Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (406)

Search Parameters:
Keywords = cold energy storage

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 2594 KiB  
Article
Low-Temperature Performance and Thermal Control of Asphalt Modified with Microencapsulated Phase-Change Materials
by Liming Zhang, Junmao Wang, Jinhua Wu, Ran Zhang, Yinchuan Guo, Hongbo Shen, Xinghua Liu and Kuncan Li
Coatings 2025, 15(8), 879; https://doi.org/10.3390/coatings15080879 - 26 Jul 2025
Viewed by 365
Abstract
Conventional asphalt is prone to cracking in cold climates due to its poor flexibility and limited ability to regulate temperature. This study investigates the use of low-temperature microencapsulated phase-change materials (MPCMs) to improve both the thermal storage and low-temperature performance of asphalt. MPCMs [...] Read more.
Conventional asphalt is prone to cracking in cold climates due to its poor flexibility and limited ability to regulate temperature. This study investigates the use of low-temperature microencapsulated phase-change materials (MPCMs) to improve both the thermal storage and low-temperature performance of asphalt. MPCMs were incorporated into asphalt through physical blending at various concentrations. The physical, thermal, and rheological properties of the asphalt were then systematically evaluated. Tests included penetration, softening point, ductility, thermogravimetric analysis (TGA), and dynamic shear rheometer (DSR). The addition of MPCMs increased penetration and ductility. It slightly reduced the softening point and viscosity. These changes suggest improved flexibility and workability at low temperatures. Rheological tests showed reductions in rutting and fatigue factors. This indicates better resistance to thermal and mechanical stresses. Bending Beam Rheometer (BBR) results further confirmed that MPCMs lowered creep stiffness and increased the m-value. These findings demonstrate improved crack resistance under cold conditions. Thermal cycling tests also showed that MPCMs delayed the cooling process and reduced temperature fluctuations. This highlights their potential to enhance both energy efficiency and the durability of asphalt pavements in cold regions. Full article
(This article belongs to the Special Issue Synthesis and Application of Functional Polymer Coatings)
Show Figures

Graphical abstract

18 pages, 5232 KiB  
Article
Analysis of the Characteristics of a Multi-Generation System Based on Geothermal, Solar Energy, and LNG Cold Energy
by Xinfeng Guo, Hao Li, Tianren Wang, Zizhang Wang, Tianchao Ai, Zireng Qi, Huarong Hou, Hongwei Chen and Yangfan Song
Processes 2025, 13(8), 2377; https://doi.org/10.3390/pr13082377 - 26 Jul 2025
Viewed by 274
Abstract
In order to reduce gas consumption and increase the renewable energy proportion, this paper proposes a poly-generation system that couples geothermal, solar, and liquid natural gas (LNG) cold energy to produce steam, gaseous natural gas, and low-temperature nitrogen. The high-temperature flue gas is [...] Read more.
In order to reduce gas consumption and increase the renewable energy proportion, this paper proposes a poly-generation system that couples geothermal, solar, and liquid natural gas (LNG) cold energy to produce steam, gaseous natural gas, and low-temperature nitrogen. The high-temperature flue gas is used to heat LNG; low-temperature flue gas, mainly nitrogen, can be used for cold storage cooling, enabling the staged utilization of the energy. Solar shortwave is used for power generation, and longwave is used to heat the working medium, which realizes the full spectrum utilization of solar energy. The influence of different equipment and operating parameters on the performance of a steam generation system is studied, and the multi-objective model of the multi-generation system is established and optimized. The results show that for every 100 W/m2 increase in solar radiation, the renewable energy ratio of the system increases by 1.5%. For every 10% increase in partial load rate of gas boiler, the proportion of renewable energy decreases by 1.27%. The system’s energy efficiency, cooling output, and the LNG vaporization flow rate are negatively correlated with the scale of solar energy utilization equipment. The decision variables determined by the TOPSIS (technique for order of preference by similarity to ideal solution) method have better economic performance. Its investment cost is 18.14 × 10 CNY, which is 7.83% lower than that of the LINMAP (linear programming technique for multidimensional analysis of preference). Meanwhile, the proportion of renewable energy is only 0.29% lower than that of LINMAP. Full article
(This article belongs to the Special Issue Innovations in Waste Heat Recovery in Industrial Processes)
Show Figures

Figure 1

27 pages, 3280 KiB  
Article
Design and Implementation of a Robust Hierarchical Control for Sustainable Operation of Hybrid Shipboard Microgrid
by Arsalan Rehmat, Farooq Alam, Mohammad Taufiqul Arif and Syed Sajjad Haider Zaidi
Sustainability 2025, 17(15), 6724; https://doi.org/10.3390/su17156724 - 24 Jul 2025
Viewed by 404
Abstract
The growing demand for low-emission maritime transport and efficient onboard energy management has intensified research into advanced control strategies for hybrid shipboard microgrids. These systems integrate both AC and DC power domains, incorporating renewable energy sources and battery storage to enhance fuel efficiency, [...] Read more.
The growing demand for low-emission maritime transport and efficient onboard energy management has intensified research into advanced control strategies for hybrid shipboard microgrids. These systems integrate both AC and DC power domains, incorporating renewable energy sources and battery storage to enhance fuel efficiency, reduce greenhouse gas emissions, and support operational flexibility. However, integrating renewable energy into shipboard microgrids introduces challenges, such as power fluctuations, varying line impedances, and disturbances caused by AC/DC load transitions, harmonics, and mismatches in demand and supply. These issues impact system stability and the seamless coordination of multiple distributed generators. To address these challenges, we proposed a hierarchical control strategy that supports sustainable operation by improving the voltage and frequency regulation under dynamic conditions, as demonstrated through both MATLAB/Simulink simulations and real-time hardware validation. Simulation results show that the proposed controller reduces the frequency deviation by up to 25.5% and power variation improved by 20.1% compared with conventional PI-based secondary control during load transition scenarios. Hardware implementation on the NVIDIA Jetson Nano confirms real-time feasibility, maintaining power and frequency tracking errors below 5% under dynamic loading. A comparative analysis of the classical PI and sliding mode control-based designs is conducted under various grid conditions, such as cold ironing mode of the shipboard microgrid, and load variations, considering both the AC and DC loads. The system stability and control law formulation are verified through simulations in MATLAB/SIMULINK and practical implementation. The experimental results demonstrate that the proposed secondary control architecture enhances the system robustness and ensures sustainable operation, making it a viable solution for modern shipboard microgrids transitioning towards green energy. Full article
(This article belongs to the Special Issue Smart Grid Technologies and Energy Sustainability)
Show Figures

Figure 1

19 pages, 7328 KiB  
Article
Experimental Raw Earth Building for Passive Cooling: A Case Study for Agricultural Application in a Mediterranean Climate
by Antoine Grosjean, Karim Touati, Gaël Alonzo, Homan Cheikh Ravat, Thomas Houot, Yassine El Mendili, Brigitte Nougarèdes and Nicolas Camara
Buildings 2025, 15(15), 2603; https://doi.org/10.3390/buildings15152603 - 23 Jul 2025
Viewed by 306
Abstract
Residential and agricultural buildings must prioritize environmental sustainability, employing locally sourced, bio/geologically sustainable materials, and reversible construction methods. Hence, adobe construction and earth-based building methods are experiencing a comeback. This article describes the hygrothermal performances of a real scale agricultural building prototype, in [...] Read more.
Residential and agricultural buildings must prioritize environmental sustainability, employing locally sourced, bio/geologically sustainable materials, and reversible construction methods. Hence, adobe construction and earth-based building methods are experiencing a comeback. This article describes the hygrothermal performances of a real scale agricultural building prototype, in real field conditions, built and designed to be energy-efficient, environmentally friendly, and well-suited for the hot, dry climates typical of the Mediterranean region during summer. The building prototype is a small modular two room construction, one room based on wood (for control purpose) and the other one on raw earth. The experimental set up highlights the passive cooling and humidity regulation potential provided by raw earth and adobe brick technology in agricultural buildings used for fruit and vegetable storage. Such passive cooling alternatives in the Mediterranean climate could reduce the need for energy-intensive and environmentally impactful cold storage rooms. Full article
(This article belongs to the Section Building Energy, Physics, Environment, and Systems)
Show Figures

Graphical abstract

22 pages, 2359 KiB  
Article
Investigation of the Charging and Discharging Cycle of Packed-Bed Storage Tanks for Energy Storage Systems: A Numerical Study
by Ayah Marwan Rabi’, Jovana Radulovic and James M. Buick
Thermo 2025, 5(3), 24; https://doi.org/10.3390/thermo5030024 - 18 Jul 2025
Viewed by 198
Abstract
In recent years, packed-bed systems have emerged as an attractive design for thermal energy storage systems due to their high thermal efficiency and economic feasibility. As integral components of numerous large-scale applications systems, packed-bed thermal energy stores can be successfully paired with renewable [...] Read more.
In recent years, packed-bed systems have emerged as an attractive design for thermal energy storage systems due to their high thermal efficiency and economic feasibility. As integral components of numerous large-scale applications systems, packed-bed thermal energy stores can be successfully paired with renewable energy and waste heat to improve energy efficiency. An analysis of the thermal performances of two packed beds (hot and cold) during six-hour charging and discharging cycles has been conducted in this paper using COMSOL Multiphysics software, utilizing the optimal design parameters that have been determined in previous studies, including porosity (0.2), particle diameters (4 mm) for porous media, air as a heat transfer fluid, magnesia as a storage medium, mass flow rate (13.7 kg/s), and aspect ratio (1). The performance has been evaluated during both the charging and discharging cycles, in terms of the system’s capacity factor, the energy stored, and the thermal power, in order to understand the system’s performance and draw operational recommendations. Based on the results, operating the hot/cold storage in the range of 20–80% of the full charge was found to be a suitable range for the packed-bed system, ensuring that the charging/discharging power remains within 80% of the maximum. Full article
Show Figures

Figure 1

19 pages, 1252 KiB  
Article
Analogy Analysis of Height Exergy and Temperature Exergy in Energy Storage System
by Yan Cui, Tong Jiang and Mulin Liu
Energies 2025, 18(14), 3675; https://doi.org/10.3390/en18143675 - 11 Jul 2025
Viewed by 256
Abstract
As a pivotal technology and infrastructure component for modern power systems, energy storage has experienced significant advancement in recent years. A fundamental prerequisite for designing future energy storage facilities lies in the systematic evaluation of energy conversion capabilities across diverse storage technologies. This [...] Read more.
As a pivotal technology and infrastructure component for modern power systems, energy storage has experienced significant advancement in recent years. A fundamental prerequisite for designing future energy storage facilities lies in the systematic evaluation of energy conversion capabilities across diverse storage technologies. This study conducted a comparative analysis between pumped hydroelectric storage (PHS) and compressed air energy storage (CAES), defining the concepts of height exergy and temperature exergy. Height exergy is the maximum work capacity of a liquid due to height differences, while temperature exergy is the maximum work capacity of a gas due to temperature differences. The temperature exergy represents innovation in thermodynamic analysis; it is derived from internal exergy and proven through the Maxwell relation and the decoupling method of internal exergy, offering a more efficient method for calculating energy storage capacity in CAES systems. Mathematical models of height exergy and temperature exergy were established based on their respective forms. A unified calculation formula was derived, and their respective characteristics were analyzed. In order to show the meaning of temperature exergy more clearly and intuitively, a height exergy model of temperature exergy was established through analogy analysis, and it was concluded that the shape of the reservoir was a cone when comparing water volume to heat quantity, intuitively showing that the cold source had a higher energy storage density than the heat source. Finally, a typical hybrid PHS–CAES system was proposed, and a mathematical model was established and verified in specific cases based on height exergy and temperature exergy. It was demonstrated that when the polytropic exponent n = 1.2, the theoretical loss accounted for the largest proportion, which was 2.06%. Full article
(This article belongs to the Section D: Energy Storage and Application)
Show Figures

Figure 1

21 pages, 1468 KiB  
Article
Multi-Objective Energy-Saving Optimization and Analysis of a Combined Cooling, Heating, and Power (CCHP) System Driven by Geothermal Energy and LNG Cold Energy
by Xianfeng Gong and Jie Liu
Processes 2025, 13(7), 2135; https://doi.org/10.3390/pr13072135 - 4 Jul 2025
Viewed by 327
Abstract
In this paper, a new type of cogeneration system using LNG cold energy as a cooling source and geothermal energy as a heat source is designed and studied from the perspective of LNG cold energy gradient utilization. The system integrates power generation, cold [...] Read more.
In this paper, a new type of cogeneration system using LNG cold energy as a cooling source and geothermal energy as a heat source is designed and studied from the perspective of LNG cold energy gradient utilization. The system integrates power generation, cold storage, and district cooling. In order to provide more detailed information, the proposed system was analyzed in terms of energy, exergy, and economy. The effects of separator pressure, LNG pump outlet pressure, the mass flow rate of n-Pentane in ORC-I, liquefaction temperature of R23 in the cold storage module, and pump 5 outlet pressure in the refrigeration module on the performance of the system were also investigated. Additionally, the particle swarm algorithm (PSO) was used to optimize the CCHP system with multiple objectives to determine the system’s optimal operation. The optimization results show that the system’s thermal efficiency, exergy efficiency, and depreciation payback period are 66.06%, 42.52%, and 4.509 years, respectively. Full article
Show Figures

Figure 1

16 pages, 2423 KiB  
Article
Green Light Enhances the Postharvest Quality of Lettuce During Cold Storage
by Shafieh Salehinia, Fardad Didaran, Yvan Gariepy, Sasan Aliniaeifard, Sarah MacPherson and Mark Lefsrud
Horticulturae 2025, 11(7), 792; https://doi.org/10.3390/horticulturae11070792 - 4 Jul 2025
Cited by 1 | Viewed by 414
Abstract
The postharvest quality of lettuce (Lactuca sativa) is significantly influenced by the lighting environment during storage. This study evaluated the effects of green LEDs at 500 nm and 530 nm, white LEDs (400–700 nm), and dark storage on lettuce quality over [...] Read more.
The postharvest quality of lettuce (Lactuca sativa) is significantly influenced by the lighting environment during storage. This study evaluated the effects of green LEDs at 500 nm and 530 nm, white LEDs (400–700 nm), and dark storage on lettuce quality over 14 days at 5 °C. All treatments were applied at 10 µmol m−2 s−1 under a 12 h photoperiod. Quality parameters measured included moisture loss, relative water content (RWC), photosynthetic rate, chlorophyll content (SPAD), total soluble solids (TSSs), electrolyte leakage (EL), color change (∆E), texture (crispness), and overall visual quality (OVQ). Lettuce stored under green LEDs, particularly 530 nm, exhibited superior postharvest quality. Compared to dark storage, 530 nm reduced moisture loss by 7.1%, increased RWC by 9.2%, and reduced transpiration rate. The green light preserved photosynthetic activity (43% decline vs. 77% in the dark), increased TSS, reduced color change by 42%, improved crispness by 46.1%, and limited EL to 54.5%. Shelf life was extended by approximately four days. The 500 nm treatment showed notable improvements, including an 8.4% reduction in moisture loss, 8.2% higher RWC, a smaller photosynthesis decline (25%), and the lowest EL (53.1%). It improved color retention (∆E reduced by 45.3%) and crispness (46.8%). Both green wavelengths effectively maintained lettuce quality during cold storage, with 530 nm being the most effective overall. These results suggest that targeted green LED lighting is a promising, energy-efficient strategy to preserve postharvest quality and extend shelf life in leafy greens. Full article
Show Figures

Graphical abstract

20 pages, 2191 KiB  
Article
Metabolomic Insight into Donation After Circulatory-Death Kidney Grafts in Porcine Autotransplant Model: Normothermic Ex Vivo Kidney Perfusion Compared with Hypothermic Machine Perfusion and Static Cold Storage
by Iga Stryjak, Natalia Warmuzińska, Kamil Łuczykowski, Kacper Wnuk, Hernando Rosales-Solano, Patrycja Janiszek, Peter Urbanellis, Katarzyna Buszko, Janusz Pawliszyn, Markus Selzner and Barbara Bojko
Int. J. Mol. Sci. 2025, 26(13), 6295; https://doi.org/10.3390/ijms26136295 - 30 Jun 2025
Viewed by 550
Abstract
Organ shortage is a major challenge in transplantation, prompting the use of extended criteria donor grafts. These require improved preservation techniques and reliable methods to assess graft function. This study aimed to evaluate changes in the kidney metabolome following three preservation methods: normothermic [...] Read more.
Organ shortage is a major challenge in transplantation, prompting the use of extended criteria donor grafts. These require improved preservation techniques and reliable methods to assess graft function. This study aimed to evaluate changes in the kidney metabolome following three preservation methods: normothermic ex vivo kidney perfusion (NEVKP), hypothermic machine perfusion (HMP) and static cold storage (SCS) in porcine autotransplant models. A chemical biopsy allowed minimally invasive sampling of metabolites, which were analyzed using liquid chromatography coupled with high-resolution mass spectrometry. The results highlighted metabolites affected by ischemia and oxidative stress in donor kidneys, as well as changes specific to each preservation method. Differences were observed immediately after transplantation and reperfusion and several days post-surgery. NEVKP was associated with the activation of physiological anti-oxidative and anti-inflammatory mechanisms, suggesting potential protective effects. However, some metabolites had dual roles, which may influence future graft treatment designs. HMP and SCS, while reducing energy demand in cells, also limit physiological repair mechanisms. These findings provide a basis for improving graft assessment and organ preservation, with chemical biopsy serving as both a tool for discovery and a potential diagnostic method for monitoring graft quality. Full article
(This article belongs to the Special Issue Mass Spectrometry in Molecular Biology)
Show Figures

Figure 1

29 pages, 753 KiB  
Article
Sustainable Thermal Energy Storage Systems: A Mathematical Model of the “Waru-Waru” Agricultural Technique Used in Cold Environments
by Jorge Luis Mírez Tarrillo
Energies 2025, 18(12), 3116; https://doi.org/10.3390/en18123116 - 13 Jun 2025
Viewed by 3278
Abstract
The provision of food in pre-Inca/Inca cultures (1000 BC–≈1532 AD) in environments near Lake Titikaka (approximately 4000 m above sea level) was possible through an agricultural technique called “Waru-Waru”, which consists of filling the space (volume) between rows of land containing plants that [...] Read more.
The provision of food in pre-Inca/Inca cultures (1000 BC–≈1532 AD) in environments near Lake Titikaka (approximately 4000 m above sea level) was possible through an agricultural technique called “Waru-Waru”, which consists of filling the space (volume) between rows of land containing plants that are cultivated (a series of earth platforms surrounded by water canals) with water, using water as thermal energy storage to store energy during the day and to regulate the temperature of the soil and crop atmosphere at night. The problem is that these cultures left no evidence in written documents that have been preserved to this day indicating the mathematical models, the physics involved, and the experimental part they performed for the research, development, and innovation of the “Waru-Waru” technique. From a review of the existing literature, there is (1) bibliography that is devoted to descriptive research (about the geometry, dimensions, and shapes of the crop fields (and more based on archaeological remains that have survived to the present day) and (2) studies presenting complex mathematical models with many physical parameters measured only with recently developed instrumentation. The research objectives of this paper are as follows: (1) develop a mathematical model that uses finite differences in fluid mechanics, thermodynamics, and heat transfer to explain the experimental and theory principles of this pre-Inca/Inca technique; (2) the proposed mathematical model must be in accordance with the mathematical calculation tools available in pre-Inca/Inca cultures (yupana and quipu), which are mainly based on arithmetic operations such as addition, subtraction, and multiplication; (3) develop a mathematical model in a sequence of steps aimed at determining the best geometric form for thermal energy storage and plant cultivation and that has a simple design (easy to transmit between farmers); (4) consider the assumptions necessary for the development of the mathematical model from the point of view of research on the geometry of earth platforms and water channels and their implantation in each cultivation area; (5) transmit knowledge of the construction and maintenance of “Waru-Waru” agricultural technology to farmers who have cultivated these fields since pre-Hispanic times. The main conclusion is that, in the mathematical model developed, algebraic mathematical expressions based on addition and multiplication are obtained to predict and explain the evolution of soil and water temperatures in a specific crop field using crop field characterization parameters for which their values are experimentally determined in the crop area where a “Waru-Waru” is to be built. Therefore, the storage of thermal energy in water allows crops to survive nights with low temperatures, and indirectly, it allows the interpretation that the Inca culture possessed knowledge of mathematics (addition, subtraction, multiplication, finite differences, approximation methods, and the like), physics (fluids, thermodynamics, and heat transfer), and experimentation, with priority given to agricultural techniques (and in general, as observed in all archaeological evidence) that are in-depth, exact, practical, lasting, and easy to transmit. Understanding this sustainable energy storage technique can be useful in the current circumstances of global warming and climate change within the same growing areas and/or in similar climatic and environmental scenarios. This technique can help in reducing the use of fossil or traditional fuels and infrastructure (greenhouses) that generate heat, expanding the agricultural frontier. Full article
(This article belongs to the Special Issue Sustainable Energy, Environment and Low-Carbon Development)
Show Figures

Figure 1

18 pages, 2909 KiB  
Article
Characterization of a Supersonic Plasma Jet by Means of Optical Emission Spectroscopy
by Ruggero Barni, Hanaa Zaka, Dipak Pal, Irsa Amjad and Claudia Riccardi
Photonics 2025, 12(6), 595; https://doi.org/10.3390/photonics12060595 - 10 Jun 2025
Viewed by 957
Abstract
We discuss an innovative thin film deposition method, Plasma Assisted Supersonic Jet Deposition, which combines the chemistry richness of a reactive cold plasma environment and the assembly control of the film growth allowed by a supersonic jet directed at the substrate. Optical Emission [...] Read more.
We discuss an innovative thin film deposition method, Plasma Assisted Supersonic Jet Deposition, which combines the chemistry richness of a reactive cold plasma environment and the assembly control of the film growth allowed by a supersonic jet directed at the substrate. Optical Emission Spectroscopy was used to characterize the plasma state and the supersonic jet, together with its interaction with the substrate. We obtained several results in the deposition of silicon oxide thin films from Hexamethyldisiloxane, with different degrees of organic groups retention. In particular we exploited the features of emission spectra to measure the plasma dissociation and oxidation degree of the organic groups, as a function of the jet parameters. If controlled growth is achieved, such films are nanostructured materials suitable for applications like catalysis, photo catalysis, energy conversion and storage, besides their traditional uses as a barrier or protective coatings. Full article
Show Figures

Figure 1

20 pages, 4105 KiB  
Article
Evaluating Waste Heat Potential for Fifth Generation District Heating and Cooling (5GDHC): Analysis Across 26 Building Types and Recovery Strategies
by Stanislav Chicherin
Processes 2025, 13(6), 1730; https://doi.org/10.3390/pr13061730 - 31 May 2025
Viewed by 661
Abstract
Efficient cooling and heat recovery systems are becoming increasingly critical in large-scale commercial and industrial facilities, especially with the rising demand for sustainable energy solutions. Traditional air-conditioning and refrigeration systems often dissipate significant amounts of waste heat, which remains underutilized. This study addresses [...] Read more.
Efficient cooling and heat recovery systems are becoming increasingly critical in large-scale commercial and industrial facilities, especially with the rising demand for sustainable energy solutions. Traditional air-conditioning and refrigeration systems often dissipate significant amounts of waste heat, which remains underutilized. This study addresses the challenge of harnessing low-potential waste heat from such systems to support fifth-generation district heating and cooling (5GDHC) networks, particularly in moderate-temperate regions like Flanders, Belgium. To evaluate the technical and economic feasibility of waste heat recovery, a methodology is developed that integrates established performance metrics—such as the energy efficiency ratio (EER), power usage effectiveness (PUE), and specific cooling demand (kW/t)—with capital (CapEx) and operational expenditure (OpEx) assessments. Empirical correlations, including regression analysis based on manufacturer data and operational case studies, are used to estimate equipment sizing and system performance across three operational modes. The study includes detailed modeling of data centers, cold storage facilities, and large supermarkets, taking into account climatic conditions, load factors, and thermal capacities. Results indicate that average cooling loads typically reach 58% of peak demand, with seasonal coefficient of performance (SCOP) values ranging from 6.1 to a maximum of 10.3. Waste heat recovery potential varies significantly across building types, with conversion rates from 33% to 68%, averaging at 59%. In data centers using water-to-water heat pumps, energy production reaches 10.1 GWh/year in heat pump mode and 8.6 GWh/year in heat exchanger mode. Despite variations in system complexity and building characteristics, OpEx and CapEx values converge closely (within 2.5%), demonstrating a well-balanced configuration. Simulations also confirm that large buildings operating above a 55% capacity factor provide the most favorable conditions for integrating waste heat into 5GDHC systems. In conclusion, the proposed approach enables the scalable and efficient integration of low-grade waste heat into district energy networks. While climatic and technical constraints exist, especially concerning temperature thresholds and equipment design, the results show strong potential for energy savings up to 40% in well-optimized systems. This highlights the viability of retrofitting large-scale cooling systems for dual-purpose operation, offering both environmental and economic benefits. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

16 pages, 3388 KiB  
Article
Comprehensive Metabolomic and Transcriptomic Analysis Revealed the Molecular Basis of the Effects of Different Refrigeration Durations on the Metabolism of Agaricus bisporus Cultivation Spawn
by Zhixin Cai, Zhiheng Zeng, Wenzhi Chen, Zhongjie Guo, Huiqing Zheng, Yuanping Lu, Hui Zeng and Meiyuan Chen
J. Fungi 2025, 11(6), 415; https://doi.org/10.3390/jof11060415 - 27 May 2025
Viewed by 537
Abstract
Agaricus bisporus is popular worldwide because of its high nutritional value and low cost. Low-temperature storage is a common storage method used for the production and sales of A. bisporus cultivation spawn, but few studies have focused on the physiological and biochemical mechanisms [...] Read more.
Agaricus bisporus is popular worldwide because of its high nutritional value and low cost. Low-temperature storage is a common storage method used for the production and sales of A. bisporus cultivation spawn, but few studies have focused on the physiological and biochemical mechanisms associated with low-temperature storage of A. bisporus cultivation spawn. In this study, we examined A. bisporus spawn samples stored for different refrigeration periods (0, 20, 40, 60, 80, and 100 days), measured changes in the activities of four key extracellular enzymes and performed transcriptomic and metabolomic analyses. The results of the enzymatic assays revealed that the activities of carboxymethyl cellulase (CMCase), amylase, and acid protease initially decreased before increasing, whereas laccase activity showed the opposite trend. This pattern may represent an energy supply mechanism adopted by A. bisporus to cope with low temperatures, where extracellular enzymes indirectly influence survival by mediating substrate decomposition. Further correlation analysis on the basis of CMCase activity changes revealed 148 carboxymethyl cellulase-correlated metabolites (CCMs) and 514 carboxymethyl cellulase-correlated genes (CCGs) (p ≤ 0.05), and significance was determined at FDR < 0.05 with a fold change > 1.5. Among these, 56.08% of the CCMs and 63.04% of the CCGs presented positive correlations with CMCase activity, whereas 43.92% and 36.96% presented negative correlations, respectively. Integrated multiomics analysis revealed significant variations in metabolic flux and gene expression across different storage durations. Two CCMs (ketoleucine and 3-methyl-2-oxovaleric acid) gradually decreased in expression, whereas two CCGs (AbbBCAT and AbbAACS) increased in expression. This study provides novel insights into the molecular adaptation of A. bisporus spawn to refrigeration, highlighting the importance of branched-chain amino acid metabolism in the cold stress response and storage stability. Full article
Show Figures

Figure 1

51 pages, 4396 KiB  
Review
A Review of CO2 Clathrate Hydrate Technology: From Lab-Scale Preparation to Cold Thermal Energy Storage Solutions
by Sai Bhargav Annavajjala, Noah Van Dam, Devinder Mahajan and Jan Kosny
Energies 2025, 18(10), 2659; https://doi.org/10.3390/en18102659 - 21 May 2025
Viewed by 925
Abstract
Carbon dioxide (CO2) clathrate hydrate is gaining attention as a promising material for cold thermal energy storage (CTES) due to its high energy storage capacity and low environmental footprint. It shows strong potential in building applications, where space cooling accounts for [...] Read more.
Carbon dioxide (CO2) clathrate hydrate is gaining attention as a promising material for cold thermal energy storage (CTES) due to its high energy storage capacity and low environmental footprint. It shows strong potential in building applications, where space cooling accounts for nearly 40% of total energy use and over 85% of electricity demand in developed countries. CO2 hydrates are also being explored for use in refrigeration, cold chain logistics, supercomputing, biomedical cooling, and defense systems. With the growing number of applications in mind, this review focuses on the thermal behavior of CO2 hydrates and their environmental impact. It highlights recent efforts to reduce formation pressure and temperature using chemical promoters and surfactants. This paper also reviews key experimental techniques used to study hydrate properties, including Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), high-pressure differential scanning calorimetry (HP-DSC), and the T-history method. In lifecycle comparisons, CO2 hydrate systems show better energy efficiency and lower carbon emissions than traditional ice or other phase-change materials (PCMs). This review also discusses current commercialization challenges such as high energy input during formation and promoter toxicity. Finally, practical strategies to move CO2 hydrate-based CTES from lab-scale studies to real-world cooling and temperature control applications are discussed. Full article
Show Figures

Figure 1

15 pages, 4699 KiB  
Article
Carbon Dot-Modulated Phase-Change Composites for Wide Temperature Range and High-Density Heat Storage and Release
by Jingya Liang, Ning Li, Jie Wu, Qing Chang, Jinlong Yang and Shengliang Hu
Energies 2025, 18(10), 2597; https://doi.org/10.3390/en18102597 - 16 May 2025
Viewed by 427
Abstract
Organic phase-change materials (PCMs) offer great promise in addressing challenges in thermal energy storage and heat management, but their applications are greatly limited by low energy density and a rigid phase transition temperature. Herein, by introducing carbon dots (CDs) with abundant oxygen-related groups, [...] Read more.
Organic phase-change materials (PCMs) offer great promise in addressing challenges in thermal energy storage and heat management, but their applications are greatly limited by low energy density and a rigid phase transition temperature. Herein, by introducing carbon dots (CDs) with abundant oxygen-related groups, we develop a novel kind of erythritol (ET)-based composite PCMs (CD-ETs) featuring an enhanced latent heat storage capacity and a reduced degree of supercooling compared to pure ETs. The optimally formulated CD-ETs increase the latent heat storage capacity from 377.3 to 410.2 J·g−1 and the heat release capacity from 209.0 to 240.2 J·g−1 compared to the pristine ETs. Moreover, the subcooled degree of CD-ETs is more than 30 °C lower than that of pristine ETs. By successively encapsulating CD-ETs and CD-containing polyethylene glycol (PEG) with a low melting point in a reduced graphene oxide-modified melamine sponge, the resultant shape-stabilized system not only prevents leakage of molten PCMs but also allows for a wide response temperature window and promotes the heat transfer ability of melted PEG in close contact with solid CD-ETs. Stepped melting and crystallization guarantee phase changes in high-melting-point ETs via solar heating, Joule heating or a combination thereof. Specifically, the melting enthalpy of this system is as high as 306.5 J·g−1, and its cold crystallization enthalpy reaches 196.5 J·g−1, surpassing numerous organic PCMs. This work provides a facile and efficient strategy for the design of ideal thermal energy storage materials to meet the needs of application scenarios in a cost-effective manner. Full article
(This article belongs to the Section J1: Heat and Mass Transfer)
Show Figures

Figure 1

Back to TopTop