, R.A. Diatom silica biomineralization: At nanoscale level a chemically uniform process. J. Struct. Biol. 2004, 147, 288–297. [Google Scholar] [CrossRef]
- Wang, Y.W.; Zhang, S.Y.; Sun, M.F.; Han, J.M.; Wang, Z.Y.; Chen, X.L.; Chen, Z.F.; Qin, H.M. Spatial-Temporal Pattern and Stability Analysis of Zooplankton Community Structure in the Lower Yellow River in China. Diversity 2025, 17, 162. [Google Scholar] [CrossRef]
- Liu, Z.W.; Yang, A.; Liu, J.H.; Xing, C.G.; Huang, S.Z.; Huo, Y.; Yang, Z.Y.; Huang, J.R.; Liu, W.Q. Turnover of phytoplankton and zooplankton communities driven by human-induced disturbances and climate changes in a small urban coastal wetland. Ecol. Indic. 2023, 157, 11. [Google Scholar] [CrossRef]
- Mao, Z.G.; Cao, Y.; Gu, X.H.; Zeng, Q.F.; Chen, H.H.; Jeppesen, E. Response of zooplankton to nutrient reduction and enhanced fish predation in a shallow eutrophic lake. Ecol. Appl. 2022, 33, 2750. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Geng, M.D.; Yu, J.L.; Du, Y.X.; Xu, M.; Zhang, W.Z.; Wang, J.J.; Su, H.J.; Wang, R.; Chen, F.Z. Eutrophication decrease compositional dissimilarity in freshwater plankton communities. Sci. Total Environ. 2022, 821, 153434. [Google Scholar] [CrossRef] [PubMed]
- Doulka, E.; Kehayias, G. Seasonal vertical distribution and diel migration of zooplankton in a temperate stratified lake. Biologia 2011, 66, 308–319. [Google Scholar] [CrossRef]
- Liu, B.; Liu, J.; Jeppesen, E.; Chen, Y.; Liu, X.; Zhang, W. Horizontal distribution of pelagic crustacean zooplankton biomass and body size in contrasting habitat types in Lake Poyang, China. Environ. Sci. Pollut. Control. Ser. 2019, 26, 2270–2280. [Google Scholar] [CrossRef]
- He, T.; Zhang, J.H.; Zhang, C.L. Species and diversity of plankton in Baolong River on the upper reaches of the Yangtze River. Fresh Water Fish. 2014, 44, 51–55. [Google Scholar]
- Xu, Z.; Wang, Y.; Chen, Y.; Shen, H. Ecological study on zooplankton in maximum turbid zone of estuarine area of Changjiang Yangtze river. J. Fish. China 1995, 2, 39–48. [Google Scholar]
- Deng, D.G.; Xu, Z.H. The Prelimary Study of Crustacean Zooplankton of Bengbu Region in Huaihe River. J. Huaibei Coal Ind. Teach. Coll. 2006, 27, 40–43. [Google Scholar]
- He, Z.; Qin, J.; Wang, H.; Wang, Z.; Xia, X. Studies on the Saline and Hypersaline Zooplanktons from Jinan and Yinchuan Regions. Acta Hydrobiol. Sin. 1989, 13, 24–37. [Google Scholar] [CrossRef]
- Zhou, J.J.; Zhao, W. Mechanism of stress resistance of rotifer Brachionus plicatilis: A review. J. Dalian Ocean. Univ. 2020, 35, 768–774. (In Chinese) [Google Scholar]
- Bozza, D.C.; Freire, C.A.; Prodocimo, V. A systematic evaluation on the relationship between hypo-osmoregulation and hyper-osmoregulation in decapods of different habitats. J. Exp. Zool. Part A Ecol. Integr. Physiol. 2024, 341, 5–30. [Google Scholar] [CrossRef]
Minimum–Maximum | Average ± Standard Deviation | |||
---|---|---|---|---|
Rs02–Rs19 | Rs02 | Rs06 | Rs19 | |
COD (mg/L) | 93~131.1 | 117.70 ± 12.04 | 103.73 ± 9.53 | 105.63 ± 3.58 |
CODMn (mg/L) | 9.44~19.6 | 10.32 ± 1.19 | 15.74 ± 1.19 | 19.34 ± 0.46 |
TN (mg/L) | 1.726~2.961 | 2.19 ± 0.24 | 2.31 ± 0.62 | 2.55 ± 0.31 |
NO3−-N (mg/L) | 0.306~0.642 | 0.34 ± 0.03 | 0.56 ± 0.01 | 0.63 ± 0.01 |
NH4+-N (mg/L) | 0.382~0.582 | 0.39 ± 0.01 | 0.47 ± 0.05 | 0.50 ± 0.07 |
SO42− (mg/L) | 33.83~75.81 | 36.06 ± 3.34 | 55.58 ± 0.62 | 71.07 ± 4.13 |
Cl− (mg/L) | 1054~4250 | 1168.67 ± 99.71 | 2718.00 ± 8.89 | 4148.00 ± 88.48 |
DO (mg/L) | 77.3~157.5 | 88.33 ± 11.99 | 143.40 ± 14.85 | 119.27 ± 19.71 |
pH | 9.01~10 | 9.14 ± 0.18 | 9.91 ± 0.08 | 9.29 ± 0.33 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jia, J.; Xia, M.; Zhang, Y.; Tian, S.; Hu, Y.; Zhang, Z.; Zhai, X.; Qu, B.; Hao, L. Effects of Freshwater Restoration on Phytoplankton and Zooplankton Communities in the Yellow River Delta. Water 2025, 17, 2348. https://doi.org/10.3390/w17152348
Jia J, Xia M, Zhang Y, Tian S, Hu Y, Zhang Z, Zhai X, Qu B, Hao L. Effects of Freshwater Restoration on Phytoplankton and Zooplankton Communities in the Yellow River Delta. Water. 2025; 17(15):2348. https://doi.org/10.3390/w17152348
Chicago/Turabian StyleJia, Jia, Meng Xia, Yang Zhang, Shimin Tian, Yawei Hu, Zhanshuo Zhang, Xuejie Zhai, Bo Qu, and Lingang Hao. 2025. "Effects of Freshwater Restoration on Phytoplankton and Zooplankton Communities in the Yellow River Delta" Water 17, no. 15: 2348. https://doi.org/10.3390/w17152348
APA StyleJia, J., Xia, M., Zhang, Y., Tian, S., Hu, Y., Zhang, Z., Zhai, X., Qu, B., & Hao, L. (2025). Effects of Freshwater Restoration on Phytoplankton and Zooplankton Communities in the Yellow River Delta. Water, 17(15), 2348. https://doi.org/10.3390/w17152348