Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (681)

Search Parameters:
Keywords = colour measurements

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 6617 KiB  
Article
Natural Plant Oils as Anti-Algae Biocides for Sustainable Application in Cultural Heritage Protection
by Michał Komar, Nathnael Derese, Kamil Szymczak, Paulina Nowicka-Krawczyk and Beata Gutarowska
Sustainability 2025, 17(15), 6996; https://doi.org/10.3390/su17156996 - 1 Aug 2025
Viewed by 190
Abstract
The prevention of biofilm formation and algal biodeterioration on building materials, particularly on cultural heritage sites, is a growing concern. Due to regulatory restrictions on conventional algicidal biocides in Europe, natural alternatives such as essential oils are gaining interest for their potential use [...] Read more.
The prevention of biofilm formation and algal biodeterioration on building materials, particularly on cultural heritage sites, is a growing concern. Due to regulatory restrictions on conventional algicidal biocides in Europe, natural alternatives such as essential oils are gaining interest for their potential use in heritage conservation. This study evaluates the anti-algal activity of Salvia officinalis and Equisetum arvense (essential oils, hydrolates, and extracts) against a mixed culture of five green algae species (Bracteacoccus minor, Stichococcus bacillaris, Klebsormidium nitens, Chloroidium saccharophilum, and Diplosphaera chodatii). The plant materials were processed using hydrodistillation and solvent extraction, followed by chemical characterization through gas chromatography–mass spectrometry (GC-MS). Biological efficacy was assessed by measuring algal growth inhibition, changes in biomass colour, chlorophyll a concentration, and fluorescence. S. officinalis yielded higher extract quantities (extraction yield: 23%) than E. arvense and contained bioactive compounds such as thujone, camphor, and cineole, which correlated with its strong anti-algal effects. The essential oil of S. officinalis demonstrated the highest efficacy, significantly inhibiting biofilm formation (zones of inhibition: 15–94 mm) and photosynthetic activity at 0.5% concentration (reduction in chlorophyll a concentration 90–100%), without causing visible discolouration of treated surfaces (∆E < 2). These findings highlight the potential of S. officinalis essential oil as a natural, effective, and material-safe algicidal biocide for the sustainable protection of cultural heritage sites. Full article
Show Figures

Figure 1

15 pages, 748 KiB  
Article
Development of a Hybrid System Based on the CIELAB Colour Space and Artificial Neural Networks for Monitoring pH and Acidity During Yogurt Fermentation
by Ulises Alvarado, Jhon Tacuri, Alejandro Coloma, Edgar Gallegos Rojas, Herbert Callo, Cristina Valencia-Sullca, Nancy Curasi Rafael and Manuel Castillo
Dairy 2025, 6(4), 41; https://doi.org/10.3390/dairy6040041 - 1 Aug 2025
Viewed by 323
Abstract
Monitoring pH and acidity during yoghurt fermentation is essential for product quality and process efficiency. Conventional measurement methods, however, are invasive and labour-intensive. This study developed artificial neural network (ANN) models to predict pH and titratable acidity during yoghurt fermentation using CIELAB colour [...] Read more.
Monitoring pH and acidity during yoghurt fermentation is essential for product quality and process efficiency. Conventional measurement methods, however, are invasive and labour-intensive. This study developed artificial neural network (ANN) models to predict pH and titratable acidity during yoghurt fermentation using CIELAB colour parameters (L, a*, b*). Reconstituted milk powder with 12% total solids was prepared with varying protein levels (4.2–4.8%), inoculum concentrations (1–3%), and fermentation temperatures (36–44 °C). Data were collected every 10 min until pH 4.6 was reached. Forty models were trained for each output variable, using 90% of the data for training and 10% for validation. The first two phases of the fermentation process were clearly distinguishable, lasting between 4.5 and 7 h and exceeding 0.6% lactic acid in all treatments evaluated. The best pH model used two hidden layers with 28 neurons (R2 = 0.969; RMSE = 0.007), while the optimal acidity model had four hidden layers with 32 neurons (R2 = 0.868; RMSE = 0.002). The strong correlation between colour and physicochemical changes confirms the feasibility of this non-destructive approach. Integrating ANN models and colourimetry offers a practical solution for real-time monitoring, helping improve process control in industrial yoghurt production. Full article
(This article belongs to the Section Milk Processing)
Show Figures

Figure 1

13 pages, 800 KiB  
Article
A Multilevel Analysis of Associations Between Children’s Coloured Progressive Matrices Performances and Self-Rated Personality: Class-Average and Class-Homogeneity Differences in Nonverbal Intelligence Matter
by Lisa Di Blas and Giacomo De Osti
J. Intell. 2025, 13(8), 95; https://doi.org/10.3390/jintelligence13080095 - 30 Jul 2025
Viewed by 239
Abstract
The relationship between self-rated personality and nonverbal intelligence has been studied in young students, but these studies have generally not considered nested data, despite their allowing us to analyse between-classroom variability. The present cross-sectional study involved third- to sixth-grade students (n = 447) [...] Read more.
The relationship between self-rated personality and nonverbal intelligence has been studied in young students, but these studies have generally not considered nested data, despite their allowing us to analyse between-classroom variability. The present cross-sectional study involved third- to sixth-grade students (n = 447) who were nested into their classrooms (n = 32). The participants completed the Raven’s Coloured Progressive Matrices (CPM) as a measure of nonverbal intelligence and a personality questionnaire based on the Five Factor Model. At the class level, the study data included class size, class-average CPM scores, and class-homogeneity in CPM performances. Multilevel modelling with class-mean centring of personality predictors was applied to examine class-average differences in CPM scores and interaction effects between personality and class-homogeneity on CPM scores. The results showed significant differences in average CPM performances across classrooms, significant fixed and random slope effects linking nonverbal intelligence and Imagination, and a cross-level effect revealing that Imagination is a stronger predictor of CPM scores when class-homogeneity in intelligence is lower. Beyond confirming the intelligence–Imagination association generally observed in the literature, the present findings emphasise the importance of using nested structures when collecting personality and intelligence data in classrooms. More attention needs to be paid to how the classroom environment affects children’s self-reported personality and intelligence test performances. Full article
29 pages, 2927 KiB  
Article
Rheological Properties, Textural Properties and Storage Stability of Sauce Enriched with Pomace from Oxheart Tomatoes (Lycopersicon esculentum)
by Dumitrița Flaiș and Mircea Oroian
Foods 2025, 14(15), 2627; https://doi.org/10.3390/foods14152627 - 26 Jul 2025
Viewed by 262
Abstract
The objective of this study was to develop a novel sauce formulation in which egg yolk was substituted with pea and soy proteins, in addition to the incorporation of tomato pomace as a functional ingredient. Nine experimental samples (E1–E3, S1–S3, and P1–P3) and [...] Read more.
The objective of this study was to develop a novel sauce formulation in which egg yolk was substituted with pea and soy proteins, in addition to the incorporation of tomato pomace as a functional ingredient. Nine experimental samples (E1–E3, S1–S3, and P1–P3) and three control samples (E0, S0, and P0) were prepared, corresponding to three protein sources (E: egg yolk, S: soy, P: pea), with increasing concentrations of tomato pomace (0, 2, 4, and 6%). The formulations were adjusted proportionally in terms of water and oil to maintain the desired consistency. The analyses performed included: physico-chemical analysis of the sauce (fat content, peroxide value, and CIE L* a* b* color determination), quality assessment using Fourier Transform Infrared Spectroscopy (FT-IR, rheological measurements, and microstructural evaluation. The sample designated P2 demonstrated a notable correlation with favourable parameters, exhibiting intense colouration, elevated protein content, and consistent rheological properties. However, at higher levels of tomato pomace (notably 6%), microstructural instability was observed, which may limit the formulation’s robustness over time. These findings demonstrate that tomato pomace can enhance the functional and structural characteristics of sauce, while also highlighting the importance of optimizing concentration levels to avoid negative impacts on emulsion stability. Overall, the results support the use of tomato pomace and plant proteins in the formulation of sustainable and innovative food products. Full article
Show Figures

Figure 1

19 pages, 3568 KiB  
Article
Heat Impact of Urban Sprawl: How the Spatial Composition of Residential Suburbs Impacts Summer Air Temperatures and Thermal Comfort
by Mahmuda Sharmin, Manuel Esperon-Rodriguez, Lauren Clackson, Sebastian Pfautsch and Sally A. Power
Atmosphere 2025, 16(8), 899; https://doi.org/10.3390/atmos16080899 - 23 Jul 2025
Viewed by 275
Abstract
Urban residential design influences local microclimates and human thermal comfort. This study combines empirical microclimate data with remotely sensed data on tree canopy cover, housing lot size, surface permeability, and roof colour to examine thermal differences between three newly built and three established [...] Read more.
Urban residential design influences local microclimates and human thermal comfort. This study combines empirical microclimate data with remotely sensed data on tree canopy cover, housing lot size, surface permeability, and roof colour to examine thermal differences between three newly built and three established residential suburbs in Western Sydney, Australia. Established areas featured larger housing lots and mature street trees, while newly developed suburbs had smaller lots and limited vegetation cover. Microclimate data were collected during summer 2021 under both heatwave and non-heatwave conditions in full sun, measuring air temperature, relative humidity, wind speed, and wet-bulb globe temperature (WBGT) as an index of heat stress. Daily maximum air temperatures reached 42.7 °C in new suburbs, compared to 39.3 °C in established ones (p < 0.001). WBGT levels during heatwaves were in the “extreme caution” category in new suburbs, while remaining in the “caution” range in established ones. These findings highlight the benefits of larger green spaces, permeable surfaces, and lighter roof colours in the context of urban heat exposure. Maintaining mature trees and avoiding dark roofs can significantly reduce summer heat and improve outdoor thermal comfort across a range of conditions. Results of this work can inform bottom-up approaches to climate-responsive urban design where informed homeowners can influence development outcomes. Full article
(This article belongs to the Section Biometeorology and Bioclimatology)
Show Figures

Figure 1

13 pages, 788 KiB  
Article
Advancing Kiwifruit Maturity Assessment: A Comparative Study of Non-Destructive Spectral Techniques and Predictive Models
by Michela Palumbo, Bernardo Pace, Antonia Corvino, Francesco Serio, Federico Carotenuto, Alice Cavaliere, Andrea Genangeli, Maria Cefola and Beniamino Gioli
Foods 2025, 14(15), 2581; https://doi.org/10.3390/foods14152581 - 23 Jul 2025
Viewed by 240
Abstract
Gold kiwifruits from two different farms, harvested at different times, were analysed using both non-destructive and destructive methods. A computer vision system (CVS) and a portable spectroradiometer were used to perform non-destructive measurements of firmness, titratable acidity, pH, soluble solids content, dry matter, [...] Read more.
Gold kiwifruits from two different farms, harvested at different times, were analysed using both non-destructive and destructive methods. A computer vision system (CVS) and a portable spectroradiometer were used to perform non-destructive measurements of firmness, titratable acidity, pH, soluble solids content, dry matter, and soluble sugars (glucose and fructose), with the goal of building predictive models for the maturity index. Hyperspectral data from the visible–near-infrared (VIS–NIR) and short-wave infrared (SWIR) ranges, collected via the spectroradiometer, along with colour features extracted by the CVS, were used as predictors. Three different regression methods—Partial Least Squares (PLS), Support Vector Regression (SVR), and Gaussian process regression (GPR)—were tested to assess their predictive accuracy. The results revealed a significant increase in sugar content across the different harvesting times in the season. Regardless of the regression method used, the CVS was not able to distinguish among the different harvests, since no significant skin colour changes were measured. Instead, hyperspectral measurements from the near-infrared (NIR) region and the initial part of the SWIR region proved useful in predicting soluble solids content, glucose, and fructose. The models built using these spectral regions achieved R2 average values between 0.55 and 0.60. Among the different regression models, the GPR-based model showed the best performance in predicting kiwifruit soluble solids content, glucose, and fructose. In conclusion, for the first time, the effectiveness of a fully portable spectroradiometer measuring surface reflectance until the full SWIR range for the rapid, contactless, and non-destructive estimation of the maturity index of kiwifruits was reported. The versatility of the portable spectroradiometer may allow for field applications that accurately identify the most suitable moment to carry out the harvesting. Full article
(This article belongs to the Section Food Quality and Safety)
Show Figures

Figure 1

19 pages, 3407 KiB  
Article
Surface Property Differences of European Larch Sapwood and Heartwood After Sanding
by Agnieszka Laskowska, Karolina Lipska, Teresa Kłosińska, Anna Piwek and Piotr Boruszewski
Coatings 2025, 15(7), 860; https://doi.org/10.3390/coatings15070860 - 21 Jul 2025
Viewed by 331
Abstract
The sapwood and heartwood of European larch (Larix decidua Mill.) are both used in industrial applications, but they differ in structure and composition, which may lead to surface property differences. This study compared their surface characteristics (on radial and tangential sections) after [...] Read more.
The sapwood and heartwood of European larch (Larix decidua Mill.) are both used in industrial applications, but they differ in structure and composition, which may lead to surface property differences. This study compared their surface characteristics (on radial and tangential sections) after sanding with aluminium oxide papers of four grit sizes (P60, P120, P180, P240). Surface roughness (Ra, Rz), wettability (contact angle with two reference liquids: water and diiodomethane, 3 and 30 s after droplet deposition), surface free energy, and colour parameters (L*, a*, b*) were analysed. Microscopic measurements were also performed to assess anatomical differences between sapwood and heartwood. The results showed no significant differences in roughness (Ra, Rz) between sapwood and heartwood. Measurement direction and sandpaper grit accounted for about 80% of variability in roughness parameters. Wettability was mainly influenced by wood area, with its effect ranging from 55% to 89% depending on measurement time. The sapwood was characterised by the lower wettability on the tangential section, while the heartwood was characterised by the lower wettability on the radial section. This was examined for the contact angle tests performed 3 s after the water droplet had been applied to the wood surface. Such dependencies were not observed after 30 s. Sapwood exhibited higher surface free energy (SFE) values than heartwood. The greatest colour change ΔE, at level 2.59, was noted for the heartwood on the radial section after sanding with P240 sandpaper. Full article
(This article belongs to the Section Surface Characterization, Deposition and Modification)
Show Figures

Figure 1

13 pages, 11974 KiB  
Article
A Study and Comparative Analysis of the Action of the Deacidifying Products Bookkeeper® and Nanorestore Paper® on Plant Textile Fibres
by A. Nani, C. Ricci, A. Gatti and A. Agostino
Heritage 2025, 8(7), 287; https://doi.org/10.3390/heritage8070287 - 19 Jul 2025
Viewed by 348
Abstract
The aim of this study is to evaluate the effectiveness of deacidifying treatments for the restoration of textiles used as supports for works of art, with particular attention to the chemical stability, colour variation and mechanical resistance of the materials over time. The [...] Read more.
The aim of this study is to evaluate the effectiveness of deacidifying treatments for the restoration of textiles used as supports for works of art, with particular attention to the chemical stability, colour variation and mechanical resistance of the materials over time. The present study involved the analysis of two products: BookkeeperTM, containing magnesium oxide, and NanorestoreTM, a dispersion of calcium hydroxide in alcoholic solutions of ethanol and 2-propanol. The products were applied to a series of tests on cotton, linen and jute fabrics. The experimental approach comprised an artificial degradation process of the fabrics, followed by the application of the treatments and an accelerated ageing cycle. A series of parameters were monitored throughout the experiment, encompassing surface pH, chromatic shifts ascertained through colorimetric measurements and the morphological transformations of the fabrics, as elucidated by scanning electron microscopy (SEM-EDS). The findings yielded from this study have enabled the delineation of the behaviour exhibited by the treated materials over an extended timeframe. This underscores the significance of a judicious selection of treatments, contingent upon the particular chemical and physical attributes inherent to the fabrics in question. Full article
(This article belongs to the Section Materials and Heritage)
Show Figures

Figure 1

17 pages, 1516 KiB  
Article
The Effect of Different Detox Drinks on Surface Roughness, Colour Change, and Translucency Parameters of Universal Resin Composites
by Ayşenur Bulut, Ayşe İrem Yetiş, Serra Yaren Yeşil, Sinem Akgül and Oya Bala
Appl. Sci. 2025, 15(14), 7946; https://doi.org/10.3390/app15147946 - 17 Jul 2025
Viewed by 266
Abstract
In this study, three different detox drinks were examined for their effects on the surface roughness, colour change (∆E00), and transparency parameters (∆TP00) of universal resin composites. One hundred twenty samples were prepared, thirty each of universal resin composites [...] Read more.
In this study, three different detox drinks were examined for their effects on the surface roughness, colour change (∆E00), and transparency parameters (∆TP00) of universal resin composites. One hundred twenty samples were prepared, thirty each of universal resin composites (Omnichroma, OptiShade, Filtek Ultimate Universal, and Essentia Universal). Initial values were measured. The samples were randomly divided into three subgroups and exposed to the detox drinks. Measurements were repeated after 7, 14, and 28 days of exposure to detox drinks. The highest average surface roughness values in detox drinks were obtained with Essentia Universal. It was found that average surface roughness values increased over time, and there was a significant difference between the average surface roughness values obtained during the measurement periods (p < 0.05). In all detox drinks, the lowest ∆E00 values were obtained on days 7 and 14 with OM, while the highest ∆E00 values were obtained on day 28. There was a significant difference in the ∆E00 values of the universal resin composites tested at each time point (p < 0.05). The highest ∆TP00 values were obtained from OM in all periods and all detox drinks, while the lowest ∆TP00 values were obtained from FU. When the effects of resin composites, detox drinks, and time on ∆TP00 were analysed, a statistically significant difference was found (p < 0.05). Manufacturers recommend using detox drinks for 28 days. However, this period of use may affect the surface properties of restorative materials. Based on these data, we recommend careful use of detox drinks to prevent adverse effects on restorative materials. Full article
(This article belongs to the Section Applied Dentistry and Oral Sciences)
Show Figures

Figure 1

21 pages, 903 KiB  
Article
Preliminary Analysis of Printed Polypropylene Foils and Pigments After Thermal Treatment Using DSC and Ames Tests
by Lukas Prielinger, Eva Ortner, Martin Novak, Lea Markart and Bernhard Rainer
Materials 2025, 18(14), 3325; https://doi.org/10.3390/ma18143325 - 15 Jul 2025
Viewed by 339
Abstract
In order to recycle plastic waste back to food contact materials (FCMs), it is necessary to identify hazardous substances in plastic packaging that pose a toxicological risk. Printing inks on plastics are not yet designed to withstand the high heat stress of mechanical [...] Read more.
In order to recycle plastic waste back to food contact materials (FCMs), it is necessary to identify hazardous substances in plastic packaging that pose a toxicological risk. Printing inks on plastics are not yet designed to withstand the high heat stress of mechanical recycling processes and therefore require hazard identification. In this study, virgin polypropylene (PP) foils were printed with different types of inks (UV-cured, water-based) and colour shades. Thermal analysis of printed foils and pigments was performed using differential scanning calorimetry (DSC). Samples were then thermally treated below and above measured thermal events at 120 °C, 160 °C, 200 °C or 240 °C for 30 min. Subsequently, migration tests and miniaturised Ames tests were performed. Four out of thirteen printed foils and all three pigments showed positive results for mutagenicity in miniaturised Ames tests after thermal treatment at 240 °C. Additionally, pre-incubation Plate Ames tests (according to OECD 471) were performed on three pigments and one printed foil, yielding two positive results after thermal treatment at 240 °C. These results indicate that certain ink components form hazardous decomposition products when heated up to a temperature of 240 °C. However, further research is needed to gain a better understanding of the chemical processes that occur during high thermal treatment. Full article
Show Figures

Graphical abstract

30 pages, 5474 KiB  
Article
WHU-RS19 ABZSL: An Attribute-Based Dataset for Remote Sensing Image Understanding
by Mattia Balestra, Marina Paolanti and Roberto Pierdicca
Remote Sens. 2025, 17(14), 2384; https://doi.org/10.3390/rs17142384 - 10 Jul 2025
Viewed by 318
Abstract
The advancement of artificial intelligence (AI) in remote sensing (RS) increasingly depends on datasets that offer rich and structured supervision beyond traditional scene-level labels. Although existing benchmarks for aerial scene classification have facilitated progress in this area, their reliance on single-class annotations restricts [...] Read more.
The advancement of artificial intelligence (AI) in remote sensing (RS) increasingly depends on datasets that offer rich and structured supervision beyond traditional scene-level labels. Although existing benchmarks for aerial scene classification have facilitated progress in this area, their reliance on single-class annotations restricts their application to more flexible, interpretable and generalisable learning frameworks. In this study, we introduce WHU-RS19 ABZSL: an attribute-based extension of the widely adopted WHU-RS19 dataset. This new version comprises 1005 high-resolution aerial images across 19 scene categories, each annotated with a vector of 38 features. These cover objects (e.g., roads and trees), geometric patterns (e.g., lines and curves) and dominant colours (e.g., green and blue), and are defined through expert-guided annotation protocols. To demonstrate the value of the dataset, we conduct baseline experiments using deep learning models that had been adapted for multi-label classification—ResNet18, VGG16, InceptionV3, EfficientNet and ViT-B/16—designed to capture the semantic complexity characteristic of real-world aerial scenes. The results, which are measured in terms of macro F1-score, range from 0.7385 for ResNet18 to 0.7608 for EfficientNet-B0. In particular, EfficientNet-B0 and ViT-B/16 are the top performers in terms of the overall macro F1-score and consistency across attributes, while all models show a consistent decline in performance for infrequent or visually ambiguous categories. This confirms that it is feasible to accurately predict semantic attributes in complex scenes. By enriching a standard benchmark with detailed, image-level semantic supervision, WHU-RS19 ABZSL supports a variety of downstream applications, including multi-label classification, explainable AI, semantic retrieval, and attribute-based ZSL. It thus provides a reusable, compact resource for advancing the semantic understanding of remote sensing and multimodal AI. Full article
(This article belongs to the Special Issue Remote Sensing Datasets and 3D Visualization of Geospatial Big Data)
Show Figures

Figure 1

24 pages, 11256 KiB  
Article
Indoor Measurement of Contact Stress Distributions for a Slick Tyre at Low Speed
by Gabriel Anghelache and Raluca Moisescu
Sensors 2025, 25(13), 4193; https://doi.org/10.3390/s25134193 - 5 Jul 2025
Viewed by 294
Abstract
The paper presents results of experimental research on tyre–road contact stress distributions, measured indoors for a motorsport slick tyre. The triaxial contact stress distributions have been measured using the complex transducer containing a transversal array of 30 sensing pins covering the entire contact [...] Read more.
The paper presents results of experimental research on tyre–road contact stress distributions, measured indoors for a motorsport slick tyre. The triaxial contact stress distributions have been measured using the complex transducer containing a transversal array of 30 sensing pins covering the entire contact patch width. Wheel displacement in the longitudinal direction was measured using a rotary encoder. The parameters allocated for the experimental programme have included different values of tyre inflation pressure, vertical load, camber angle and toe angle. All measurements were performed at low longitudinal speed in free-rolling conditions. The influence of tyre functional parameters on the contact patch shape and size has been discussed. The stress distributions on each orthogonal direction are presented in multiple formats, such as 2D graphs in which the curves show the stresses measured by each sensing element versus contact length; surfaces with stress values plotted as vertical coordinates versus contact patch length and width; and colour maps for stress distributions and orientations of shear stress vectors. The effects of different parameter types and values on stress distributions have been emphasised and analysed. Furthermore, the magnitude and position of local extreme values for each stress distribution have been investigated with respect to the above-mentioned tyre functional parameters. Full article
(This article belongs to the Section Vehicular Sensing)
Show Figures

Figure 1

18 pages, 13043 KiB  
Article
Bioactive Edible Coatings for Fresh-Cut Apples: A Study on Chitosan-Based Coatings Infused with Essential Oils
by Nuzra Ali, Eredina Dina and Ayten Aylin Tas
Foods 2025, 14(13), 2362; https://doi.org/10.3390/foods14132362 - 3 Jul 2025
Viewed by 523
Abstract
This study developed chitosan-based active edible coating formulations with antioxidant and antimicrobial properties exhibited by oregano and cinnamon leaf essential oils (EOs) to extend the shelf life of fresh-cut ‘Braeburn’ apples. The primary coating consisted of chitosan (1.5% w/v), ascorbic [...] Read more.
This study developed chitosan-based active edible coating formulations with antioxidant and antimicrobial properties exhibited by oregano and cinnamon leaf essential oils (EOs) to extend the shelf life of fresh-cut ‘Braeburn’ apples. The primary coating consisted of chitosan (1.5% w/v), ascorbic acid (2% w/v), and citric acid (2% w/v). Oregano (0.06 and 0.15% v/v) and cinnamon leaf (0.06 and 0.1% v/v) EOs were added to the primary coating. The coated apple slices were stored for 9 days at 4 ± 1 °C. Changes in weight loss, water activity, titratable acidity, total soluble solids content, polyphenol oxidase (PPO) activity, firmness, colour, visual appearance, surface morphology, and microbial activity were measured on days 2 and 9. The results revealed that the control samples deteriorated rapidly during storage. However, higher concentrations of EOs reduced moisture loss, water activity, and acid conversion but slightly impacted visual appearance. The coatings effectively inhibited the PPO activity through storage. The formulation with 0.1% cinnamon leaf EO may be considered a viable candidate for application as a coating material, followed by the formulation containing 0.06% oregano EO, maintaining the optimum quality parameters of fresh-cut apples. Chitosan-based coatings with added EOs can be a promising alternative for maintaining fresh-cut apple quality during storage. Full article
(This article belongs to the Section Food Packaging and Preservation)
Show Figures

Figure 1

32 pages, 29621 KiB  
Article
A Comparison of the Fading of Dyestuffs as Textile Colourants and Lake Pigments
by Jo Kirby and David Saunders
Heritage 2025, 8(7), 260; https://doi.org/10.3390/heritage8070260 - 3 Jul 2025
Viewed by 680
Abstract
Dyed wool samples and lake pigments prepared from the same dyestuffs were exposed to light over the course of 14 months. Brazilwood or sappanwood, cochineal, madder, and weld were used for both wools and pigments, with the addition of dyer’s broom, indigo, and [...] Read more.
Dyed wool samples and lake pigments prepared from the same dyestuffs were exposed to light over the course of 14 months. Brazilwood or sappanwood, cochineal, madder, and weld were used for both wools and pigments, with the addition of dyer’s broom, indigo, and tannin-containing black dyes for the wools and eosin for the pigments. The wools were dyed within the MODHT European project on historic tapestries (2002–2005), using recipes derived from fifteenth- to seventeenth-century sources. The pigments were prepared according to European recipes of the same period, or using late nineteenth-century French or English recipes. Colour measurements made throughout the experiment allowed for overall colour difference (ΔE00) to be tracked and half-lives to be calculated for some of the colour changes. Alterations in the samples’ hue and chroma were also monitored, and spectral information was collected. The results showed that, for both textiles and pigments, madder is the most stable red dye, followed by cochineal, and then brazilwood. Eosin was the most fugitive sample examined. Comparisons of textile and lake samples derived from the same dyestuff, whether red or yellow, indicate that the colourants are more stable when used as textile dyes than in analogous lake pigments. Full article
(This article belongs to the Special Issue Dyes in History and Archaeology 43)
Show Figures

Figure 1

22 pages, 3021 KiB  
Article
Uncovering the Characteristics of Pupil Cycle Time (PCT) in Neuropathies and Retinopathies
by Laure Trinquet, Suzon Ajasse, Frédéric Chavane, Richard Legras, Frédéric Matonti, José-Alain Sahel, Catherine Vignal-Clermont and Jean Lorenceau
Vision 2025, 9(3), 51; https://doi.org/10.3390/vision9030051 - 30 Jun 2025
Viewed by 461
Abstract
Pupil cycle time (PCT) estimates the dynamics of a biofeedback loop established between pupil size and stimulus luminance, size or colour. The PCT is useful for probing the functional integrity of the retinopupillary circuits, and is therefore potentially applicable for assessing the effects [...] Read more.
Pupil cycle time (PCT) estimates the dynamics of a biofeedback loop established between pupil size and stimulus luminance, size or colour. The PCT is useful for probing the functional integrity of the retinopupillary circuits, and is therefore potentially applicable for assessing the effects of damage due to retinopathies or neuropathies. In previous studies, PCT was measured by manually counting the number of pupil oscillations during a fixed period to calculate the PCT. This method is scarce, requires a good expertise and cannot be used to estimate several PCT parameters, such as the oscillation amplitude or variability. We have developed a computerised setup based on eye-tracking that expands the possibilities of characterising PCT along several dimensions: oscillation frequency and regularity, amplitude and variability, which can be used with a large palette of stimuli (different colours, sizes, shapes or locations), and further allows measuring blinking frequency and eye movements. We used this method to characterise the PCT in young control participants as well as in patients with several pathologies, including age-related macular degeneration (AMD), diabetic retinopathy (DR), retinitis pigmentosa (RP), Stargardt disease (SD), and Leber hereditary optic neuropathy (LHON). We found that PCT is very regular and stable in young healthy participants, with little inter-individual variability. In contrast, several PCT features are altered in older healthy participants as well as in ocular diseases, including slower dynamics, irregular oscillations, and reduced oscillation amplitude. The distinction between patients and healthy participants based on the calculation of the area under the curve of the receiver operating characteristics (AUC of ROC) were dependent on the pathologies and stimuli (0.7 < AUC < 1). PCT nevertheless provides relevant complementary information to assess the physiopathology of ocular diseases and to probe the functioning of retino-pupillary circuits. Full article
(This article belongs to the Section Retinal Function and Disease)
Show Figures

Figure 1

Back to TopTop