Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,191)

Search Parameters:
Keywords = coastal soil

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 12443 KiB  
Article
Exploring Continental and Submerged Paleolandscapes at the Pre-Neolithic Site of Ouriakos, Lemnos Island, Northeastern Aegean, Greece
by Myrsini Gkouma, Panagiotis Karkanas, Olga Koukousioura, George Syrides, Areti Chalkioti, Evangelos Tsakalos, Maria Ntinou and Nikos Efstratiou
Quaternary 2025, 8(3), 42; https://doi.org/10.3390/quat8030042 (registering DOI) - 1 Aug 2025
Viewed by 198
Abstract
Recent archaeological discoveries across the Aegean, Cyprus, and western Anatolia have renewed interest in pre-Neolithic seafaring and early island colonization. However, the environmental contexts that support such early coastal occupations remain poorly understood, largely due to the submergence of Pleistocene shorelines following post-glacial [...] Read more.
Recent archaeological discoveries across the Aegean, Cyprus, and western Anatolia have renewed interest in pre-Neolithic seafaring and early island colonization. However, the environmental contexts that support such early coastal occupations remain poorly understood, largely due to the submergence of Pleistocene shorelines following post-glacial sea-level rise. This study addresses this gap through an integrated geoarchaeological investigation of the pre-Neolithic site of Ouriakos on Lemnos Island, northeastern Aegean (Greece), dated to the mid-11th millennium BCE. By reconstructing both the terrestrial and submerged paleolandscapes of the site, we examine ecological conditions, resource availability, and sedimentary processes that shaped human activity and site preservation. Employing a multiscale methodological approach—combining bathymetric survey, geomorphological mapping, soil micromorphology, geochemical analysis, and Optically Stimulated Luminescence (OSL) dating—we present a comprehensive framework for identifying and interpreting early coastal settlements. Stratigraphic evidence reveals phases of fluvial, aeolian, and colluvial deposition associated with an alternating coastline. The core findings reveal that Ouriakos was established during a phase of environmental stability marked by paleosol development, indicating sustained human presence. By bridging terrestrial and marine data, this research contributes significantly to the understanding of human coastal mobility during the Pleistocene–Holocene transition. Full article
Show Figures

Figure 1

27 pages, 4302 KiB  
Article
Human Health Risk and Bioaccessibility of Arsenic in Wadis and Marine Sediments in a Coastal Lagoon (Mar Menor, Spain)
by Salvadora Martínez López, Carmen Pérez Sirvent, María José Martínez Sánchez and María Ángeles Esteban Abad
Toxics 2025, 13(8), 647; https://doi.org/10.3390/toxics13080647 (registering DOI) - 30 Jul 2025
Viewed by 153
Abstract
This study evaluates the potential health risks posed by geogenic arsenic in environments suitable for leisure activities, such as walking, bathing, and playing, for adults and children alike, as well as in neighbouring agricultural areas. The study includes an analysis of environmental characteristics [...] Read more.
This study evaluates the potential health risks posed by geogenic arsenic in environments suitable for leisure activities, such as walking, bathing, and playing, for adults and children alike, as well as in neighbouring agricultural areas. The study includes an analysis of environmental characteristics and the main stream originating in the adjacent mining area, with water and sediment samples taken. The study area is representative of other areas in the vicinity of the Mar Menor Lagoon, which is one of the largest and most biodiverse coastal lagoons in the Mediterranean Sea. The general characteristics of the soil and water were determined for this study, as was the concentration of As in the soil and water samples. A granulometric separation was carried out into four different fractions (<2 mm, <250 µm, <100 µm, and <65 µm). The mineralogical composition, total As content, and bioaccessible As content are analysed in each of these fractions. This provides data with which to calculate the danger of arsenic (As) to human health by ingestion and to contribute to As bioaccessibility studies and the role played by the mineralogical composition and particle size of soil ingestion. The conclusions rule out residential use of this environment, although they allow for eventual tourist use and traditional agricultural use of the surrounding soils. Full article
Show Figures

Figure 1

19 pages, 15535 KiB  
Article
Impact of Landfill Sites on Coastal Contamination Using GIS and Multivariate Analysis: A Case from Al-Qunfudhah in Western Saudi Arabia
by Talal Alharbi, Abdelbaset S. El-Sorogy, Naji Rikan and Hamdi M. Algarni
Minerals 2025, 15(8), 802; https://doi.org/10.3390/min15080802 - 30 Jul 2025
Viewed by 153
Abstract
The contamination due to coastal landfill is a growing environmental concern, particularly in fragile marine ecosystems, where leachate can mobilize toxic elements into soil, water, air, and sediment. This study aims to assess the impact of a coastal landfill in Al-Qunfudhah, western Saudi [...] Read more.
The contamination due to coastal landfill is a growing environmental concern, particularly in fragile marine ecosystems, where leachate can mobilize toxic elements into soil, water, air, and sediment. This study aims to assess the impact of a coastal landfill in Al-Qunfudhah, western Saudi Arabia, on nearby coastal sediments by identifying the concentration, distribution, and ecological risk of potentially toxic elements (PTEs) using geospatial and multivariate analysis tools. The results indicate significant accumulation of Pb, Zn, Cu, and Fe, with Pb reaching alarming levels of up to 1160 mg/kg in the landfill area, compared to 120 mg/kg in the coastal sediments. Zn contamination also exhibited substantial elevation, with values reaching 278 mg/kg in landfill soil and 157 mg/kg in coastal sediment. The enrichment factor values indicate moderate to severe enrichment for Pb (up to 73.20) and Zn (up to 6.91), confirming anthropogenic influence. The contamination factor analysis categorized Pb contamination as very high (CF > 6), suggesting significant ecological risk. Comparison with sediment quality guidelines suggest that Pb, Zn, and Cu concentrations exceeded threshold effect levels (TEL) in some samples, posing potential risks to marine organisms. The spatial distribution maps revealed pollutant migration from the landfill toward the coastal zone, emphasizing the necessity of monitoring and mitigation strategies. As the first comprehensive study on landfill-induced PTEs contamination in Al-Qunfudhah, these findings provide essential insights for environmental management and pollution control policies along the Red Sea coast. Full article
Show Figures

Figure 1

24 pages, 2240 KiB  
Article
Yeast Diversity on Sandy Lake Beaches Used for Recreation in Olsztyn, Poland
by Tomasz Bałabański, Anna Biedunkiewicz and Jan P. Jastrzębski
Pathogens 2025, 14(8), 744; https://doi.org/10.3390/pathogens14080744 - 29 Jul 2025
Viewed by 473
Abstract
Yeasts possess a range of environmental adaptations that allow them to colonize soil and sand. They can circulate seasonally between different components of lake ecosystems, including beach sand, water, and the coastal phyllosphere. The accumulation of people on beaches promotes the development and [...] Read more.
Yeasts possess a range of environmental adaptations that allow them to colonize soil and sand. They can circulate seasonally between different components of lake ecosystems, including beach sand, water, and the coastal phyllosphere. The accumulation of people on beaches promotes the development and transmission of yeasts, posing an increasing sanitary and epidemiological risk. The aim of this study was to determine the species and quantitative composition of potentially pathogenic and pathogenic yeasts for humans present in the sand of supervised and unsupervised beaches along the shores of lakes in the city of Olsztyn (northeastern Poland). The study material consisted of sand samples collected during two summer seasons (2019; 2020) from 12 research sites on sandy beaches of four lakes located within the administrative boundaries of Olsztyn. Standard isolation and identification methods used in diagnostic mycological laboratories were applied and are described in detail in the following sections of this study. A total of 259 yeast isolates (264, counting species in two-species isolates separately) belonging to 62 species representing 47 genera were obtained during the study. Among all the isolates, five were identified as mixed (two species from a single colony). Eight isolated species were classified into biosafety level 2 (BSL-2) and risk group 2 (RG-2). The highest average number of viable yeast cells was found in sand samples collected in July 2019 (5.56 × 102 CFU/g), August, and September 2020 (1.03 × 103 CFU/g and 1.94 × 103 CFU/g, respectively). The lowest concentrations were in samples collected in April, September, and October 2019, and October 2020 (1.48 × 102 CFU/g, 1.47 × 102 CFU/g, 1.40 × 102 CFU/g, and 1.40 × 102 CFU/g, respectively). The results indicate sand contamination with yeasts that may pose etiological factors for human mycoses. In light of these findings, continuous sanitary-epidemiological monitoring of beach sand and further studies on its mycological cleanliness are warranted, along with actions leading to appropriate legal regulations. Full article
Show Figures

Graphical abstract

21 pages, 2519 KiB  
Review
Distribution and Ecological Risk Assessment of Perfluoroalkyl and Polyfluoroalkyl Substances in Chinese Soils: A Review
by Junyi Wang, Otgontuya Tsogbadrakh, Jichen Tian, Faisal Hai, Chenpeng Lyu, Guangming Jiang and Guoyu Zhu
Water 2025, 17(15), 2246; https://doi.org/10.3390/w17152246 - 28 Jul 2025
Viewed by 378
Abstract
Per- and polyfluoroalkyl substances (PFASs) are emerging pollutants of global concern due to their high environmental persistence and bioaccumulative characteristics. This study investigates PFAS concentrations in soils from China through an extensive literature review, covering soil samples from seventeen provinces and the years [...] Read more.
Per- and polyfluoroalkyl substances (PFASs) are emerging pollutants of global concern due to their high environmental persistence and bioaccumulative characteristics. This study investigates PFAS concentrations in soils from China through an extensive literature review, covering soil samples from seventeen provinces and the years from 2009 to 2024. It was found that the total concentration of PFAS in soil ranged from 0.25 to 6240 ng/g, with the highest contamination levels observed in coastal provinces, particularly Fujian (620 ng/g) and Guangdong (1090 ng/g). Moreover, Fujian Province ranked the highest among multiple regions with a median PFAS concentration of 15.7 ng/g for individual compounds. Ecological risk assessment, focusing on areas where perfluorooctanoic acid (PFOA) or perfluorooctane sulfonate (PFOS) were identified as the primary soil PFAS compounds, showed moderate ecological risk from PFOA in Shanghai (0.24), while PFOS posed a high ecological risk in Fujian and Guangdong, with risk values of 43.3 and 1.4, respectively. Source analysis revealed that anthropogenic activities, including PFAS production, firefighting foam usage, and landfills, were the primary contributors to soil contamination. Moreover, soil PFASs tend to migrate into groundwater via adsorption and seepage, ultimately entering the human body through bioaccumulation or drinking water, posing health risks. These findings enhance our understanding of PFAS distribution and associated risks in Chinese soils, providing crucial insights for pollution management, source identification, and regulation strategies in diverse areas. Full article
(This article belongs to the Section Soil and Water)
Show Figures

Figure 1

20 pages, 8154 KiB  
Article
Strategies for Soil Salinity Mapping Using Remote Sensing and Machine Learning in the Yellow River Delta
by Junyong Zhang, Xianghe Ge, Xuehui Hou, Lijing Han, Zhuoran Zhang, Wenjie Feng, Zihan Zhou and Xiubin Luo
Remote Sens. 2025, 17(15), 2619; https://doi.org/10.3390/rs17152619 - 28 Jul 2025
Viewed by 344
Abstract
In response to the global ecological and agricultural challenges posed by coastal saline-alkali areas, this study focuses on Dongying City as a representative region, aiming to develop a high-precision soil salinity prediction mapping method that integrates multi-source remote sensing data with machine learning [...] Read more.
In response to the global ecological and agricultural challenges posed by coastal saline-alkali areas, this study focuses on Dongying City as a representative region, aiming to develop a high-precision soil salinity prediction mapping method that integrates multi-source remote sensing data with machine learning techniques. Utilizing the SCORPAN model framework, we systematically combined diverse remote sensing datasets and innovatively established nine distinct strategies for soil salinity prediction. We employed four machine learning models—Support Vector Regression (SVR), Random Forest (RF), Extreme Gradient Boosting (XGBoost), and Geographical Gaussian Process Regression (GGPR) for modeling, prediction, and accuracy comparison, with the objective of achieving high-precision salinity mapping under complex vegetation cover conditions. The results reveal that among the models evaluated across the nine strategies, the SVR model demonstrated the highest accuracy, followed by RF. Notably, under Strategy IX, the SVR model achieved the best predictive performance, with a coefficient of determination (R2) of 0.62 and a root mean square error (RMSE) of 0.38 g/kg. Analysis based on SHapley Additive exPlanations (SHAP) values and feature importance indicated that Vegetation Type Factors contributed significantly and consistently to the model’s performance, maintaining higher importance than traditional salinity indices and playing a dominant role. In summary, this research successfully developed a comprehensive, high-resolution soil salinity mapping framework for the Dongying region by integrating multi-source remote sensing data and employing diverse predictive strategies alongside machine learning models. The findings highlight the potential of Vegetation Type Factors to enhance large-scale soil salinity monitoring, providing robust scientific evidence and technical support for sustainable land resource management, agricultural optimization, ecological protection, efficient water resource utilization, and policy formulation. Full article
Show Figures

Figure 1

19 pages, 4641 KiB  
Article
The Hydrochemical Dynamics and Water Quality Evolution of the Rizhao Reservoir and Its Tributary Systems
by Qiyuan Feng, Youcheng Lv, Jianguo Feng, Weidong Lei, Yuqi Zhang, Mingyu Gao, Linghui Zhang, Baoqing Zhao, Dongliang Zhao and Kexin Lou
Water 2025, 17(15), 2224; https://doi.org/10.3390/w17152224 - 25 Jul 2025
Viewed by 278
Abstract
Rizhao Reservoir, Shandong Province, China, as a key regional water supply hub, provides water for domestic, industrial, and agricultural uses in and around Rizhao City by intercepting runoff, which plays a central role in guaranteeing water supply security and supporting regional development. This [...] Read more.
Rizhao Reservoir, Shandong Province, China, as a key regional water supply hub, provides water for domestic, industrial, and agricultural uses in and around Rizhao City by intercepting runoff, which plays a central role in guaranteeing water supply security and supporting regional development. This study systematically collected 66 surface water samples to elucidate the hydrochemical characteristics within the reservoir area, identify the principal influencing factors, and clarify the sources of dissolved ions, aiming to enhance the understanding of the prevailing water quality conditions. A systematic analysis of hydrochemical facies, solute provenance, and governing processes in the study area’s surface water was conducted, employing an integrated mathematical and statistical approach, comprising Piper trilinear diagrams, correlation analysis, and ionic ratios. Meanwhile, the entropy weight-based water quality index (EWQI) and irrigation water quality evaluation methods were employed to assess the surface water quality in the study area quantitatively. Analytical results demonstrate that the surface water system within the study area is classified as freshwater with circumneutral to slightly alkaline properties, predominantly characterized by Ca-HCO3 and Ca-Mg-SO4-Cl hydrochemical facies. The evolution of solute composition is principally governed by rock–water interactions, whereas anthropogenic influences and cation exchange processes exert comparatively minor control. Dissolved ions mostly originate from silicate rock weathering, carbonate rock dissolution, and sulfate mineral dissolution processes. Potability assessment via the entropy-weighted water quality index (EWQI) classifies surface waters in the study area as Grade I (Excellent), indicating compliance with drinking water criteria under defined boundary conditions. Irrigation suitability analysis confirms minimal secondary soil salinization risk during controlled agricultural application, with all samples meeting standards for direct irrigation use. Full article
(This article belongs to the Topic Human Impact on Groundwater Environment, 2nd Edition)
Show Figures

Figure 1

23 pages, 15846 KiB  
Article
Habitats, Plant Diversity, Morphology, Anatomy, and Molecular Phylogeny of Xylosalsola chiwensis (Popov) Akhani & Roalson
by Anastassiya Islamgulova, Bektemir Osmonali, Mikhail Skaptsov, Anastassiya Koltunova, Valeriya Permitina and Azhar Imanalinova
Plants 2025, 14(15), 2279; https://doi.org/10.3390/plants14152279 - 24 Jul 2025
Viewed by 349
Abstract
Xylosalsola chiwensis (Popov) Akhani & Roalson is listed in the Red Data Book of Kazakhstan as a rare species with a limited distribution, occurring in small populations in Kazakhstan, Uzbekistan, and Turkmenistan. The aim of this study is to deepen the understanding of [...] Read more.
Xylosalsola chiwensis (Popov) Akhani & Roalson is listed in the Red Data Book of Kazakhstan as a rare species with a limited distribution, occurring in small populations in Kazakhstan, Uzbekistan, and Turkmenistan. The aim of this study is to deepen the understanding of the ecological conditions of its habitats, the floristic composition of its associated plant communities, the species’ morphological and anatomical characteristics, and its molecular phylogeny, as well as to identify the main threats to its survival. The ecological conditions of the X. chiwensis habitats include coastal sandy plains and the slopes of chinks and denudation plains with gray–brown desert soils and bozyngens on the Mangyshlak Peninsula and the Ustyurt Plateau at altitudes ranging from −3 to 270 m above sea level. The species is capable of surviving in arid conditions (less than 100 mm of annual precipitation) and under extreme temperatures (air temperatures exceeding 45 °C and soil surface temperatures above 65 °C). In X. chiwensis communities, we recorded 53 species of vascular plants. Anthropogenic factors associated with livestock grazing, industrial disturbances, and off-road vehicle traffic along an unregulated network of dirt roads have been identified as contributing to population decline and the potential extinction of the species under conditions of unsustainable land use. The morphometric traits of X. chiwensis could be used for taxonomic analysis and for identifying diagnostic morphological characteristics to distinguish between species of Xylosalsola. The most taxonomically valuable characteristics include the fruit diameter (with wings) and the cone-shaped structure length, as they differ consistently between species and exhibit relatively low variability. Anatomical adaptations to arid conditions were observed, including a well-developed hypodermis, which is indicative of a water-conserving strategy. The moderate photosynthetic activity, reflected by a thinner palisade mesophyll layer, may be associated with reduced photosynthetic intensity, which is compensated for through structural mechanisms for water conservation. The flow cytometry analysis revealed a genome size of 2.483 ± 0.191 pg (2n/4x = 18), and the phylogenetic analysis confirmed the placement of X. chiwensis within the tribe Salsoleae of the subfamily Salsoloideae, supporting its taxonomic distinctness. To support the conservation of this rare species, measures are proposed to expand the area of the Ustyurt Nature Reserve through the establishment of cluster sites. Full article
(This article belongs to the Section Plant Ecology)
Show Figures

Figure 1

23 pages, 30904 KiB  
Article
How Do Invasive Species Influence Biotic and Abiotic Factors Drive Vegetation Success in Salt Marsh Ecosystems?
by Yong Zhou, Chunqi Qiu, Hongyu Liu, Yufeng Li, Cheng Wang, Gang Wang, Mengyuan Su and Chen He
Land 2025, 14(8), 1523; https://doi.org/10.3390/land14081523 - 24 Jul 2025
Viewed by 232
Abstract
Vegetation succession is a critical indicator of ecosystem structure and function and is often disrupted by the expansion of invasive species. However, ecosystem-scale studies elucidating invasion-driven succession mechanisms remain limited. This research focused on the Yancheng coastal salt marsh and analyzed the distribution [...] Read more.
Vegetation succession is a critical indicator of ecosystem structure and function and is often disrupted by the expansion of invasive species. However, ecosystem-scale studies elucidating invasion-driven succession mechanisms remain limited. This research focused on the Yancheng coastal salt marsh and analyzed the distribution variation of invasive species (Spartina alterniflora) and native species (Suaeda salsa and Phragmites australis) from 1987 to 2022 via the Google Earth Engine and random forest method. Logistic/Gaussian models were used to quantify land–sea distribution changes and vegetation succession trajectories. By integrating data on soil salinity, invasion duration, and fractional vegetation cover, generalized additive models (GAMs) were applied to identify the main factors influencing vegetation succession and to explore how Spartina alterniflora invasion affects the succession of salt marsh vegetation. The results indicated that the areas of Spartina alterniflora and Phragmites australis significantly increased by 3787.49 ha and 3452.60 ha in 35 years, respectively, contrasting with Suaeda salsa’s 82.46% decline. The FVC in the area has significantly increased by 42.10%, especially in the coexisted areas of different vegetation communities, indicating intensified interspecific competition. The overall trend of soil salinity was decreasing, with a decrease in soil salinity in native species areas from 0.72% to 0.37%. From the results of GAMs, soil salinity, tidal action, and invasion duration were significant factors influencing the distribution of native species, but salinity was not a significant factor affecting the Spartina alterniflora distribution. The findings revealed that the expansion of Spartina alterniflora changed the soil salinity and interspecific interactions, thereby altering the original plant community structure and establishing a new vegetation succession. This study enhances the understanding of the impacts of invasive species on ecosystems and offers theoretical support for salt marsh restoration. Full article
Show Figures

Figure 1

37 pages, 3799 KiB  
Systematic Review
Improvement of Expansive Soils: A Review Focused on Applying Innovative and Sustainable Techniques in the Ecuadorian Coastal Soils
by Mariela Macías-Párraga, Francisco J. Torrijo Echarri, Olegario Alonso-Pandavenes and Julio Garzón-Roca
Appl. Sci. 2025, 15(15), 8184; https://doi.org/10.3390/app15158184 - 23 Jul 2025
Viewed by 206
Abstract
Traditional stabilization techniques, such as lime and cement, widely used for their effectiveness, albeit with economic and environmental limitations, are leading to the search for sustainable approaches that utilize agricultural and industrial waste, such as rice husk ash, bagasse, and natural fibers. These [...] Read more.
Traditional stabilization techniques, such as lime and cement, widely used for their effectiveness, albeit with economic and environmental limitations, are leading to the search for sustainable approaches that utilize agricultural and industrial waste, such as rice husk ash, bagasse, and natural fibers. These have been shown to improve key geotechnical properties, even under saturated conditions, significantly. In particular, the combination of rice husk ash and recycled ceramics has shown notable results in Ecuadorian coastal soils. The article emphasizes the importance of selecting techniques that balance effectiveness, cost, and sustainability and identifies existing limitations, such as the lack of long-term data (ten years) and predictive models adapted to the Ecuadorian climate. From a bibliographic perspective, this article analyzes the challenges posed by expansive soils in the western coastal region of Ecuador, whose high plasticity and instability to moisture negatively affect civil works such as roads and buildings. The Ecuadorian clay contained 30% kaolinite and only 1.73% CaO, limiting its chemical reactivity compared to soils such as Saudi Arabia, which contained 34.7% montmorillonite and 9.31% CaO. Natural fibers such as jute, with 85% cellulose, improved the soil’s mechanical strength, increasing the UCS by up to 130%. Rice husk ash (97.69% SiO2) and sugarcane bagasse improved the CBR by 90%, highlighting their potential as sustainable stabilizers. All of this is contextualized within Ecuador’s geoenvironmental conditions, which are influenced by climatic phenomena such as El Niño and La Niña, as well as global warming. Finally, it is proposed to promote multidisciplinary research that fosters more efficient and environmentally responsible solutions for stabilizing expansive soils. Full article
(This article belongs to the Section Civil Engineering)
Show Figures

Figure 1

24 pages, 18590 KiB  
Article
Soil Organic Matter (SOM) Mapping in Subtropical Coastal Mountainous Areas Using Multi-Temporal Remote Sensing and the FOI-XGB Model
by Hao Zhang, Xiaomei Li, Jinming Sha, Jiangning Ouyang and Zhipeng Fan
Remote Sens. 2025, 17(15), 2547; https://doi.org/10.3390/rs17152547 - 22 Jul 2025
Viewed by 196
Abstract
Accurate regional-scale mapping of soil organic matter (SOM) is crucial for land productivity management and global carbon pool monitoring. Current remote sensing inversion of SOM faces challenges, including the underutilization of temporal information and low feature selection efficiency. To address these limitations, this [...] Read more.
Accurate regional-scale mapping of soil organic matter (SOM) is crucial for land productivity management and global carbon pool monitoring. Current remote sensing inversion of SOM faces challenges, including the underutilization of temporal information and low feature selection efficiency. To address these limitations, this study developed an integrated framework combining multi-temporal Landsat imagery, field-measured SOM data, intelligent feature optimization, and machine learning. The framework employs two novel image-processing strategies: the Maximum Annual Bare-Soil Composite (MABSC) method to extract background spectral information and the Multi-temporal Feature Optimization Composite (MFOC) method to capture seasonal and environmental dynamics. These features, along with topographic covariates, were processed using an improved Feature-Optimized and Interpretable XGBoost (FOI-XGB) model for key variable selection and spatial mapping. Validation across two subtropical coastal mountainous regions at different scales in southeastern China demonstrated the framework’s effectiveness and robustness. Key findings include the following: (1) Both the MABSC-derived spectral bands and the MFOC-optimized indices significantly outperformed traditional single-season approaches. Their combined use achieved a moderate SOM inversion accuracy (R2 = 0.42–0.44). (2) The FOI-XGB model substantially outperformed traditional feature selection methods (Pearson, SHAP, and CorrSHAP), achieving significant regional R2 improvements ranging from 9.72% to 88.89%. (3) The optimal model integrating the MABSC-derived features, MFOC-optimized indices, and topographic covariates attained the highest accuracy (R2 up to 0.51). This represents major improvements compared with using topographic covariates alone (R2 increase of up to 160.11%) or the combined spectral features (MABSC + MFOC) alone (R2 increase of up to 15.91%). This study provides a robust, scalable, and practical technical solution for accurate SOM mapping in complex environments, with significant implications for sustainable land management and carbon monitoring. Full article
Show Figures

Graphical abstract

19 pages, 4851 KiB  
Article
Natural Frequency of Monopile Supported Offshore Wind Turbine Structures Under Long-Term Cyclic Loading
by Rong Chen, Haitao Yang, Yilong Sun, Jinglong Zou, Boyan Sun and Jialin Xu
Appl. Sci. 2025, 15(15), 8143; https://doi.org/10.3390/app15158143 - 22 Jul 2025
Viewed by 270
Abstract
Offshore wind turbine structures (OWTs) commonly use monopile foundations for support, and long-term exposure to wind–wave cyclic loads may induce changes in foundation stiffness. Variations in foundation stiffness can significantly alter the inherent vibration characteristics of OWTs, potentially leading to amplified vibrations or [...] Read more.
Offshore wind turbine structures (OWTs) commonly use monopile foundations for support, and long-term exposure to wind–wave cyclic loads may induce changes in foundation stiffness. Variations in foundation stiffness can significantly alter the inherent vibration characteristics of OWTs, potentially leading to amplified vibrations or resonant conditions. In this study, a numerical model considering soil–pile interaction was developed on the FLAC3D platform to analyze the natural frequency of OWTs under long-term cyclic loading. The study first validated the numerical model’s effectiveness through comparison with measured data; a degradation stiffness model (DSM) was then embedded to assess how prolonged cyclic loading affects the degradation of foundation stiffness. A series of parametric studies were conducted in medium-dense and dense sand layers to investigate natural frequency alterations induced by prolonged cyclic loading. Finally, a simplified method for evaluating long-term natural frequency changes was established, and a 3.6 MW offshore wind turbine case was used to reveal the evolution characteristics of its natural frequency under long-term cyclic loads. The data reveal that the natural frequency of the structure undergoes a downward tendency as cyclic loading and frequency increase. To ensure long-term safe operation, the designed natural frequency should preferably shift toward 3P (where P is the blade rotation frequency). Full article
Show Figures

Figure 1

19 pages, 2911 KiB  
Article
Investigation of Implantable Capsule Grouting Technology and Its Bearing Characteristics in Soft Soil Areas
by Xinran Li, Yuebao Deng, Wenxi Zheng and Rihong Zhang
J. Mar. Sci. Eng. 2025, 13(7), 1362; https://doi.org/10.3390/jmse13071362 - 17 Jul 2025
Viewed by 175
Abstract
The implantable capsule grouting pile is a novel pile foundation technology in which a capsule is affixed to the side of the implanted pile to facilitate grouting and achieve extrusion-based reinforcement. This technique is designed to improve the bearing capacity of implanted piles [...] Read more.
The implantable capsule grouting pile is a novel pile foundation technology in which a capsule is affixed to the side of the implanted pile to facilitate grouting and achieve extrusion-based reinforcement. This technique is designed to improve the bearing capacity of implanted piles in coastal areas with deep, soft soil. This study conducted model tests involving multiple grouting positions across different foundation types to refine the construction process and validate the enhancement of bearing capacity. Systematic measurements and quantitative analyses were performed to evaluate the earth pressure distribution around the pile, the resistance characteristics of the pile end, the evolution of side friction resistance, and the overall bearing performance. Special attention was given to variations in the lateral friction resistance adjustment coefficient under different working conditions. Furthermore, an actual case analysis was conducted based on typical soft soil geological conditions. The results indicated that the post-grouting process formed a dense soil ring through the expansion and extrusion of the capsule, resulting in increased soil strength around the pile due to increased lateral earth pressure. Compared to conventional piles, the grouted piles exhibited a synergistic improvement characterized by reduced pile end resistance, enhanced side friction resistance, and improved overall bearing capacity. The ultimate bearing capacity of model piles at different grouting depths across different foundation types increased by 6.8–22.3% compared with that of ordinary piles. In silty clay and clayey silt foundations, the adjustment coefficient ηs of lateral friction resistance of post-grouting piles ranged from 1.097 to 1.318 and increased with grouting depth. The findings contribute to the development of green pile foundation technology in coastal areas. Full article
(This article belongs to the Section Coastal Engineering)
Show Figures

Figure 1

13 pages, 1293 KiB  
Article
Organic Amendments Enhance Maize Growth by Improving Chemical and Microbial Properties in Coastal Saline–Alkali Soils
by Xiaoyu Huang, Tao Yin, Weijiao Sun, Guili Ge and Wenliang Wei
Plants 2025, 14(14), 2217; https://doi.org/10.3390/plants14142217 - 17 Jul 2025
Viewed by 341
Abstract
Biochar and seaweed fertilizers could improve soil quality and promote plant growth. However, the key soil factors and microbial mechanisms that drive maize growth in coastal saline–alkali soils remain unclear. A soil culture experiment was designed with four treatments—no organic fertilizer (CK), single [...] Read more.
Biochar and seaweed fertilizers could improve soil quality and promote plant growth. However, the key soil factors and microbial mechanisms that drive maize growth in coastal saline–alkali soils remain unclear. A soil culture experiment was designed with four treatments—no organic fertilizer (CK), single seaweed fertilizer (F), single biochar (B), and combined application of seaweed fertilizer and biochar (BF)—to investigate the effects of biochar and seaweed fertilizer on maize growth and its mechanism. The results showed that B and BF significantly increased maize aboveground biomass by 8.86% and 17.28% compared to CK, respectively. The soil organic carbon, total nitrogen, available nitrogen, available phosphorus, available potassium content, and pH of B and BF were significantly increased. Bacterial diversity increased under B and BF, while fungal richness decreased under BF. The changes in the fungal community were mainly affected by soil available nitrogen, but there was no significant correlation between bacterial communities and these indicators. Pearson correlation analysis suggested that the bacterial Chao1 index was significantly positively correlated with maize growth indicators, soil available phosphorus, and available potassium, as well as the bacterial PD whole tree index with leaf area and available phosphorus. The fungal Shannon index was significantly negatively correlated with maize plant height, leaf area, SPAD, aboveground biomass, and soil total nitrogen and available nutrients. Overall, biochar and seaweed fertilization could significantly promote maize growth by improving soil chemical properties and microbial communities in coastal saline–alkali soils. Full article
(This article belongs to the Section Plant–Soil Interactions)
Show Figures

Figure 1

16 pages, 2085 KiB  
Article
Multivariate Analysis and Geostatistics of the Physicochemical Quality Waters Study from the Complex Lake Togo-Lagoon of Aneho (Southern Togo)
by Kamilou Ouro-Sama, Hodabalo Dheoulaba Solitoke, Gnon Tanouayi, Narcis Barsan, Emilian Mosnegutu, Sadikou Agbere, Fègbawè Badanaro, Valentin Nedeff, Kissao Gnandi, Florin-Marian Nedeff, Mirela Panainte-Lehadus and Dana Chitimus
Appl. Sci. 2025, 15(14), 7940; https://doi.org/10.3390/app15147940 - 16 Jul 2025
Viewed by 344
Abstract
The hydrosystem composed of Lake Togo, Lagoon of Togoville, and Lagoon of Aného is located in the coastal zone of Togo and receives important and different kinds of mining waste that cause its degradation. This study aims to evaluate the physicochemical and metallic [...] Read more.
The hydrosystem composed of Lake Togo, Lagoon of Togoville, and Lagoon of Aného is located in the coastal zone of Togo and receives important and different kinds of mining waste that cause its degradation. This study aims to evaluate the physicochemical and metallic quality of these waters and determine the possible sources of these contaminants using geostatistical, multivariate, and special analysis methods. These waters were very mineralized according to the average conductivity (15.51 mS/cm). Average contents (μg/L) in trace elements varied from 2.46 μg/L for As to 141.63 μg/L for Pb. Average levels of Cd, Pb, Cr, and Ni were significantly higher than the WHO standards. Trace elements and physicochemical parameters showed strong spatial variations with the highest values recorded downstream of the hydrosystem. The main possible source of trace element pollution was the intrusion of seawater loaded with phosphate effluent, followed by atmospheric deposition and soil leaching. This hydrosystem, therefore, deserves special attention for better planning its management. Full article
Show Figures

Figure 1

Back to TopTop