Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (624)

Search Parameters:
Keywords = combined penetration enhancement

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 4957 KB  
Article
Dexmedetomidine-Loaded Hydrogel Microneedles Alleviate Acute Inflammatory Visceral Pain in Mice
by Peng Ke, Xin Tan, Yi Zhou, Xiaoyan Bao, Linjie Wu, Min Han and Xiaodan Wu
Gels 2025, 11(11), 904; https://doi.org/10.3390/gels11110904 - 11 Nov 2025
Abstract
Acute inflammatory visceral pain (AIVP) is a prevalent yet challenging clinical condition associated with inflammatory diseases, characterized by diffuse pain that often escalates into nausea, vomiting, and systemic autonomic disturbances. The absence of effective and patient-centered therapies remains a significant clinical challenge. While [...] Read more.
Acute inflammatory visceral pain (AIVP) is a prevalent yet challenging clinical condition associated with inflammatory diseases, characterized by diffuse pain that often escalates into nausea, vomiting, and systemic autonomic disturbances. The absence of effective and patient-centered therapies remains a significant clinical challenge. While dexmedetomidine (Dex) has demonstrated promising analgesic effects, its conventional intravenous administration involves slow infusion, heightening risks of infection and compromising patient comfort and compliance. Here, we present a breakthrough strategy using a hyaluronic acid (HA) hydrogel and microneedle-based transdermal system for Dex delivery to enhance clinical practicality. We successfully fabricated Dex-loaded HA hydrogel microneedles (MN/Dex), enabling efficient skin penetration and controlled drug release. Comprehensive biosafety evaluations, including skin irritation, cytotoxicity, and hemolysis assays, confirmed the excellent biocompatibility of the HA hydrogel microneedle system (HA-MN). In the acetic-acid-induced AIVP model, MN/Dex not only produced significant and sustained reduction in visceral and somatic hyperalgesia but also maintained normal physiological activity, avoiding sedation burden, preserving feeding behavior, and supporting natural mobility. MN/Dex offers a minimally invasive, easy-to-administer, and well-tolerated alternative to intravenous therapy, with the potential to transform outpatient management and improve quality of life for patients suffering from AIVP. This advanced delivery platform bridges a critical translational gap in pain management, combining efficacy with outstanding clinical adaptability. Full article
(This article belongs to the Special Issue Synthesis, Characterization and Pharmaceutical Applications of Gels)
Show Figures

Figure 1

19 pages, 2771 KB  
Article
Dual Illumination and Detection Photoacoustic Tomography of Hollow Metal Cylinders
by Verena M. Moock, Marco P. Colín-García, Rubén E. Camacho-López, Oscar E. Morales-Toledo and Argelia Pérez-Pacheco
Appl. Sci. 2025, 15(22), 11967; https://doi.org/10.3390/app152211967 - 11 Nov 2025
Abstract
Photoacoustic tomography is an innovative non-ionizing imaging technique that combines optical contrast with ultrasound resolution for 3D object characterization. While promising, its broader adoption is limited by challenges such as shallow penetration depth and strong optical scattering. To address these issues, this study [...] Read more.
Photoacoustic tomography is an innovative non-ionizing imaging technique that combines optical contrast with ultrasound resolution for 3D object characterization. While promising, its broader adoption is limited by challenges such as shallow penetration depth and strong optical scattering. To address these issues, this study introduces a dual illumination and detection photoacoustic tomography method, specifically designed for symmetrical objects like hollow metallic cylinders. The illumination system plays a critical role in determining the quality of photoacoustic signals and, thus, the final image. This approach enhances spatial resolution and contrast by using complementary light delivery and signal detection. In industrial settings, where accurate and efficient non-destructive testing is essential, traditional techniques often lack the precision required. The dual illumination and detection strategy offers significant improvements in effective resolution, contrast, defect detection, and artifact reduction, surpassing the limitations of unidirectional approaches. This technique not only strengthens the characterization of metal structures but also contributes to a deeper understanding of their physical behavior. Applications extend across various fields, including aerospace and biomedical engineering. This paper explores the underlying principles and potential of this advanced imaging modality, highlighting its value in modern diagnostic and inspection technologies. Full article
Show Figures

Figure 1

16 pages, 5272 KB  
Article
Mechanical and Adhesive Properties of Hydrothermally Treated Bamboo Composites Reinforced with Phenolic Resin: Effect of Impregnation with Silica Nanoparticles
by Lionnel Frederique Bidzanga Bessala and Yanjun Li
Polymers 2025, 17(22), 2989; https://doi.org/10.3390/polym17222989 - 11 Nov 2025
Abstract
This study investigates the synergistic effect of phenolic resin impregnation on the mechanical and adhesive properties of hydrothermally treated bamboo composites further reinforced with a silica nanoparticle sol–gel catalyzed by Fe3O4 (SiO2/Fe3O4). The hydrothermal [...] Read more.
This study investigates the synergistic effect of phenolic resin impregnation on the mechanical and adhesive properties of hydrothermally treated bamboo composites further reinforced with a silica nanoparticle sol–gel catalyzed by Fe3O4 (SiO2/Fe3O4). The hydrothermal pre-treatment was found to enhance cellulose crystallinity, as confirmed through XRD analysis. Dynamic mechanical analysis (DMA) and nanoindentation tests revealed that the hybrid treatment significantly influences the viscoelastic response. Composites treated only with hot water and resin (GB-W) exhibited superior short-term creep resistance and higher elasticity, attributed to their optimized crystalline structure. In contrast, the silica-reinforced composites (GB-M) demonstrated the most viscous behavior and lowest stress relaxation, making them most effective at minimizing elastic springback. Nanoindentation further showed that GB-W had the highest nano-adherence at the fiber cell wall level. FTIR analysis indicated a stronger interaction between the phenolic resin and the hydroxyl groups of the bamboo matrix in GB-0 and GB-W compared to GB-M, where the silica layer potentially altered this interface. Microscopy confirmed a resin penetration depth of at least 1 mm, primarily into porous tissues. The results demonstrate that while silica reinforcement enhances relaxation properties, the hydrothermal pre-treatment combined with phenolic resin creates a more favorable interface, leading to better overall creep resistance and adherence. Full article
Show Figures

Figure 1

29 pages, 2139 KB  
Review
Overcoming Oral Cavity Barriers for Peptide Delivery Using Advanced Pharmaceutical Techniques and Nano-Formulation Platforms
by Ali A. Amer, Lewis Bingle, Amal Ali Elkordy and Cheng Shu Chaw
Biomedicines 2025, 13(11), 2735; https://doi.org/10.3390/biomedicines13112735 - 8 Nov 2025
Viewed by 400
Abstract
Therapeutic peptides have gained significant attention due to their high specificity, potency, and safety profiles in treating various diseases. However, their clinical application via the oral route remains challenging. Peptides are inherently unstable in the gastrointestinal environment, where they are rapidly degraded by [...] Read more.
Therapeutic peptides have gained significant attention due to their high specificity, potency, and safety profiles in treating various diseases. However, their clinical application via the oral route remains challenging. Peptides are inherently unstable in the gastrointestinal environment, where they are rapidly degraded by proteolytic enzymes and acidic pH, leading to poor bioavailability. Additionally, their large molecular size and hydrophilicity restrict passive diffusion across the epithelial barriers of the gastrointestinal tract. These limitations have traditionally necessitated parenteral administration, which reduces patient compliance and convenience. The oral cavity, comprising the buccal and sublingual mucosa, offers a promising alternative for peptide delivery. Its rich vascularization allows for rapid systemic absorption while bypassing hepatic first-pass metabolism. Furthermore, the mucosal surface provides a relatively permeable and accessible site for drug administration. However, the oral cavities also present significant barriers: the mucosal epithelium limits permeability, the presence of saliva causes rapid clearance, and enzymes in saliva contribute to peptide degradation. Therefore, innovative strategies are essential to enhance peptide stability, retention, and permeation in this environment. Nanoparticle-based delivery systems, including lipid-based carriers such as liposomes and niosomes, as well as polymeric nanoparticles like chitosan and PLGA, offer promising solutions. These nanocarriers protect peptides from enzymatic degradation, enhance mucoadhesion to prolong residence time, and facilitate controlled release. Their size and surface properties can be engineered to improve mucosal penetration, including through receptor-mediated endocytosis or by transiently opening tight junctions. Among these, niosomes have shown high encapsulation efficiency and sustained release potential, making them particularly suitable for oral peptide delivery. Despite advances, challenges remain in translating these technologies clinically, including ensuring biocompatibility, scalable manufacturing, and patient acceptance. Nevertheless, the oral cavity’s accessibility, combined with nanotechnological innovations, offers a compelling platform for personalized, non-invasive peptide therapies that could significantly improve treatment outcomes and patient quality of life. Full article
(This article belongs to the Special Issue Advances Research on Nanomedicine)
Show Figures

Figure 1

16 pages, 4430 KB  
Article
Role of Ni Layer Thickness in Regulating Mechanical Properties and Deformation-Fracture Behavior of TiB2-Ni Multilayer Films
by Xiaoben Qi, Xu Wang, Lina Tang, Rukeye Maimaititaji, Miaoling Shi, Sinan Ding, Jianyuan Ma, Huanqing Xu, Jinyi Fan, Hailong Shang and Ying Wang
Nanomaterials 2025, 15(22), 1687; https://doi.org/10.3390/nano15221687 - 7 Nov 2025
Viewed by 223
Abstract
A series of TiB2-Ni multilayer films with different Ni layer thicknesses was prepared by magnetron sputtering technology. The effect of Ni layer thickness on the microstructure and mechanical properties of the multilayer films was investigated, and the deformation and fracture mechanisms [...] Read more.
A series of TiB2-Ni multilayer films with different Ni layer thicknesses was prepared by magnetron sputtering technology. The effect of Ni layer thickness on the microstructure and mechanical properties of the multilayer films was investigated, and the deformation and fracture mechanisms underlying the observed behavior were analyzed in detail. The results show that all multilayer films exhibit a well-defined layered architecture with sharp interfacial boundaries. Specifically, the Ni layers grow as columnar grains with an average diameter of approximately 10 nm, while the TiB2 layers form a very fine acicular nanocolumnar structure. With the increase in Ni layer thickness, the hardness of the multilayer films shows a decreasing trend, gradually decreasing from 27.3 GPa at a 4 nm Ni thickness to 19.3 GPa at 50 nm. In contrast, the fracture toughness increases gradually from 1.54 MPa·m1/2 to 2.73 MPa·m1/2. This enhancement in toughness is primarily attributed to a transition in the deformation and fracture mechanism. With the increase in Ni layer thickness, the crack propagation mode in the multilayer films gradually changes from the integral propagation penetrating the film layers to the crack deflection propagation within the layers. This transformation is the result of the combined effect of the stress state of each layer and the crack energy dissipation. Full article
Show Figures

Figure 1

20 pages, 9171 KB  
Article
Effects of Mineral Admixtures and Mixing Techniques on the Performance of Steel Fibre-Reinforced Recycled Aggregate Concrete
by Muhammad Qaisar and Muhammad Yaqub
Buildings 2025, 15(21), 4010; https://doi.org/10.3390/buildings15214010 - 6 Nov 2025
Viewed by 194
Abstract
In this work, the synergistic effects of mineral admixtures and advanced mixing processes are systematically accounted for steel fibre-reinforced recycled aggregate concrete (SFR-RAC). It studies the improvement of performance optimization in SFR-RAC, inherently weak ITZ by adding 0.5% hooked steel fibres and replacing [...] Read more.
In this work, the synergistic effects of mineral admixtures and advanced mixing processes are systematically accounted for steel fibre-reinforced recycled aggregate concrete (SFR-RAC). It studies the improvement of performance optimization in SFR-RAC, inherently weak ITZ by adding 0.5% hooked steel fibres and replacing cement with ground granulated blast furnace slag (25–50%), fly ash (20–40%) and silica fume (7–14%). The efficiency of double-mixing (DM) and triple-mixing (TM) procedures were comprehensively evaluated. Results showed that mineral admixtures could improve mortar-aggregate interface bond, and the triple-mix technique contributed to such improvement. The maximum performance was observed for the combination of 7%SF with triple mixing (7%SF-TM), which presented increased compressive, tensile and flexural strengths by 7–18%, 12–29%, and 16–31% respectively. The durability was significantly improved, and the water resistance could increase by 53% with addition of 7%SF-TM, chloride penetration depth reduced by 86% when incorporated with 25%GGBS-TM, acid attack decreased by 84% with addition of 14%SF-TM. Microstructural analysis (SEM, XRD) confirmed that these enhancements stem from a denser matrix and refined ITZ due to increased C–S–H formation. This study confirms that the strategic integration of fibre reinforcement, pozzolanic admixtures and optimized mixing protocols presents a viable pathway for producing sustainable concrete from construction waste. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

26 pages, 7703 KB  
Article
Deployment of Modular Renewable Energy Sources and Energy Storage Schemes in a Renewable Energy Valley
by Alexandros Kafetzis, Giorgos Kardaras, Michael Bampaou, Kyriakos D. Panopoulos, Elissaios Sarmas, Vangelis Marinakis and Aristotelis Tsekouras
Energies 2025, 18(21), 5837; https://doi.org/10.3390/en18215837 - 5 Nov 2025
Viewed by 219
Abstract
While community energy initiatives and pilot projects have demonstrated technical feasibility and economic benefits, their site-specific nature limits transferability to systematic, scalable investment models. This study addresses this gap by proposing a modular framework for Renewable Energy Valleys (REVs), developed from real-world Community [...] Read more.
While community energy initiatives and pilot projects have demonstrated technical feasibility and economic benefits, their site-specific nature limits transferability to systematic, scalable investment models. This study addresses this gap by proposing a modular framework for Renewable Energy Valleys (REVs), developed from real-world Community Energy Lab (CEL) demonstrations in Crete, Greece, which is an island with pronounced seasonal demand fluctuation, strong renewable potential, and ongoing hydrogen valley initiatives. Four modular business schemes are defined, each representing different sectoral contexts by combining a baseline of 50 residential units with one representative large consumer (hotel, rural households with thermal loads, municipal swimming pool, or hydrogen bus). For each scheme, a mixed-integer linear programming model is applied to optimally size and operate integrated solar PV, wind, battery (BAT) energy storage, and hydrogen systems across three renewable energy penetration (REP) targets: 90%, 95%, and 99.9%. The framework incorporates stochastic demand modeling, sector coupling, and hierarchical dispatch schemes. Results highlight optimal technology configurations that minimize dependency on external sources and curtailment while enhancing reliability and sustainability under Mediterranean conditions. Results demonstrate significant variation in optimal configurations across sectors and targets, with PV capacity ranging from 217 kW to 2840 kW, battery storage from 624 kWh to 2822 kWh, and hydrogen systems scaling from 65.2 kg to 192 kg storage capacity. The modular design of the framework enables replication beyond the specific context of Crete, supporting the scalable development of Renewable Energy Valleys that can adapt to diverse sectoral mixes and regional conditions. Full article
Show Figures

Figure 1

16 pages, 4585 KB  
Article
Effects of Heat Input and Backing Gas on Bead Geometry and Weld Heat Tint in Sanitary Tube Welding
by Ngoc-Thien Tran, Van-Thuc Nguyen, Thanh Trung Do and Van-Sung Nguyen
Thermo 2025, 5(4), 49; https://doi.org/10.3390/thermo5040049 - 4 Nov 2025
Viewed by 250
Abstract
Heat input always plays a crucial role in enhancing penetration depth within the heat-affected zone (HAZ) of the orbital TIG welding process. The heat tint, in addition, caused by heat input, is a decisive factor for the quality of sanitary tube welds, which [...] Read more.
Heat input always plays a crucial role in enhancing penetration depth within the heat-affected zone (HAZ) of the orbital TIG welding process. The heat tint, in addition, caused by heat input, is a decisive factor for the quality of sanitary tube welds, which AWS D18.2 strictly regulates. Therefore, controlling heat input to achieve complete penetration while maintaining an acceptable heat tint level is considered essential in sanitary tube welding. For this reason, this study conducted 27 experimental welds with variations in the parameters of the Orbital TIG Welding process to determine the optimal welding parameters for sanitary tubes with an outer diameter of Ø38.1 mm and a thickness of 1.65 mm. Taguchi analysis identified the optimal parameter combination to achieve full penetration as a welding current of 100 A, an arc length of 1.5 mm, and a welding speed of 5 mm/s. In addition, the use of internal backing gas and arc time significantly improved the heat tint level of the welds produced under the proposed parameter set. Full article
Show Figures

Figure 1

14 pages, 828 KB  
Article
Enhancing Distribution Network Resilience Using Genetic Algorithms
by Theodoros Ι. Maris, Christos Christodoulou and Valeri Mladenov
Electronics 2025, 14(21), 4324; https://doi.org/10.3390/electronics14214324 - 4 Nov 2025
Viewed by 222
Abstract
Ensuring the resilience and efficiency of modern distribution networks is increasingly critical in the presence of distributed energy resources (DERs). This study presents a multi-objective optimization framework based on a Genetic Algorithm (GA) to improve voltage profiles, minimize active power losses, and enhance [...] Read more.
Ensuring the resilience and efficiency of modern distribution networks is increasingly critical in the presence of distributed energy resources (DERs). This study presents a multi-objective optimization framework based on a Genetic Algorithm (GA) to improve voltage profiles, minimize active power losses, and enhance resilience in a radial distribution network. A simplified 6-bus radial test system with DERs at buses 2, 3, and 4 is considered as a proof-of-concept case study. The GA optimizes control variables, including DER setpoints and network reconfiguration, under operational and thermal constraints. The optimization employs a weighted objective function combining voltage profile improvement, loss minimization, and a resilience penalty term that accounts for bus voltage collapse and branch overloads during DER contingencies. Simulation results demonstrate that the GA significantly improves network performance: the minimum bus voltage rises from 0.92 pu to 0.97 pu, while the total real power losses decrease by 46% (from 55.3 kW to 29.7 kW). Moreover, in the event of a DER outage, the optimized configuration preserves 100% load delivery, compared to 89% in the base case. These findings confirm that GA is an effective and practical tool for enhancing distribution network operation and resilience under high DER penetration. Future work will extend the approach to larger IEEE benchmark systems and time-series scenarios. Full article
Show Figures

Figure 1

24 pages, 25418 KB  
Article
A Transformer-Based Residual Attention Network Combining SAR and Terrain Features for DEM Super-Resolution Reconstruction
by Ruoxuan Chen, Yumin Chen, Tengfei Zhang, Fei Zeng and Zhanghui Li
Remote Sens. 2025, 17(21), 3625; https://doi.org/10.3390/rs17213625 - 1 Nov 2025
Viewed by 326
Abstract
Acquiring high-resolution digital elevation models (DEMs) over across extensive regions remains challenging due to high costs and insufficient detail, creating demand for super-resolution (SR) techniques. However, existing DEM SR methods still rely on limited data sources and often neglect essential terrain features. To [...] Read more.
Acquiring high-resolution digital elevation models (DEMs) over across extensive regions remains challenging due to high costs and insufficient detail, creating demand for super-resolution (SR) techniques. However, existing DEM SR methods still rely on limited data sources and often neglect essential terrain features. To address the issues, SAR data complements existing sources with its all-weather capability and strong penetration, and a Transformer-based Residual Attention Network combining SAR and Terrain Features (TRAN-ST) is proposed. The network incorporates intensity and coherence as SAR features to restore the details of the high-resolution DEMs, while slope and aspect constraints in the loss function enhance terrain consistency. Additionally, it combines the lightweight Transformer module with the residual feature aggregation module, which enhances the global perception capability while aggregating local residual features, thereby improving the reconstruction accuracy and training efficiency. Experiments were conducted on two DEMs in San Diego, USA, and the results show that compared with methods such as the bicubic, SRCNN, EDSR, RFAN, HNCT methods, the model reduces the mean absolute error (MAE) by 2–30%, the root mean square error (RMSE) by 1–31%, and the MAE of the slope by 2–13%, and it reduces the number of parameters effectively, which proves that TRAN-ST outperforms current typical methods. Full article
(This article belongs to the Special Issue Deep Learning Innovations in Remote Sensing)
Show Figures

Figure 1

24 pages, 2232 KB  
Article
Coordinated Control Strategy for Island Power Generation System with Photovoltaic, Hydrogen-Fueled Gas Turbine and Hybrid Energy Storage
by Zhicheng Ye, Zemin Ding, Yongbao Liu and Youhong Yu
J. Mar. Sci. Eng. 2025, 13(11), 2071; https://doi.org/10.3390/jmse13112071 - 31 Oct 2025
Viewed by 302
Abstract
Marine and island power systems usually incorporate various forms of energy supply, which poses challenges to the coordinated control of the system under diverse, irregular, and complex load operation modes. To improve the stability and self-sufficiency of island-isolated microgrids with high penetration of [...] Read more.
Marine and island power systems usually incorporate various forms of energy supply, which poses challenges to the coordinated control of the system under diverse, irregular, and complex load operation modes. To improve the stability and self-sufficiency of island-isolated microgrids with high penetration of renewable energy, this study proposes a coordinated control strategy for an island microgrid with PV, HGT, and HESS, combining primary power allocation via low-pass filtering with a fuzzy logic-based secondary correction. The fuzzy controller dynamically adjusts power distribution based on the states of charge of the battery and supercapacitor, following a set of predefined rules. A comprehensive system model is developed in Matlab R2023b, integrating PV generation, an electrolyzer, HGT and a battery–supercapacitor HESS. Simulation results across four operational cases demonstrate that the proposed strategy reduces DC bus voltage fluctuations to a maximum of 4.71% (compared to 5.63% without correction), with stability improvements between 0.96% and 1.55%. The HESS avoids overcharging and over-discharging by initiating priority charging at low SOC levels, thereby extending service life. This work provides a scalable control framework for enhancing the resilience of marine and island microgrids with high renewable energy penetration. Full article
(This article belongs to the Section Marine Energy)
Show Figures

Figure 1

24 pages, 3813 KB  
Article
VMD-SSA-LSTM-Based Cooling, Heating Load Forecasting, and Day-Ahead Coordinated Optimization for Park-Level Integrated Energy Systems
by Lintao Zheng, Dawei Li, Zezheng Zhou and Lihua Zhao
Buildings 2025, 15(21), 3920; https://doi.org/10.3390/buildings15213920 - 30 Oct 2025
Viewed by 271
Abstract
Park-level integrated energy systems (IESs) are increasingly challenged by rapid electrification and higher penetration of renewable energy, which exacerbate source–load imbalances and scheduling uncertainty. This study proposes a unified framework that couples high-accuracy cooling and heating load forecasting with day-ahead coordinated optimization for [...] Read more.
Park-level integrated energy systems (IESs) are increasingly challenged by rapid electrification and higher penetration of renewable energy, which exacerbate source–load imbalances and scheduling uncertainty. This study proposes a unified framework that couples high-accuracy cooling and heating load forecasting with day-ahead coordinated optimization for an office park in Tianjin. The forecasting module employs correlation-based feature selection and variational mode decomposition (VMD) to capture multi-scale dynamics, and a sparrow search algorithm (SSA)-driven long short-term memory network (LSTM), with hyperparameters globally tuned by root mean square error to improve generalization and robustness. The scheduling module performs day-ahead optimization across source, grid, load, and storage to minimize either (i) the standard deviation (SD) of purchased power to reduce grid impact, or (ii) the total operating cost (OC) to achieve economic performance. On the case dataset, the proposed method achieves mean absolute percentage errors (MAPEs) of 8.32% for cooling and 5.80% for heating, outperforming several baselines and validating the benefits of multi-scale decomposition combined with intelligent hyperparameter searching. Embedding forecasts into day-ahead scheduling substantially reduces external purchases: on representative days, forecast-driven optimization lowers the SD of purchased electricity from 29.6% to 88.1% across heating and cooling seasons; seasonally, OCs decrease from 6.4% to 15.1% in heating and 3.8% to 11.6% in cooling. Overall, the framework enhances grid friendliness, peak–valley coordination, and the stability, flexibility, and low-carbon economics of park-level IESs. Full article
(This article belongs to the Section Building Energy, Physics, Environment, and Systems)
Show Figures

Figure 1

46 pages, 7647 KB  
Article
Harnessing Nature for Breast Cancer Management: Effects of Fisetin-Loaded Nigellasomes Embedded in Microneedles Improve Tumor Suppression and Reduce Oxidative Stress
by Sammar Fathy Elhabal, Eman Mohammed Ali, Sandra Hababeh, Fatma E. Hassan, Suzan Awad AbdelGhany Morsy, Dalia Ahmed Elbahy, Sahar K. Ali, Khaled M. Allam, Ibrahim Mousa, Marwa A. Fouad and Ahmed Mohsen Elsaid Hamdan
Pharmaceutics 2025, 17(11), 1392; https://doi.org/10.3390/pharmaceutics17111392 - 27 Oct 2025
Viewed by 769
Abstract
Background: Natural compounds such as fisetin have promising in breast cancer treatment, but their poor pharmacokinetics limit their therapeutic application. This study utilized a synergistic approach by combining fisetin-loaded Nigella sativa (N.S.) oil nanovesicles (FIS-NSs) and carbohydrate-based microneedles (FIS-NSs-MNs) to improve breast [...] Read more.
Background: Natural compounds such as fisetin have promising in breast cancer treatment, but their poor pharmacokinetics limit their therapeutic application. This study utilized a synergistic approach by combining fisetin-loaded Nigella sativa (N.S.) oil nanovesicles (FIS-NSs) and carbohydrate-based microneedles (FIS-NSs-MNs) to improve breast cancer management. Methods: Chemical composition of NS petroleum ether extract using gas chromatography–mass spectrometry (GC/MS). FIS-NSs were prepared and characterized for particle size, polydispersity, zeta potential, encapsulation efficiency, and stability. These vesicles were embedded into gelatin, hyaluronic acid, and carboxymethyl cellulose microneedles. In vitro drug release, ex vivo permeation, cytotoxicity against breast cancer cells, and in vivo antitumor efficacy in Ehrlich tumor models were evaluated. Results: Optimized FIS-NSs displayed nanoscale size (190 ± 0.74 nm), low P.D.I (0.25 ± 0.07), high surface charge (+37 ± 0.57 mV), and high encapsulation (88 ± 0.77%). In vitro investigations showed sustained FIS release (~85% over 72 h), while ex vivo permeation showed higher absorption than free fisetin. Both FIS-NSs and FIS-NSs-MNs showed dose-dependent cytotoxicity against breast cancer cells, with lower IC50 than free fisetin (24.7 µM). In vivo, FIS-NSs-MNs and tumor burden inhibition (~77%), reduced oxidative stress (54%), restored antioxidant defenses, and decreased inflammatory markers. Immunohistochemical analysis for caspase-3 showed apoptosis activation within tumor tissues. Conclusions: These findings demonstrate that FIS administration via NS-MNs improves drug stability, penetration, and apoptotic activity, resulting in enhanced anticancer effects. This innovative nanovesicle–microneedle platform provides a non-invasive, effective, and patient-friendly approach for the effective treatment of breast cancer, with potential for broader applications in oncological nanomedicine. Full article
(This article belongs to the Special Issue Advanced Drug Delivery Systems for Natural Products)
Show Figures

Graphical abstract

24 pages, 7602 KB  
Article
Enabling Efficient Scheduling of Multi-Type Sources in Power Systems via Uncertainty Monitoring and Nonlinear Constraint Processing
by Di Zhang, Qionglin Li, Ji Han, Chunsun Tian and Yebin Li
Sensors 2025, 25(21), 6564; https://doi.org/10.3390/s25216564 - 24 Oct 2025
Viewed by 473
Abstract
The large-scale integration of renewable energy sources introduces significant uncertainty into modern power systems, posing new challenges for reliable and economical operation. Effective scheduling therefore requires accurate monitoring of uncertainty and efficient handling of nonlinear system dynamics. This paper proposes an optimization-based scheduling [...] Read more.
The large-scale integration of renewable energy sources introduces significant uncertainty into modern power systems, posing new challenges for reliable and economical operation. Effective scheduling therefore requires accurate monitoring of uncertainty and efficient handling of nonlinear system dynamics. This paper proposes an optimization-based scheduling method that combines sensor-informed monitoring of photovoltaic (PV) uncertainty with advanced processing of nonlinear hydropower characteristics. A detailed hydropower model is incorporated into the framework to represent water balance, reservoir dynamics, and head–discharge–power relationships with improved accuracy. Nonlinear constraints and uncertainty are addressed through a unified approximation scheme that ensures computational tractability. Case studies on the modified IEEE −39 system show that the proposed method achieves effective multi-source coordination, reduces operating costs by up to 2.9%, and enhances renewable energy utilization across different uncertainty levels and PV penetration scenarios. Full article
Show Figures

Figure 1

15 pages, 4391 KB  
Article
Magnetically Saturated Pulsed Eddy Current for Inner-Liner Collapse in Bimetal Composite Pipelines: Physics, Identifiability, and Field Validation
by Shuyi Xie, Peng Xu, Liya Ma, Tao Liang, Xiaoxiao Ma, Jinheng Luo and Lifeng Li
Processes 2025, 13(11), 3409; https://doi.org/10.3390/pr13113409 - 24 Oct 2025
Viewed by 264
Abstract
Underground gas storage (UGS) is critical to national reserves and seasonal peak-shaving, and its safe operation is integral to energy security. In UGS surface process pipelines, heterogeneous bimetal composite pipes—carbon-steel substrates lined with stainless steel—are widely used but susceptible under coupled thermal–pressure–flow loading [...] Read more.
Underground gas storage (UGS) is critical to national reserves and seasonal peak-shaving, and its safe operation is integral to energy security. In UGS surface process pipelines, heterogeneous bimetal composite pipes—carbon-steel substrates lined with stainless steel—are widely used but susceptible under coupled thermal–pressure–flow loading to geometry-induced instabilities (local buckling, adhesion, and collapse), which can restrict flow, concentrate stress, and precipitate rupture and unplanned shutdowns. Conventional ultrasonic testing and magnetic flux leakage have limited sensitivity to such instabilities, while standard eddy-current testing is impeded by the ferromagnetic substrate’s high permeability and electromagnetic shielding. This study introduces magnetically saturated pulsed eddy-current testing (MS-PECT). A quasi-static bias field drives the substrate toward magnetic saturation, reducing differential permeability and increasing effective penetration; combined with pulsed excitation and differential reception, the approach improves defect responsiveness and the signal-to-noise ratio. A prototype was developed and evaluated through mechanistic modeling, numerical simulation, laboratory pipe trials, and in-service demonstrations. Field deployment on composite pipelines at the Hutubi UGS (Xinjiang, China) enabled rapid identification and spatial localization of liner collapse under non-shutdown or minimally invasive conditions. MS-PECT provides a practical tool for composite-pipeline integrity management, reducing the risk of unplanned outages, enhancing peak-shaving reliability, and supporting resilient UGS operations. Full article
(This article belongs to the Special Issue Modeling, Simulation and Control in Energy Systems—2nd Edition)
Show Figures

Figure 1

Back to TopTop