Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,082)

Search Parameters:
Keywords = collaborative consumption

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
56 pages, 2761 KB  
Article
Evolutionary Analysis of Multi-Agent Interactions in the Digital Green Transformation of the Building Materials Industry
by Yonghong Ma and Zihui Wei
Systems 2026, 14(2), 161; https://doi.org/10.3390/systems14020161 (registering DOI) - 2 Feb 2026
Abstract
Driven by the “dual carbon” goal and the strategy for cultivating new productive forces, China’s economy is undergoing a crucial transformation from high-speed growth to high-quality development. As a typical high-energy consumption and high-emission sector, the green and low-carbon transformation of the building [...] Read more.
Driven by the “dual carbon” goal and the strategy for cultivating new productive forces, China’s economy is undergoing a crucial transformation from high-speed growth to high-quality development. As a typical high-energy consumption and high-emission sector, the green and low-carbon transformation of the building materials industry directly affects the optimization of the national energy structure and the realization of ecological goals. However, traditional building material enterprises generally face practical challenges such as low resource utilization efficiency, insufficient digitalization and greening integration of the industrial chain, and weak green innovation momentum. The transformation actions of a single entity are difficult to break through systemic bottlenecks, and it is urgently necessary to establish a dynamic evolution mechanism involving multiple entities in collaboration. This paper aims to explore the evolutionary rules and stability of digital green (DG) transformation strategies of building materials enterprises (BMEs) under multi-agent interactions involving government, universities, and consumers. Centering on BMEs, a four-party evolutionary game model among the government, enterprises, universities, and consumers is constructed, and the evolutionary processes of strategic behaviors are characterized through replicator dynamic equations. Using MATLAB R2022 (Version number: 9.13.0.2049777) bnumerical simulations, this study investigates how key parameters, such as government subsidies, penalty intensity, and consumers’ green preferences, affect the transformation pathways of enterprises. The results reveal that the DG transformation behavior of BMEs is significantly influenced by governmental policy incentives and universities’ knowledge innovation. Stronger subsidies and penalties enhance enterprises’ willingness to adopt proactive DG strategies, while consumers’ green preferences further accelerate transformation through market mechanisms. Among multiple strategic combinations, active DG transformation emerges as the main evolutionarily stable strategy. This study provides a systematic multi-agent collaborative analysis framework for the transformation of BME DG, revealing the mechanisms by which policies, knowledge, and market demands influence enterprise decisions. Thus, it offers theoretical and decision-making references for the green and low-carbon transformation of the building materials industry. Full article
17 pages, 3683 KB  
Essay
Worldbuilding with Drawing and Words, an ‘Unproductive’ Counter to the Consumer-Driven, Extractive Models in Higher Education and the Cultural and Creative Industries
by Alexandra Antonopoulou and Eleanor Dare
Arts 2026, 15(2), 27; https://doi.org/10.3390/arts15020027 - 2 Feb 2026
Abstract
Antonopoulou and Dare’s ongoing collaborative projects (Phi Books 2008: ongoing; Digital Dreamhacker 2013: ongoing) enact an open-ended, experimental set of slow ‘Fictioning’ practices and actions that involve performing, diagramming, or assembling to create or anticipate new modes of existence. In this paper, the [...] Read more.
Antonopoulou and Dare’s ongoing collaborative projects (Phi Books 2008: ongoing; Digital Dreamhacker 2013: ongoing) enact an open-ended, experimental set of slow ‘Fictioning’ practices and actions that involve performing, diagramming, or assembling to create or anticipate new modes of existence. In this paper, the authors use the visual essay form to evidence how their daily practices of drawing, writing, and exchanging, position art and the artist. These practices unfold without, in this case, the utilitarian, economic, and epistemic priorities and systems of reductive representation which underpin the extractive models of Generative AI and other ‘innovative’ intermediaries, systems which expedite content and regulate consumption in the cultural and creative industries and in ‘arts and humanities’ education. Focusing on their creative practices, Antonopoulou and Dare reposition commodified notions of productivity, creativity, and innovation, seeking what Haraway describes as a way ‘of making, thinking and worlding’ beyond the neoliberal imperatives of extracting profit from labour. Positioned within an era of escalating precarity combined with ecological and political instability driven by extractive colonialism, the temporality of collaboration and drawing over decades is proposed as an act of material resistance to art’s subsumption into the venture capitalist hype cycles. Such cycles are associated with an accelerating array of crises, discussed here. Full article
Show Figures

Figure 1

54 pages, 2046 KB  
Review
Data-Driven Tools and Methods for Low-Carbon Industrial Parks: A Scoping Review of Industrial Symbiosis and Carbon Capture with Practitioner Insights
by Zheng Grace Ma, Joy Dalmacio Billanes and Bo Nørregaard Jørgensen
Energies 2026, 19(3), 755; https://doi.org/10.3390/en19030755 - 30 Jan 2026
Viewed by 108
Abstract
Industrial symbiosis and carbon capture are increasingly recognized as critical strategies for reducing emissions and resource consumption in industrial parks. However, existing research remains fragmented across tools, methods, and case-specific applications, providing limited guidance for effective real-world deployment of data-driven approaches. This study [...] Read more.
Industrial symbiosis and carbon capture are increasingly recognized as critical strategies for reducing emissions and resource consumption in industrial parks. However, existing research remains fragmented across tools, methods, and case-specific applications, providing limited guidance for effective real-world deployment of data-driven approaches. This study addresses this gap through a PRISMA-guided scoping review of 116 publications, complemented by a targeted practitioner survey conducted within the IEA IETS Task 21 initiative to assess practical relevance and adoption challenges. The review identifies a broad landscape of data-driven tools, ranging from high-technology-readiness simulation and optimization platforms to emerging visualization and matchmaking solutions. While the literature demonstrates substantial methodological maturity, the combined evidence reveals a persistent gap between tool availability and effective implementation. Key barriers include fragmented and non-standardized data infrastructures, confidentiality constraints, limited stakeholder coordination, and weak policy and market incentives. Based on the integrated analysis of literature and practitioner insights, the paper proposes a conceptual framework that links tools and methods with data infrastructure, stakeholder governance, policy, and market enablers, and implementation contexts. The findings highlight that improving data governance, interoperability, and collaborative implementation pathways is as critical as advancing analytical capabilities. The study concludes by outlining focused directions for future research, including AI-enabled optimization, standardized data-sharing frameworks, and coordinated pilot projects to support scalable low-carbon industrial transformation. Full article
Show Figures

Figure 1

25 pages, 1472 KB  
Article
Energy-Efficient Collaborative Scheduling of Dual-Trolley Quay Cranes and Automated Guided Vehicles in Automated Container Terminals
by Shichang Xiao, Shuaishuai Deng, Shaohua Yu, Peng Zheng and Zigao Wu
J. Mar. Sci. Eng. 2026, 14(3), 280; https://doi.org/10.3390/jmse14030280 - 29 Jan 2026
Viewed by 96
Abstract
This paper investigates the energy-efficient collaborative scheduling of dual-trolley quay cranes (DTQCs) and automated guided vehicles (AGVs) in automated container terminals (ACTs). Considering operational constraints such as mixed bidirectional flows, limited buffers, precedence constraints, and deadlocks, this complex logistical system is formally characterized [...] Read more.
This paper investigates the energy-efficient collaborative scheduling of dual-trolley quay cranes (DTQCs) and automated guided vehicles (AGVs) in automated container terminals (ACTs). Considering operational constraints such as mixed bidirectional flows, limited buffers, precedence constraints, and deadlocks, this complex logistical system is formally characterized as a blocking hybrid flow shop scheduling problem (BHFSSP-BFLB). To systematically minimize the total energy consumption, a mathematical framework grounded in a mixed-integer programming model is developed. To solve the model efficiently, an improved genetic algorithm (IGA) is proposed featuring a two-layer encoding approach to respect precedence and mitigate deadlocks. Furthermore, an active scheduling strategy based on machine idle time insertion is incorporated during decoding to shorten the makespan without increasing energy consumption. Numerical experiments demonstrate that the IGA can significantly decrease the makespan while reducing total energy consumption: compared with a standard genetic algorithm (GA) without active scheduling, the proposed IGA reduces the makespan by 32.35% on average. In addition, the makespan under energy minimization is within 1.5% of that under makespan minimization, indicating that energy optimization yields an almost minimal makespan. Sensitivity analysis further evaluates the effects of DTQC-AGV configurations and buffer capacities, offering practical insights for decision-makers. Full article
(This article belongs to the Section Ocean Engineering)
10 pages, 1824 KB  
Article
The Construction Site of Tomorrow: Results of 3 Years of Field-Testing Electric Excavators
by Willem Christiaens, Harm Weken, René van Gijlswijk and Michiel Zult
World Electr. Veh. J. 2026, 17(2), 62; https://doi.org/10.3390/wevj17020062 - 29 Jan 2026
Viewed by 73
Abstract
“The Construction Site of Tomorrow” is a 3-year collaboration of a consortium of seven contractors, two knowledge institutes, and the construction machinery supplier on the deployment of heavy-duty electric excavators. The practical experiences of “The Construction Site of Tomorrow” have resulted in technical [...] Read more.
“The Construction Site of Tomorrow” is a 3-year collaboration of a consortium of seven contractors, two knowledge institutes, and the construction machinery supplier on the deployment of heavy-duty electric excavators. The practical experiences of “The Construction Site of Tomorrow” have resulted in technical improvements of the machines, new insights about energy consumption in different use cases, experience with the deployment of the machines, and practicalities around charging the machines’ batteries in different situations. In this paper, we elaborate on the findings of the project, including the usability of the machines, their energy consumption, and total costs of ownership. This work has been coordinated by FIER Sustainable Mobility. The project was sponsored by the Netherlands Enterprise Agency. Full article
Show Figures

Figure 1

24 pages, 2256 KB  
Article
Low-Carbon Economic Dispatch of Data Center Microgrids via Heat-Determined Computing and Tiered Carbon Trading
by Lijun Ma, Hongru Shi, Guohai Liu, Weiping Lu and Na Gu
Energies 2026, 19(3), 699; https://doi.org/10.3390/en19030699 - 29 Jan 2026
Viewed by 90
Abstract
The exponential growth of the digital economy has transformed data centers into major energy consumers, yet their inflexible power consumption patterns and substantial waste heat generation pose significant challenges to grid stability and carbon neutrality targets. Existing energy management strategies often overlook the [...] Read more.
The exponential growth of the digital economy has transformed data centers into major energy consumers, yet their inflexible power consumption patterns and substantial waste heat generation pose significant challenges to grid stability and carbon neutrality targets. Existing energy management strategies often overlook the deep coupling potential between computing workload flexibility, thermal dynamics, and carbon trading mechanisms, leading to suboptimal resource utilization. To address these issues, this study proposes a collaborative low-carbon economic scheduling strategy for data center microgrids. A multiple-dimensional coupling framework is established, integrating a queuing theory-based model for delay-tolerant workload shifting and a heat-determined computing mechanism for active waste heat recovery (WHR). Furthermore, a mixed-integer linear programming (MILP) model is formulated, incorporating a linearized tiered carbon trading mechanism to facilitate source–load coordination. Simulation results demonstrate that the proposed strategy achieves a dual optimization of economic and environmental benefits, reducing total operating costs by 11.7% while minimizing carbon emissions to 6879 kg compared to baseline scenarios. Additionally, by leveraging temperature aware load migration, the daily weighted power usage effectiveness (PUE) is optimized to 1.2607. These findings quantify the marginal benefits of load flexibility under tiered pricing, providing insights for operators to balance service timeliness and energy efficiency in next generation green computing infrastructure. Full article
(This article belongs to the Section A1: Smart Grids and Microgrids)
Show Figures

Figure 1

28 pages, 7036 KB  
Article
Towards Sustainable Urban Logistics: Route Optimization for Collaborative UAV–UGV Delivery Systems Under Road Network and Energy Constraints
by Cunming Zou, Qiaoran Yang, Junyu Li, Wei Yue and Na Yu
Sustainability 2026, 18(2), 1091; https://doi.org/10.3390/su18021091 - 21 Jan 2026
Viewed by 147
Abstract
This paper addresses the optimization challenges in urban logistics with the aim of enhancing the sustainability of last-mile delivery. By focusing on the collaborative delivery between unmanned aerial vehicles (UAVs) and unmanned ground vehicles (UGVs), we propose a novel approach to reducing energy [...] Read more.
This paper addresses the optimization challenges in urban logistics with the aim of enhancing the sustainability of last-mile delivery. By focusing on the collaborative delivery between unmanned aerial vehicles (UAVs) and unmanned ground vehicles (UGVs), we propose a novel approach to reducing energy consumption and operational inefficiencies. A bilevel mixed-integer linear programming (Bilevel-MILP) model is developed, integrating road network topology with dynamic energy constraints. Departing from traditional single-delivery modes, the paper establishes a multi-task continuous delivery framework. By incorporating a dynamic charging point selection strategy and path–energy coupling constraints, the model effectively mitigates energy limitations and the issue of repeated returns for UAV charging in complex urban road networks, thereby promoting more efficient resource utilization. At the algorithmic level, a Collaborative Delivery Path Optimization (CDPO) framework is proposed, which embeds an Improved Sparrow Search Algorithm (ISSA) with directional initialization and a Hybrid Genetic Algorithm (HGA) with specialized crossover strategies. This enables the synergistic optimization of UAV delivery sequences and UGV charging decisions. The simulation results demonstrate that, in scenarios with a task density of 20 per 100 km2, the proposed CDPO algorithm reduces the total delivery time by 33.9% and shortens the UAV flight distance by 24.3%, compared to conventional fixed charging strategies (FCSs). These improvements directly contribute to lowering energy consumption and potential emissions. The road network discretization approach and dynamic candidate charging point generation confirm the method’s adaptability in high-density urban environments, offering a spatiotemporal collaborative optimization paradigm that supports the development of sustainable and intelligent urban logistics systems. The obtained results provide practical insights for the design and deployment of efficient UAV–UGV collaborative logistics systems in urban environments, particularly under high-task-density and energy-constrained conditions. Full article
Show Figures

Figure 1

18 pages, 1201 KB  
Article
Federated Learning Semantic Communication in UAV Systems: PPO-Based Joint Trajectory and Resource Allocation Optimization
by Shuang Du, Yue Zhang, Zhen Tao, Han Li and Haibo Mei
Sensors 2026, 26(2), 675; https://doi.org/10.3390/s26020675 - 20 Jan 2026
Viewed by 135
Abstract
Semantic Communication (SC), driven by a deep learning (DL)-based “understand-before-transmit” paradigm, transmits lightweight semantic information (SI) instead of raw data. This approach significantly reduces data volume and communication overhead while maintaining performance, making it particularly suitable for UAV communications where the platform is [...] Read more.
Semantic Communication (SC), driven by a deep learning (DL)-based “understand-before-transmit” paradigm, transmits lightweight semantic information (SI) instead of raw data. This approach significantly reduces data volume and communication overhead while maintaining performance, making it particularly suitable for UAV communications where the platform is constrained by size, weight, and power (SWAP) limitations. To alleviate the computational burden of semantic extraction (SE) on the UAV, this paper introduces federated learning (FL) as a distributed training framework. By establishing a collaborative architecture with edge users, computationally intensive tasks are offloaded to the edge devices, while the UAV serves as a central coordinator. We first demonstrate the feasibility of integrating FL into SC systems and then propose a novel solution based on Proximal Policy Optimization (PPO) to address the critical challenge of ensuring service fairness in UAV-assisted semantic communications. Specifically, we formulate a joint optimization problem that simultaneously designs the UAV’s flight trajectory and bandwidth allocation strategy. Experimental results validate that our FL-based training framework significantly reduces computational resource consumption, while the PPO-based algorithm approach effectively minimizes both energy consumption and task completion time while ensuring equitable quality-of-service (QoS) across all edge users. Full article
(This article belongs to the Special Issue 6G Communication and Edge Intelligence in Wireless Sensor Networks)
Show Figures

Figure 1

36 pages, 923 KB  
Article
Exploring Key Factors Influencing Generation Z Users’ Continuous Use Intention on Human-AI Collaboration in Secondhand Fashion E-Commerce Platforms
by Keyun Deng, Chuyi Zhang, Mingliang Song and Xin Hu
Sustainability 2026, 18(2), 964; https://doi.org/10.3390/su18020964 - 17 Jan 2026
Viewed by 274
Abstract
With the increasing prominence of sustainable consumption and the rising influence of Generation Z in the fashion market, secondhand fashion e-commerce platforms have become essential carriers of green fashion. Although AI-assisted recommendation mechanisms are widely embedded in these platforms, their psychological and behavioral [...] Read more.
With the increasing prominence of sustainable consumption and the rising influence of Generation Z in the fashion market, secondhand fashion e-commerce platforms have become essential carriers of green fashion. Although AI-assisted recommendation mechanisms are widely embedded in these platforms, their psychological and behavioral effects on users’ continuous use and social engagement remain insufficiently examined. To address this gap, this study incorporates the Stimulus–Organism–Response (SOR) framework to investigate the psychological reaction pathways and behavioral intentions of Generation Z users within Human-AI Collaboration-enabled green e-commerce environments. Three AI-driven service stimuli—Human-AI Collaborative Recommendation Perception, AI Interaction Transparency, and Perceived Personalization—were conceptualized as stimulus variables; Psychological Immersion, Emotional Triggering, Cognitive Engagement, and Platform Trust were modeled as organism variables; and Continuous Use Intention and Social Sharing Intention served as behavioral response variables. Based on 498 valid samples analyzed using Partial Least Squares Structural Equation Modeling (PLS-SEM), the results demonstrate strong empirical support for all proposed hypotheses. Specifically, AI-driven stimuli significantly and positively influence psychological responses, which subsequently strengthen users’ continuous usage and social sharing intentions. This research provides theoretical insights for developing Human-AI Collaboration-enabled service systems that balance efficiency and emotional resonance on green e-commerce platforms, and offers practical implications for promoting sustainable fashion values among younger consumers. Full article
(This article belongs to the Special Issue Research on Sustainable E-commerce and Supply Chain Management)
Show Figures

Figure 1

42 pages, 3816 KB  
Article
Dynamic Decision-Making for Resource Collaboration in Complex Computing Networks: A Differential Game and Intelligent Optimization Approach
by Cai Qi and Zibin Zhang
Mathematics 2026, 14(2), 320; https://doi.org/10.3390/math14020320 - 17 Jan 2026
Viewed by 234
Abstract
End–edge–cloud collaboration enables significant improvements in system resource utilization by integrating heterogeneous resources while ensuring application-level quality of service (QoS). However, achieving efficient collaborative decision-making in such architectures poses critical challenges within dynamic and complex computing network environments, including dynamic resource allocation, incentive [...] Read more.
End–edge–cloud collaboration enables significant improvements in system resource utilization by integrating heterogeneous resources while ensuring application-level quality of service (QoS). However, achieving efficient collaborative decision-making in such architectures poses critical challenges within dynamic and complex computing network environments, including dynamic resource allocation, incentive alignment between cloud and edge entities, and multi-objective optimization. To address these issues, this paper proposes a dynamic resource optimization framework for complex cloud–edge collaborative networks, decomposing the problem into two hierarchical decision schemes: cloud-level coordination and edge-side coordination, thereby achieving adaptive resource orchestration across the End–edge–cloud continuum. Furthermore, leveraging differential game theory, we model the dynamic resource allocation and cooperation incentives between cloud and edge nodes, and derive a feedback Nash equilibrium to maximize the overall system utility, effectively resolving the inherent conflicts of interest in cloud–edge collaboration. Additionally, we formulate a joint optimization model for energy consumption and latency, and propose an Improved Discrete Artificial Hummingbird Algorithm (IDAHA) to achieve an optimal trade-off between these competing objectives, addressing the challenge of multi-objective coordination from the user perspective. Extensive simulation results demonstrate that the proposed methods exhibit superior performance in multi-objective optimization, incentive alignment, and dynamic resource decision-making, significantly enhancing the adaptability and collaborative efficiency of complex cloud–edge networks. Full article
(This article belongs to the Special Issue Dynamic Analysis and Decision-Making in Complex Networks)
Show Figures

Figure 1

21 pages, 1552 KB  
Article
The Biddings of Energy Storage in Multi-Microgrid Market Based on Stackelberg Game Theory
by Zifen Han, He Sheng, Yufan Liu, Shaofeng Liu, Shangxing Wang and Ke Wang
Energies 2026, 19(2), 433; https://doi.org/10.3390/en19020433 - 15 Jan 2026
Viewed by 232
Abstract
Dual Carbon Goals are driving transformation in China’s power system, where increased renewable energy penetration is accompanied by heightened fluctuations on the generation and load sides. Energy storage and microgrid coordination have emerged as key solutions. However, existing research faces the challenge of [...] Read more.
Dual Carbon Goals are driving transformation in China’s power system, where increased renewable energy penetration is accompanied by heightened fluctuations on the generation and load sides. Energy storage and microgrid coordination have emerged as key solutions. However, existing research faces the challenge of balancing microgrid operations, energy storage services, and the alignment of user demand with stakeholder interests. This paper establishes a tripartite collaborative optimization framework to balance multi-stakeholder interests and enhance system efficiency, assuming fixed energy storage capacity. Centering on a principal-agent game between microgrid operators and consumer aggregators, energy storage service providers are integrated into this dynamic. Microgrid operators set 24-h electricity and heat pricing while adhering to tariff constraints, prompting consumer aggregators to adjust energy consumption and storage strategies accordingly. The KKT conditional method is employed to solve the model, deriving optimal user energy consumption strategies at the lower level while solving marginal pricing equilibrium relationships at the upper level, balancing accuracy with information privacy. The creative contribution of this article lies in the first construction of a tripartite collaborative optimization architecture in which energy storage service providers are embedded in a game of ownership and subordination. It proposes a dynamic coupling mechanism between pricing power, energy consumption decision-making, and energy storage configuration under fixed energy storage capacity constraints, achieving a balance of interests among multiple parties. By building a case study using MATLAB (R2022b), we compare operation costs, benefits, and absorption rates across different scenarios to validate the framework’s effectiveness and provide a reference for engineering applications. Full article
Show Figures

Figure 1

19 pages, 924 KB  
Article
Navigating Climate Neutrality Planning: How Mobility Management May Support Integrated University Strategy Development, the Case Study of Genoa
by Ilaria Delponte and Valentina Costa
Future Transp. 2026, 6(1), 19; https://doi.org/10.3390/futuretransp6010019 - 15 Jan 2026
Viewed by 139
Abstract
Higher education institutions face a critical methodological challenge in pursuing net-zero commitments: Within the amount ofhe emissions related to Scope 3, including indirect emissions from water consumption, waste disposal, business travel, and mobility, employees commuting represents 50–92% of campus carbon footprints, yet reliable [...] Read more.
Higher education institutions face a critical methodological challenge in pursuing net-zero commitments: Within the amount ofhe emissions related to Scope 3, including indirect emissions from water consumption, waste disposal, business travel, and mobility, employees commuting represents 50–92% of campus carbon footprints, yet reliable quantification remains elusive due to fragmented data collection and governance silos. The present research investigates how purposeful integration of the Home-to-Work Commuting Plan (HtWCP)—mandatory under Italian Decree 179/2021—into the Climate Neutrality Plan (CNP) could constitute an innovative strategy to enhance emissions accounting rigor while strengthening institutional governance. Stemming from the University of Genoa case study, we show how leveraging mandatory HtWCP survey infrastructure to collect granular mobility behavioral data (transportation mode, commuting distance, and travel frequency) directly addresses the GHG Protocol-specified distance-based methodology for Scope 3 accounting. In turn, the CNP could support the HtWCP in framing mobility actions into a wider long-term perspective, as well as suggesting a compensation mechanism and paradigm for mobility actions that are currently not included. We therefore establish a replicable model that simultaneously advances three institutional dimensions, through the operationalization of the Avoid–Shift–Improve framework within an integrated workflow: (1) methodological rigor—replacing proxy methodologies with actual behavioral data to eliminate the notorious Scope 3 data gap; (2) governance coherence—aligning voluntary and regulatory instruments to reduce fragmentation and enhance cross-functional collaboration; and (3) adaptive management—embedding biennial feedback cycles that enable continuous validation and iterative refinement of emissions reduction strategies. This framework positions universities as institutional innovators capable of modeling integrated governance approaches with potential transferability to municipal, corporate, and public administration contexts. The findings contribute novel evidence to scholarly literature on institutional sustainability, policy integration, and climate governance, whilst establishing methodological standards relevant to international harmonization efforts in carbon accounting. Full article
Show Figures

Figure 1

22 pages, 3645 KB  
Article
Artificial Intelligence Agents for Sustainable Production Based on Digital Model-Predictive Control
by Natalia Bakhtadze, Victor Dozortsev, Artem Vlasov, Mariya Koroleva and Maxim Anikin
Sustainability 2026, 18(2), 759; https://doi.org/10.3390/su18020759 - 12 Jan 2026
Viewed by 220
Abstract
The article presents an approach to synthesizing artificial intelligence agents (AI agents), in particular, control and decision support systems for process operators in various industries. Such a system contains an identifier in the feedback loop that generates digital predictive associative search models of [...] Read more.
The article presents an approach to synthesizing artificial intelligence agents (AI agents), in particular, control and decision support systems for process operators in various industries. Such a system contains an identifier in the feedback loop that generates digital predictive associative search models of the Just-in-Time Learning (JITL) type. It is demonstrated that the system can simultaneously solve (outside the control loop) two additional tasks: online operator pre-training and mutual adaptation of the operator and the system based on real-world production data. Solving the latter task is crucial for teaching the operator and the system collaborative handling of abnormal situations. AI agents improve control efficiency through self-learning, personalized operator support, and intelligent interface. Stabilization of process variables and minimization of deviations from optimal conditions make it possible to operate process plants close to constraints with sustainable product qualities. Along with higher yield of target product(s), this reduces equipment wear and tear, utilities consumption and associated harmful emissions. This is the key merit of Model Predictive Control (MPC) systems, which justify their application. JITL-type models proposed in the article are more precise than conventional ones used in MPC; therefore, they enable the operation even closer to process constraints. Altogether, this further improves the reliability of production systems and contributes to their sustainable development. Full article
(This article belongs to the Special Issue Sustainable Manufacturing Systems in the Context of Industry 4.0)
Show Figures

Figure 1

44 pages, 1040 KB  
Article
Linearization Strategies for Energy-Aware Optimization of Single-Truck, Multiple-Drone Last-Mile Delivery Systems
by Ornela Gordani, Eglantina Kalluci and Fatos Xhafa
Future Internet 2026, 18(1), 45; https://doi.org/10.3390/fi18010045 - 9 Jan 2026
Viewed by 481
Abstract
The increasing demand for rapid and sustainable parcel delivery has motivated the exploration of innovative logistics systems that integrate drones with traditional ground vehicles. Among these, the single-truck, multiple-drone last-mile delivery configuration has attracted significant attention due to its potential to reduce both [...] Read more.
The increasing demand for rapid and sustainable parcel delivery has motivated the exploration of innovative logistics systems that integrate drones with traditional ground vehicles. Among these, the single-truck, multiple-drone last-mile delivery configuration has attracted significant attention due to its potential to reduce both delivery time and environmental impact. However, optimizing such systems remains computationally challenging because of the nonlinear energy consumption behavior of drones, which depends on factors such as payload weight and travel time, among others. This study investigates the energy-aware optimization of truck–drone collaborative delivery systems, with a particular focus on the mathematical formulation as mixed-integer nonlinear problem (MINLP) formulations and linearization of drone energy consumption constraints. Building upon prior models proposed in the literature in the field, we analyze the MINLP computational complexity and introduce alternative linearization strategies that preserve model accuracy while improving performance solvability. The resulting linearized mixed-integer linear problem (MILP) formulations are solved using the PuLP software, a Python library solver, to evaluate the efficacy of linearization on computation time and solution quality across diverse problem instance sizes from a benchmark of instances in the literature. Thus, extensive computational results drawn from a standard dataset benchmark from the literature by running the solver in a cluster infrastructure demonstrated that the designed linearization methods can reduce optimization time of nonlinear solvers to several orders of magnitude without compromising energy estimation accuracy, enabling the model to handle larger problem instances effectively. This performance improvement opens the door to a real-time or near-real-time solution of the problem, allowing the delivery system to dynamically react to operational changes and uncertainties during delivery. Full article
Show Figures

Graphical abstract

24 pages, 5097 KB  
Article
A Hybrid Federated Learning Framework for Enhancing Privacy and Robustness in Non-Intrusive Load Monitoring
by Jing Rong, Qiuzhan Zhou and Huinan Wu
Sensors 2026, 26(2), 443; https://doi.org/10.3390/s26020443 - 9 Jan 2026
Viewed by 205
Abstract
Non-intrusive load monitoring (NILM), as a key technology in smart-grid advanced metering infrastructure, aims to disaggregate mains power from smart meters into individual load-level power consumption. Traditional NILM methods require centralizing sensitive measurement data from users, which poses significant privacy risks. Federated learning [...] Read more.
Non-intrusive load monitoring (NILM), as a key technology in smart-grid advanced metering infrastructure, aims to disaggregate mains power from smart meters into individual load-level power consumption. Traditional NILM methods require centralizing sensitive measurement data from users, which poses significant privacy risks. Federated learning (FL) enables collaborative training without centralized measurement data, effectively preserving privacy. However, FL-based NILM systems face serious threats from attacks such as model inversion and parameter poisoning, and rely heavily on the availability of a central server, whose failure may compromise measurement robustness. This paper proposes a hybrid FL framework that dynamically switches between centralized FL (CFL) and decentralized FL (DFL) modes, enhancing measurement privacy and system robustness simultaneously. In CFL mode, layer-sensitive pruning and robust parameter aggregation methods are developed to defend against model inversion and parameter poisoning attacks; even with 30% malicious clients, the proposed defense limits the increases in key error metrics to under 15.4%. In DFL mode, a graph attention network (GAT)-based dynamic topology adapts to mitigate topology poisoning attacks, achieving an approximately 17.2% reduction in MAE after an attack and rapidly restoring model performance. Extensive evaluations using public datasets demonstrate that the proposed framework significantly enhances the robustness of smart-grid measurements and effectively safeguards measurement privacy. Full article
(This article belongs to the Section Intelligent Sensors)
Show Figures

Graphical abstract

Back to TopTop