Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,403)

Search Parameters:
Keywords = commercial urbanism

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 1814 KiB  
Article
Integrating Environmental Sensing into Cargo Bikes for Pollution-Aware Logistics in Last-Mile Deliveries
by Leonardo Cameli, Margherita Pazzini, Riccardo Ceriani, Valeria Vignali, Andrea Simone and Claudio Lantieri
Sensors 2025, 25(15), 4874; https://doi.org/10.3390/s25154874 (registering DOI) - 7 Aug 2025
Abstract
Cycling represents a significant share of urban transportation, especially in terms of last-mile delivery. It has clear benefits for delivery times, as well as for environmental issues related to freight distribution. Furthermore, the increasing accessibility of low-cost environmental sensors (LCSs) provides an opportunity [...] Read more.
Cycling represents a significant share of urban transportation, especially in terms of last-mile delivery. It has clear benefits for delivery times, as well as for environmental issues related to freight distribution. Furthermore, the increasing accessibility of low-cost environmental sensors (LCSs) provides an opportunity for urban monitoring in any situation. Moving in this direction, this research aims to investigate the use of LCSs to monitor particulate PM2.5 and PM10 levels and map them over delivery ride paths. The calibration process took 49 days of measurements into account, spanning different seasonal conditions (from May 2024 to November 2024). The employment of multiple linear regression and robust regression revealed a strong correlation between pollutant levels from two sources and other factors such as temperature and humidity. Subsequently, a one-month trial was carried out in the city of Faenza (Italy). In this study, a commercially available LCS was mounted on a cargo bike for measurement during delivery processes. This approach was adopted to reveal biker exposure to air pollutants. In this way, the operator’s route would be designed to select the best route in terms of delivery timing and polluting factors in the future. Furthermore, the integration of environmental monitoring to map urban environments has the potential to enhance the accuracy of local pollution mapping, thereby supporting municipal efforts to inform citizens and develop targeted air quality strategies. Full article
(This article belongs to the Section Environmental Sensing)
25 pages, 7359 KiB  
Article
Street Art in the Rain: Evaluating the Durability of Protective Coatings for Contemporary Muralism Through Accelerated Rain Ageing
by Laura Pagnin, Sara Goidanich, Nicolò Guarnieri, Francesca Caterina Izzo, Jaime Jorge Hormida Henriquez and Lucia Toniolo
Coatings 2025, 15(8), 924; https://doi.org/10.3390/coatings15080924 (registering DOI) - 7 Aug 2025
Abstract
Contemporary muralism has gained increasing cultural and social relevance in recent years, becoming a prominent form of urban artistic expression. However, its outdoor exposure makes it highly vulnerable to environmental degradation, raising significant challenges for long-term preservation. While solar radiation is widely recognized [...] Read more.
Contemporary muralism has gained increasing cultural and social relevance in recent years, becoming a prominent form of urban artistic expression. However, its outdoor exposure makes it highly vulnerable to environmental degradation, raising significant challenges for long-term preservation. While solar radiation is widely recognized as a main agent of deterioration, the impact of rainfall has received comparatively little attention. This study addresses this gap by evaluating the durability of commercial protective coatings applied to modern paints (alkyd, acrylic, and styrene-acrylic) under simulated rain exposure. The ageing protocol replicates approximately 10 years of cumulative rainfall in Central-Southern Europe. A key innovation of this research is the use of a custom-built rain chamber, uniquely designed to expose a large number of samples simultaneously under highly uniform and controlled rain conditions. The system ensures reproducible exposure through a precision-controlled moving platform and programmable rain delivery. A comprehensive set of analytical techniques was employed to assess morphological, chemical, and functional changes in the coatings and paints before and after ageing. Results highlight the limited performance of current protective materials and the need for more effective solutions for the conservation of contemporary outdoor artworks. Full article
(This article belongs to the Section Surface Characterization, Deposition and Modification)
Show Figures

Figure 1

15 pages, 13698 KiB  
Article
Analysis of the Relationship Between Mural Content and Its Illumination: Two Alternative Directions for Design Guidelines
by Zofia Koszewicz, Rafał Krupiński, Marta Rusnak and Bartosz Kuczyński
Arts 2025, 14(4), 90; https://doi.org/10.3390/arts14040090 - 7 Aug 2025
Abstract
As part of contemporary urban culture, murals support place making and city identity. While much attention has been paid to their role in activating public space during daylight hours, their presence after dark remains largely unexamined. This paper analyzes how mural content interacts [...] Read more.
As part of contemporary urban culture, murals support place making and city identity. While much attention has been paid to their role in activating public space during daylight hours, their presence after dark remains largely unexamined. This paper analyzes how mural content interacts with night-time illumination. The research draws on case studies, photographs, luminance measurements, and lighting simulations. It evaluates how existing lighting systems support or undermine the legibility and impact of commercial murals in urban environments. It explores whether standardized architectural lighting guidelines suit murals, how color and surface affect visibility, and which practices improve night-time legibility. The study identifies a gap in existing lighting strategies, noting that uneven lighting distorts intent and reduces public engagement. In response, a new design tool—the Floodlighting Content Readability Map—is proposed to support artists and planners in creating night-visible murals. This paper situates mural illumination within broader debates on creative urbanism and argues that lighting is not just infrastructure, but a cultural and aesthetic tool that extends the reach and resonance of public art in the 24 h city. It further emphasizes the need for interdisciplinary collaboration and a multi-contextual perspective—encompassing visual, social, environmental, and regulatory dimensions—when designing murals in cities. Full article
(This article belongs to the Special Issue Aesthetics in Contemporary Cities)
Show Figures

Figure 1

28 pages, 15106 KiB  
Article
A Spatially Aware Machine Learning Method for Locating Electric Vehicle Charging Stations
by Yanyan Huang, Hangyi Ren, Xudong Jia, Xianyu Yu, Dong Xie, You Zou, Daoyuan Chen and Yi Yang
World Electr. Veh. J. 2025, 16(8), 445; https://doi.org/10.3390/wevj16080445 - 6 Aug 2025
Abstract
The rapid adoption of electric vehicles (EVs) has driven a strong need for optimizing locations of electric vehicle charging stations (EVCSs). Previous methods for locating EVCSs rely on statistical and optimization models, but these methods have limitations in capturing complex nonlinear relationships and [...] Read more.
The rapid adoption of electric vehicles (EVs) has driven a strong need for optimizing locations of electric vehicle charging stations (EVCSs). Previous methods for locating EVCSs rely on statistical and optimization models, but these methods have limitations in capturing complex nonlinear relationships and spatial dependencies among factors influencing EVCS locations. To address this research gap and better understand the spatial impacts of urban activities on EVCS placement, this study presents a spatially aware machine learning (SAML) method that combines a multi-layer perceptron (MLP) model with a spatial loss function to optimize EVCS sites. Additionally, the method uses the Shapley additive explanation (SHAP) technique to investigate nonlinear relationships embedded in EVCS placement. Using the city of Wuhan as a case study, the SAML method reveals that parking site (PS), road density (RD), population density (PD), and commercial residential (CR) areas are key factors in determining optimal EVCS sites. The SAML model classifies these grid cells into no EVCS demand (0 EVCS), low EVCS demand (from 1 to 3 EVCSs), and high EVCS demand (4+ EVCSs) classes. The model performs well in predicting EVCS demand. Findings from ablation tests also indicate that the inclusion of spatial correlations in the model’s loss function significantly enhances the model’s performance. Additionally, results from case studies validate that the model is effective in predicting EVCSs in other metropolitan cities. Full article
(This article belongs to the Special Issue Fast-Charging Station for Electric Vehicles: Challenges and Issues)
Show Figures

Figure 1

14 pages, 24112 KiB  
Article
ImpactAlert: Pedestrian-Carried Vehicle Collision Alert System
by Raghav Rawat, Caspar Lant, Haowen Yuan and Dennis Shasha
Electronics 2025, 14(15), 3133; https://doi.org/10.3390/electronics14153133 - 6 Aug 2025
Abstract
The ImpactAlert system is a chest-mounted system that detects objects that are likely to hit a pedestrian and alerts that pedestrian. The primary use cases are visually impaired pedestrians or pedestrians who need to be warned about vehicles or other pedestrians coming from [...] Read more.
The ImpactAlert system is a chest-mounted system that detects objects that are likely to hit a pedestrian and alerts that pedestrian. The primary use cases are visually impaired pedestrians or pedestrians who need to be warned about vehicles or other pedestrians coming from unseen directions. This paper argues for the need for such a system, the design and algorithms of ImpactAlert, and experiments carried out in varied urban environments, ranging from densely crowded to semi-urban in the United States, India and China. ImpactAlert makes use of a LiDAR camera found on a commercial wireless phone, processes the data over several frames to evaluate the time to impact and speed of potential threats. When ImpactAlert determines a threat meets the criteria set by the user, it sends warning signals through an output device to warn a pedestrian. The output device can be an audible warning and/or a low-cost smart cane that vibrates when danger approaches. Our experiments in urban and semi-urban environments show that (i) ImpactAlert can avoid nearly all false negatives (when an alarm should be sent and it isn’t) and (ii) enjoys a low false positive rate. The net result is an effective low cost system to alert pedestrians in an urban environment. Full article
Show Figures

Figure 1

18 pages, 8682 KiB  
Article
Urban Carbon Metabolism Optimization Based on a Source–Sink–Flow Framework at the Functional Zone Scale
by Cui Wang, Liuchang Xu, Xingyu Xue and Xinyu Zheng
Land 2025, 14(8), 1600; https://doi.org/10.3390/land14081600 - 6 Aug 2025
Abstract
Carbon flow tracking and spatial pattern optimization at the scale of urban functional zones are key scientific challenges in achieving carbon neutrality. However, due to the complexity of carbon metabolism processes within urban functional zones, related studies remain limited. To address these scientific [...] Read more.
Carbon flow tracking and spatial pattern optimization at the scale of urban functional zones are key scientific challenges in achieving carbon neutrality. However, due to the complexity of carbon metabolism processes within urban functional zones, related studies remain limited. To address these scientific challenges, this study, based on the “source–sink–flow” ecosystem services framework, develops an integrated analytical approach at the scale of urban functional zones. The carbon balance is quantified using the CASA model in combination with multi-source data. A network model is employed to trace carbon flow pathways, identify critical nodes and interruption points, and optimize the urban spatial pattern through a low-carbon land use structure model. The research results indicate that the overall carbon balance in Hangzhou exhibits a spatial pattern of “deficit in the center and surplus in the periphery.” The main urban area shows a significant carbon deficit and relatively poor connectivity in the carbon flow network. Carbon sequestration services primarily flow from peripheral areas (such as Fuyang and Yuhang) with green spaces and agricultural functional zones toward high-emission residential–commercial and commercial–public functional zones in the central area. However, due to the interruption of multiple carbon flow paths, the overall carbon flow transmission capacity is significantly constrained. Through spatial optimization, some carbon deficit nodes were successfully converted into carbon surplus nodes, and disrupted carbon flow edges were repaired, particularly in the main urban area, where 369 carbon flow edges were restored, resulting in a significant improvement in the overall transmission efficiency of the carbon flow network. The carbon flow visualization and spatial optimization methods proposed in this paper provide a new perspective for urban carbon metabolism analysis and offer theoretical support for low-carbon city planning practices. Full article
(This article belongs to the Special Issue The Second Edition: Urban Planning Pathways to Carbon Neutrality)
Show Figures

Figure 1

17 pages, 287 KiB  
Article
Nutritional Quality and Safety of Windowpane Oyster Placuna placenta from Samal, Bataan, Philippines
by Jessica M. Rustia, Judith P. Antonino, Ravelina R. Velasco, Edwin A. Yates and David G. Fernig
Fishes 2025, 10(8), 385; https://doi.org/10.3390/fishes10080385 - 6 Aug 2025
Abstract
The windowpane oyster (Placuna placenta) is common in coastal areas of the Philippines, thriving in brackish waters. Its shells underpin the local craft industries. While its meat is edible, only small amounts are consumed locally, most going to waste. Utilization of [...] Read more.
The windowpane oyster (Placuna placenta) is common in coastal areas of the Philippines, thriving in brackish waters. Its shells underpin the local craft industries. While its meat is edible, only small amounts are consumed locally, most going to waste. Utilization of this potential nutrient source is hindered by the lack of information concerning its organic and mineral content, the possible presence of heavy metal ions, and the risk of microbial pathogens. We report extensive analysis of the meat from Placuna placenta, harvested during three different seasons to account for potential variations. This comprises proximate analysis, mineral, antioxidant, and microbial analyses. While considerable seasonal variation was observed, the windowpane oyster was found to be a rich source of protein, fats, minerals, and carbohydrates, comparing well with the meats of other shellfish and land animals. Following pre-cooking (~90 °C, 25–30 min), the standard local method for food preparation, no viable E. coli or Salmonella sp. were detected. Mineral content was broadly similar to that reported in fish, although iron, zinc, and copper were more highly represented, nevertheless, heavy metals were below internationally acceptable levels, with the exception of one of three samples, which was slightly above the only current standard, FSANZ. Whether the arsenic was in the safer organic form, which is commonly the case for shellfish, or the more toxic inorganic form remains to be established. This and the variation of arsenic over time will need to be considered when developing food products. Overall, the meat of the windowpane oyster is a valuable food resource and its current (albeit low-level) use should lower any barriers to its acceptance, making it suitable for commercialization. The present data support its development for high-value food products in urban markets. Full article
(This article belongs to the Section Processing and Comprehensive Utilization of Fishery Products)
25 pages, 8686 KiB  
Article
Urban Shrinkage in the Qinling–Daba Mountains: Spatiotemporal Patterns and Influencing Factors
by Yuan Lv, Shanni Yang, Dan Zhao, Yilin He and Shuaibin Li
Sustainability 2025, 17(15), 7084; https://doi.org/10.3390/su17157084 - 5 Aug 2025
Viewed by 42
Abstract
With the global economic restructuring and the consequent population mobility, urban shrinkage has become a common phenomenon. The Qinling–Daba Mountains, a zone with a key ecological function in China, have long experienced population decline and functional degradation. Clarifying the dynamics and influencing factors [...] Read more.
With the global economic restructuring and the consequent population mobility, urban shrinkage has become a common phenomenon. The Qinling–Daba Mountains, a zone with a key ecological function in China, have long experienced population decline and functional degradation. Clarifying the dynamics and influencing factors of urban shrinkage plays a vital role in supporting the sustainable development of the region. This study, using permanent resident population growth rates and nighttime light data, classified cities in the region into four spatial patterns: expansion–growth, intensive growth, expansion–shrinkage, and intensive shrinkage. It further examined the spatial characteristics of shrinkage across four periods (2005–2010, 2010–2015, 2015–2020, and 2020–2022). A Geographically and Temporally Weighted Regression (GTWR) model was applied to examine core influencing factors and their spatiotemporal heterogeneity. The results indicated the following: (1) The dominant pattern of urban shrinkage in the Qinling–Daba Mountains shifted from expansion–growth to expansion–shrinkage, highlighting the paradox of population decline alongside continued spatial expansion. (2) Three critical indicators significantly influenced urban shrinkage: the number of students enrolled in general secondary schools (X5), the per capita disposable income of urban residents (X7), and the number of commercial and residential service facilities (X12), with their effects exhibiting significant spatiotemporal heterogeneity. Temporally, X12 was the most influential factor in 2005 and 2010, while in 2015, 2020, and 2022, X5 and X7 became the dominant factors. Spatially, X7 significantly affected both eastern and western areas; X5’s influence was most pronounced in the west; and X12 had the greatest impact in the east. This study explored the patterns and underlying drivers of urban shrinkage in underdeveloped areas, aiming to inform sustainable development practices in regions facing comparable challenges. Full article
(This article belongs to the Special Issue Sustainable Urban Planning and Regional Development)
Show Figures

Figure 1

25 pages, 6507 KiB  
Article
Sustainable Urban Heat Island Mitigation Through Machine Learning: Integrating Physical and Social Determinants for Evidence-Based Urban Policy
by Amatul Quadeer Syeda, Krystel K. Castillo-Villar and Adel Alaeddini
Sustainability 2025, 17(15), 7040; https://doi.org/10.3390/su17157040 - 3 Aug 2025
Viewed by 303
Abstract
Urban heat islands (UHIs) are a growing sustainability challenge impacting public health, energy use, and climate resilience, especially in hot, arid cities like San Antonio, Texas, where land surface temperatures reach up to 47.63 °C. This study advances a data-driven, interdisciplinary approach to [...] Read more.
Urban heat islands (UHIs) are a growing sustainability challenge impacting public health, energy use, and climate resilience, especially in hot, arid cities like San Antonio, Texas, where land surface temperatures reach up to 47.63 °C. This study advances a data-driven, interdisciplinary approach to UHI mitigation by integrating Machine Learning (ML) with physical and socio-demographic data for sustainable urban planning. Using high-resolution spatial data across five functional zones (residential, commercial, industrial, official, and downtown), we apply three ML models, Random Forest (RF), Support Vector Machine (SVM), and Gradient Boosting Machine (GBM), to predict land surface temperature (LST). The models incorporate both environmental variables, such as imperviousness, Normalized Difference Vegetation Index (NDVI), building area, and solar influx, and social determinants, such as population density, income, education, and age distribution. SVM achieved the highest R2 (0.870), while RF yielded the lowest RMSE (0.488 °C), confirming robust predictive performance. Key predictors of elevated LST included imperviousness, building area, solar influx, and NDVI. Our results underscore the need for zone-specific strategies like more greenery, less impervious cover, and improved building design. These findings offer actionable insights for urban planners and policymakers seeking to develop equitable and sustainable UHI mitigation strategies aligned with climate adaptation and environmental justice goals. Full article
Show Figures

Figure 1

15 pages, 412 KiB  
Article
Analysis of Risk Factors in the Renovation of Old Underground Commercial Spaces in Resource-Exhausted Cities: A Case Study of Fushun City
by Kang Wang, Meixuan Li and Sihui Dong
Sustainability 2025, 17(15), 7041; https://doi.org/10.3390/su17157041 - 3 Aug 2025
Viewed by 272
Abstract
Resource-exhausted cities have long played a key role in national energy development. Urban renewal projects, such as the renovation of old underground commercial spaces, can improve urban vitality and promote sustainable development. However, in resource-based cities, traditional industries dominate, while new industries such [...] Read more.
Resource-exhausted cities have long played a key role in national energy development. Urban renewal projects, such as the renovation of old underground commercial spaces, can improve urban vitality and promote sustainable development. However, in resource-based cities, traditional industries dominate, while new industries such as modern commerce develop slowly. This results in low economic dynamism and weak motivation for urban development. To address this issue, we propose a systematic method for analyzing construction risks during the decision-making stage of renovation projects. The method includes three steps: risk value assessment, risk factor identification, and risk weight calculation. First, unlike previous studies that only used SWOT for risk factor analysis, we also applied it for project value assessment. Then, using the Work Breakdown Structure–Risk Breakdown Structure framework method (WBS-RBS), we identified specific risk sources by analyzing key construction technologies throughout the entire lifecycle of the renovation project. Finally, to enhance expert consensus, we proposed an improved Delphi–Analytic Hierarchy Process method (Delphi–AHP) to calculate risk indicator weights for different construction phases. The risk analysis covered all lifecycle stages of the renovation and upgrading project. The results show that in the Fushun city renovation case study, the established framework—consisting of five first-level indicators and twenty s-level indicators—enables analysis of renovation projects. Among these, management factors and human factors were identified as the most critical, with weights of 0.3608 and 0.2017, respectively. The proposed method provides a structured approach to evaluating renovation risks, taking into account the specific characteristics of construction work. This can serve as a useful reference for ensuring safe and efficient implementation of underground commercial space renovation projects in resource-exhausted cities. Full article
Show Figures

Figure 1

20 pages, 2981 KiB  
Article
Data-Driven Modelling and Simulation of Fuel Cell Hybrid Electric Powertrain
by Mehroze Iqbal, Amel Benmouna and Mohamed Becherif
Hydrogen 2025, 6(3), 53; https://doi.org/10.3390/hydrogen6030053 - 1 Aug 2025
Viewed by 122
Abstract
Inspired by the Toyota Mirai, this study presents a high-fidelity data-driven approach for modelling and simulation of a fuel cell hybrid electric powertrain. This study utilises technical assessment data sourced from Argonne National Laboratory’s publicly available report, faithfully modelling most of the vehicle [...] Read more.
Inspired by the Toyota Mirai, this study presents a high-fidelity data-driven approach for modelling and simulation of a fuel cell hybrid electric powertrain. This study utilises technical assessment data sourced from Argonne National Laboratory’s publicly available report, faithfully modelling most of the vehicle subsystems as data-driven entities. The simulation framework is developed in the MATLAB/Simulink environment and is based on a power dynamics approach, capturing nonlinear interactions and performance intricacies between different powertrain elements. This study investigates subsystem synergies and performance boundaries under a combined driving cycle composed of the NEDC, WLTP Class 3 and US06 profiles, representing urban, extra-urban and aggressive highway conditions. To emulate the real-world load-following strategy, a state transition power management and allocation method is synthesised. The proposed method dynamically governs the power flow between the fuel cell stack and the traction battery across three operational states, allowing the battery to stay within its allocated bounds. This simulation framework offers a near-accurate and computationally efficient digital counterpart to a commercial hybrid powertrain, serving as a valuable tool for educational and research purposes. Full article
Show Figures

Figure 1

28 pages, 1804 KiB  
Article
The Penetration of Digital Currency for Sustainable and Inclusive Urban Development: Evidence from China’s e-CNY Pilot Using SDID-SCM
by Ying Chen and Ke Zhang
Sustainability 2025, 17(15), 6981; https://doi.org/10.3390/su17156981 - 31 Jul 2025
Viewed by 286
Abstract
Against the backdrop of China’s fast-growing digital economy and its financial inclusion agenda, there is still little city-level evidence on whether the e-CNY pilot accelerates financial deepening at the grassroots. Using a balanced panel of 271 prefecture-and-above cities for 2016–2022, this study employs [...] Read more.
Against the backdrop of China’s fast-growing digital economy and its financial inclusion agenda, there is still little city-level evidence on whether the e-CNY pilot accelerates financial deepening at the grassroots. Using a balanced panel of 271 prefecture-and-above cities for 2016–2022, this study employs a staggered difference-in-differences (SDID) design augmented by the synthetic control method (SCM) to rigorously identify the policy effect of the e-CNY pilot. The results show that the pilot program significantly improves urban financial inclusion, contributing to more equitable access to financial services and supporting inclusive socio-economic development. Mechanism analysis suggests that the effect operates mainly through two channels, a merchant-coverage channel and a transaction-scale channel, with the former contributing the majority of the overall effect. Incorporating a migration-based mobility index shows that most studies’ focus on the merchant-coverage effect is amplified in cities under tight mobility restrictions but wanes where commercial networks are already saturated, whereas the transaction-scale channel is largely insensitive to mobility shocks. Heterogeneity tests further indicate stronger gains in non-provincial capital cities and in the eastern and central regions. Overall, the study uncovers a “penetration-inclusion” network logic and provides policy insights for advancing sustainable financial inclusion through optimized terminal deployment, merchant incentives, and diversified scenario design. Full article
(This article belongs to the Section Economic and Business Aspects of Sustainability)
Show Figures

Figure 1

16 pages, 9862 KiB  
Article
Analysis of Drone Flight Stability for Building a Korean Urban Air Traffic (K-UAM) Delivery System
by Sohyun Cho, Hyuncheol Kim, Jaeho Chung and Dongmin Shin
Appl. Sci. 2025, 15(15), 8492; https://doi.org/10.3390/app15158492 - 31 Jul 2025
Viewed by 192
Abstract
The Ministry of Land, Infrastructure, and Transport conducted a demonstration project targeting pilot areas to commercialize drone delivery services in urban areas and to present a standard model. In this study, flight data on drone delivery routes in Ulju and drone hovering in [...] Read more.
The Ministry of Land, Infrastructure, and Transport conducted a demonstration project targeting pilot areas to commercialize drone delivery services in urban areas and to present a standard model. In this study, flight data on drone delivery routes in Ulju and drone hovering in Yeosu were collected and analyzed for flight safety. Since there are no domestic or international regulations on the stability of drone flight, we were given the task of analyzing whether drone path flight should be maintained within a 10 m error range from the planned path line by the Korea Transportation Safety Authority and whether hovering works while satisfying the left and right radius errors and altitude errors within 3 m. Accordingly, the drone flight path data analyzed in Ulju met the criteria of up to 1.07%, and the hovering data analyzed in Yeosu met the criteria of less than 3% for the entire section data. Therefore, the drone flight stability evaluation analyzed in this paper is considered to have been passed. Based on the results of this study, is the data are expected to serve as a cornerstone for establishing guidelines for drone delivery flight data analysis regulations. Full article
(This article belongs to the Section Transportation and Future Mobility)
Show Figures

Figure 1

20 pages, 3030 KiB  
Article
Street Trees’ Obstruction of Retail Signage and Retail Rent: An Exploratory Scene Parsing Street View Analysis of Seoul’s Commercial Districts
by Minkyu Park, Junyoung Wang, Beomgu Yim, Doyoung Park and Jaekyung Lee
Sustainability 2025, 17(15), 6934; https://doi.org/10.3390/su17156934 - 30 Jul 2025
Viewed by 243
Abstract
Urban greening initiatives, including the incorporation of street trees, have been widely recognized for a variety of environmental benefits. However, their economic impact on retail, in particular, the impact of street trees on the visibility of signs, has been underexplored. Street trees can [...] Read more.
Urban greening initiatives, including the incorporation of street trees, have been widely recognized for a variety of environmental benefits. However, their economic impact on retail, in particular, the impact of street trees on the visibility of signs, has been underexplored. Street trees can obscure retail signs, potentially reducing customer engagement and discouraging retailers from paying higher rents for such locations. This paper investigates how the blocking of retail signage by street trees affects monthly rent in developed commercial districts in Seoul. It identifies, through Google Street View and state-of-the-art deep-learning-based semantic segmentation methods, environmental elements such as street trees, sidewalks, and buildings; quantifies their proportions; and analyzes their impact on rent using OLS regression, controlling for socio-economic variables. The results reveal that rents significantly diminish when street trees blocking views of retail signs increase. Our findings require more nuanced consideration by planners and policymakers in balancing both environmental and economic demands toward sustainable street design and planning. Full article
Show Figures

Figure 1

21 pages, 5817 KiB  
Article
UN15: An Urban Noise Dataset Coupled with Time–Frequency Attention for Environmental Sound Classification
by Yu Shen, Ge Cao, Huan-Yu Dong, Bo Dong and Chang-Myung Lee
Appl. Sci. 2025, 15(15), 8413; https://doi.org/10.3390/app15158413 - 29 Jul 2025
Viewed by 168
Abstract
With the increasing severity of urban noise pollution, its detrimental impact on public health has garnered growing attention. However, accurate identification and classification of noise sources in complex urban acoustic environments remain major technical challenges for achieving refined noise management. To address this [...] Read more.
With the increasing severity of urban noise pollution, its detrimental impact on public health has garnered growing attention. However, accurate identification and classification of noise sources in complex urban acoustic environments remain major technical challenges for achieving refined noise management. To address this issue, this study presents two key contributions. First, we construct a new urban noise classification dataset, namely the urban noise 15-category dataset (UN15), which consists of 1620 audio clips from 15 representative categories, including traffic, construction, crowd activity, and commercial noise, recorded from diverse real-world urban scenes. Second, we propose a novel deep neural network architecture based on a residual network and integrated with a time–frequency attention mechanism, referred to as residual network with temporal–frequency attention (ResNet-TF). Extensive experiments conducted on the UN15 dataset demonstrate that ResNet-TF outperforms several mainstream baseline models in both classification accuracy and robustness. These results not only verify the effectiveness of the proposed attention mechanism but also establish the UN15 dataset as a valuable benchmark for future research in urban noise classification. Full article
(This article belongs to the Section Acoustics and Vibrations)
Show Figures

Figure 1

Back to TopTop