Strategies for Soil Salinity Mapping Using Remote Sensing and Machine Learning in the Yellow River Delta
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Field Data Collection
2.3. Satellite Data Selection and Preprocessing
2.4. Environmental Covariate Selection
2.5. Modelling Framework
2.5.1. Support Vector Regression (SVR)
2.5.2. Random Forest (RF)
2.5.3. Extreme Gradient Boosting (XBGoost)
2.5.4. Geographical Gaussian Process Regression (GGPR)
2.6. Feature Importance
2.7. Model Evaluation
2.8. Specific Process Frameworks
3. Results
3.1. Descriptive Statistics of Soil Salt
3.2. Comparison of Model Accuracy Under Different Strategies
3.3. SHAP Analysis
3.4. Soil Salinity Mapping
4. Discussion
4.1. Comparing the Effects of Different Characteristics on Soil Salinity Mapping
4.2. Uncertainty Analysis of the Current Study
5. Conclusions
- Model Performance and Selection: Among the evaluated machine learning models, SVR demonstrated the best performance under Strategy IX, which integrates multiple environmental covariates, achieving an R2 of 0.62 on the validation set. This significantly outperformed the RF, XGBoost, and GGPR models, highlighting SVR’s effectiveness in capturing complex nonlinear relationships in salinity prediction.
- Contribution of Features: SHAP value analysis and feature importance rankings identified Vegetation Type Factors as the most influential predictor of soil salinity, surpassing the explanatory power of traditional salinity indices in vegetated regions. Other important variables included clay content, LULC, TBI, and TCA, all of which contributed substantially to explaining spatial variations in soil salinity.
- Applicability for Spatial Mapping: Salinity maps generated from strategies incorporating Vegetation Type Factors exhibited superior spatial coherence and natural gradient transitions. These maps demonstrated clear patch boundaries, strong spatial continuity in high-salinity areas, and patterns consistent with regional topography and ecological processes, underscoring the value of Vegetation Type Factors in improving the spatial realism and practical utility of salinity mapping.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Chi, Y.; Sun, J.; Liu, W.; Wang, J.; Zhao, M. Mapping coastal wetland soil salinity in different seasons using an improved comprehensive land surface factor system. Ecol. Indic. 2019, 107, 105517. [Google Scholar] [CrossRef]
- Abuelgasim, A.; Ammad, R. Mapping soil salinity in arid and semi-arid regions using Landsat 8 OLI satellite data. Remote Sens. Appl. Soc. Environ. 2019, 13, 415–425. [Google Scholar] [CrossRef]
- Alkharabsheh, H.M.; Seleiman, M.F.; Hewedy, O.A.; Battaglia, M.L.; Jalal, R.S.; Alhammad, B.A.; Schillaci, C.; Ali, N.; Al-Doss, A. Field Crop Responses and Management Strategies to Mitigate Soil Salinity in Modern Agriculture: A Review. Agronomy 2021, 11, 2299. [Google Scholar] [CrossRef]
- Ge, X.; Ding, J.; Teng, D.; Wang, J.; Huo, T.; Jin, X.; Wang, J.; He, B.; Han, L. Updated soil salinity with fine spatial resolution and high accuracy: The synergy of Sentinel-2 MSI, environmental covariates and hybrid machine learning approaches. Catena 2022, 212, 106054. [Google Scholar] [CrossRef]
- Wang, F.; Shi, Z.; Biswas, A.; Yang, S.; Ding, J. Multi-algorithm comparison for predicting soil salinity. Geoderma 2020, 365, 114211. [Google Scholar] [CrossRef]
- Han, L.; Ding, J.; Ge, X.; He, B.; Wang, J.; Xie, B.; Zhang, Z. Using spatiotemporal fusion algorithms to fill in potentially absent satellite images for calculating soil salinity: A feasibility study. Int. J. Appl. Earth Obs. Geoinf. 2022, 111, 102839. [Google Scholar] [CrossRef]
- Han, L.; Ding, J.; Zhang, J.; Chen, P.; Wang, J.; Wang, Y.; Wang, J.; Ge, X.; Zhang, Z. Precipitation events determine the spatiotemporal distribution of playa surface salinity in arid regions: Evidence from satellite data fused via the enhanced spatial and temporal adaptive reflectance fusion model. Catena 2021, 206, 105546. [Google Scholar] [CrossRef]
- Wang, J.; Ding, J.; Yu, D.; Teng, D.; He, B.; Chen, X.; Ge, X.; Zhang, Z.; Wang, Y.; Yang, X.; et al. Machine learning-based detection of soil salinity in an arid desert region, Northwest China: A comparison between Landsat-8 OLI and Sentinel-2 MSI. Sci. Total Environ. 2020, 707, 136092. [Google Scholar] [CrossRef]
- Wang, J.; Ding, J.; Yu, D.; Ma, X.; Zhang, Z.; Ge, X.; Teng, D.; Li, X.; Liang, J.; Lizaga, I.; et al. Capability of Sentinel-2 MSI data for monitoring and mapping of soil salinity in dry and wet seasons in the Ebinur Lake region, Xinjiang, China. Geoderma 2019, 353, 172–187. [Google Scholar] [CrossRef]
- Douaoui, A.E.K.; Nicolas, H.; Walter, C. Detecting salinity hazards within a semiarid context by means of combining soil and remote-sensing data. Geoderma 2006, 134, 217–230. [Google Scholar] [CrossRef]
- Mao, W.; Kang, S.; Wan, Y.; Sun, Y.; Li, X.; Wang, Y. Yellow River Sediment as a Soil Amendment for Amelioration of Saline Land in the Yellow River Delta. Land Degrad. Dev. 2014, 27, 1595–1602. [Google Scholar] [CrossRef]
- Li, J.; Gong, Y.; Jiang, C. Spatio-temporal differentiation and policy optimization of ecological well-being in the Yellow River Delta high-efficiency eco-economic zone. J. Clean. Prod. 2022, 339, 130717. [Google Scholar] [CrossRef]
- Zhai, J.; Jin, D.; Chen, Y.; Liu, X.; Yang, X.; Hou, P.; Xu, Y. Ecological changes, problems and countermeasures in the High Efficiency Eco-economic Zone of the Yellow River Delta. Resour. Sci. 2020, 42, 517–526. [Google Scholar] [CrossRef]
- Xia, J.; Ren, J.; Zhang, S.; Wang, Y.; Fang, Y. Forest and grass composite patterns improve the soil quality in the coastal saline-alkali land of the Yellow River Delta, China. Geoderma 2019, 349, 25–35. [Google Scholar] [CrossRef]
- Mahajan, S.; Tuteja, N. Cold, salinity and drought stresses: An overview. Arch. Biochem. Biophys. 2005, 444, 139–158. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Yang, S.; Wei, Y.; Shi, Q.; Ding, J. Characterizing soil salinity at multiple depth using electromagnetic induction and remote sensing data with random forests: A case study in Tarim River Basin of southern Xinjiang, China. Sci. Total Environ. 2021, 754, 142030. [Google Scholar] [CrossRef] [PubMed]
- Hu, J.; Peng, J.; Zhou, Y.; Xu, D.; Zhao, R.; Jiang, Q.; Fu, T.; Wang, F.; Shi, Z. Quantitative Estimation of Soil Salinity Using UAV-Borne Hyperspectral and Satellite Multispectral Images. Remote Sens. 2019, 11, 736. [Google Scholar] [CrossRef]
- Hassani, A.; Azapagic, A.; Shokri, N. Predicting long-term dynamics of soil salinity and sodicity on a global scale. Proc. Natl. Acad. Sci. USA 2020, 117, 33017–33027. [Google Scholar] [CrossRef]
- Han, L.; Liu, D.; Cheng, G.; Zhang, G.; Wang, L. Spatial distribution and genesis of salt on the saline playa at Qehan Lake, Inner Mongolia, China. Catena 2019, 177, 22–30. [Google Scholar] [CrossRef]
- Ding, J.; Yu, D. Monitoring and evaluating spatial variability of soil salinity in dry and wet seasons in the Werigan–Kuqa Oasis, China, using remote sensing and electromagnetic induction instruments. Geoderma 2014, 235–236, 316–322. [Google Scholar] [CrossRef]
- Scudiero, E.; Skaggs, T.H.; Corwin, D.L. Regional scale soil salinity evaluation using Landsat 7, western San Joaquin Valley, California, USA. Geoderma Reg. 2014, 2–3, 82–90. [Google Scholar] [CrossRef]
- Gorji, T.; Sertel, E.; Tanik, A. Monitoring soil salinity via remote sensing technology under data scarce conditions: A case study from Turkey. Ecol. Indic. 2017, 74, 384–391. [Google Scholar] [CrossRef]
- Butcher, K.; Wick, A.F.; DeSutter, T.; Chatterjee, A.; Harmon, J. Soil Salinity: A Threat to Global Food Security. Agron. J. 2016, 108, 2189–2200. [Google Scholar] [CrossRef]
- Targulian, V.O.; Krasilnikov, P.V. Soil system and pedogenic processes: Self-organization, time scales, and environmental significance. Catena 2007, 71, 373–381. [Google Scholar] [CrossRef]
- Farifteh, J.; Van der Meer, F.; Atzberger, C.; Carranza, E.J.M. Quantitative analysis of salt-affected soil reflectance spectra: A comparison of two adaptive methods (PLSR and ANN). Remote Sens. Environ. 2007, 110, 59–78. [Google Scholar] [CrossRef]
- Yahiaoui, I.; Douaoui, A.; Zhang, Q.; Ziane, A. Soil salinity prediction in the Lower Cheliff plain (Algeria) based on remote sensing and topographic feature analysis. J. Arid Land 2015, 7, 794–805. [Google Scholar] [CrossRef]
- Khan, N.M.; Rastoskuev, V.V.; Sato, Y.; Shiozawa, S. Assessment of hydrosaline land degradation by using a simple approach of remote sensing indicators. Agric. Water Manag. 2005, 77, 96–109. [Google Scholar] [CrossRef]
- Habibi, V.; Ahmadi, H.; Jafari, M.; Moeini, A. Mapping soil salinity using a combined spectral and topographical indices with artificial neural network. PLoS ONE 2021, 16, e0228494. [Google Scholar] [CrossRef]
- Navarro-Pedreño, J.; Jordan, M.M.; Meléndez-Pastor, I.; Gómez, I.; Juan, P.; Mateu, J. Estimation of soil salinity in semi-arid land using a geostatistical model. Land Degrad. Dev. 2007, 18, 339–353. [Google Scholar] [CrossRef]
- Peng, J.; Biswas, A.; Jiang, Q.; Zhao, R.; Hu, J.; Hu, B.; Shi, Z. Estimating soil salinity from remote sensing and terrain data in southern Xinjiang Province, China. Geoderma 2019, 337, 1309–1319. [Google Scholar] [CrossRef]
- Zhu, A.X.; Hudson, B.; Burt, J.; Lubich, K.; Simonson, D. Soil Mapping Using GIS, Expert Knowledge, and Fuzzy Logic. Soil Sci. Soc. Am. J. 2001, 65, 1463–1472. [Google Scholar] [CrossRef]
- Metternicht, G.I.; Zinck, J.A. Remote sensing of soil salinity: Potentials and constraints. Remote Sens. Environ. 2003, 85, 1–20. [Google Scholar] [CrossRef]
- Zhang, H.; Fu, X.; Zhang, Y.; Qi, Z.; Zhang, H.; Xu, Z. Mapping Multi-Depth Soil Salinity Using Remote Sensing-Enabled Machine Learning in the Yellow River Delta, China. Remote Sens. 2023, 15, 5640. [Google Scholar] [CrossRef]
- Zhang, T.-T.; Qi, J.-G.; Gao, Y.; Ouyang, Z.-T.; Zeng, S.-L.; Zhao, B. Detecting soil salinity with MODIS time series VI data. Ecol. Indic. 2015, 52, 480–489. [Google Scholar] [CrossRef]
- Wang, Z.; Zhao, G.; Gao, M.; Chang, C. Spatial variability of soil salinity in coastal saline soil at different scales in the Yellow River Delta, China. Environ. Monit. Assess. 2017, 189, 80. [Google Scholar] [CrossRef] [PubMed]
- Guo, B.; Yang, X.; Yang, M.; Sun, D.; Zhu, W.; Zhu, D.; Wang, J. Mapping soil salinity using a combination of vegetation index time series and single-temporal remote sensing images in the Yellow River Delta, China. Catena 2023, 231, 107313. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, Z.; Chen, J.; Chen, H.; Jin, J.; Han, J.; Wang, X.; Song, Z.; Wei, G. Estimating soil salinity with different fractional vegetation cover using remote sensing. Land Degrad. Dev. 2020, 32, 597–612. [Google Scholar] [CrossRef]
- Liu, H.; Guo, B.; Yang, X.; Zhao, J.; Li, M.; Huo, Y.; Wang, J. High spatiotemporal resolution vegetation index time series can facilitate enhanced remote sensing monitoring of soil salinization. Plant Soil. 2024, 510, 305–327. [Google Scholar] [CrossRef]
- Chen, S.; Liang, Z.; Webster, R.; Zhang, G.; Zhou, Y.; Teng, H.; Hu, B.; Arrouays, D.; Shi, Z. A high-resolution map of soil pH in China made by hybrid modelling of sparse soil data and environmental covariates and its implications for pollution. Sci. Total Environ. 2019, 655, 273–283. [Google Scholar] [CrossRef]
- Malone, B.P.; Minasny, B.; Odgers, N.P.; McBratney, A.B. Using model averaging to combine soil property rasters from legacy soil maps and from point data. Geoderma 2014, 232–234, 34–44. [Google Scholar] [CrossRef]
- Smola, A.J.; Schölkopf, B. A tutorial on support vector regression. Stat. Comput. 2004, 14, 199–222. [Google Scholar] [CrossRef]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Chen, T.; Guestrin, C. XGBoost: A scalable tree boosting system. In Proceedings of the KDD ‘16: The 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13 August 2016; pp. 785–794. [Google Scholar]
- Wang, J.; Filippi, P.; Haan, S.; Pozza, L.; Whelan, B.; Bishop, T.F.A. Gaussian process regression for three-dimensional soil mapping over multiple spatial supports. Geoderma 2024, 446, 116899. [Google Scholar] [CrossRef]
- Jiao, Z.; Tao, R. Geographical Gaussian Process Regression: A Spatial Machine-Learning Model Based on Spatial Similarity. Geogr. Anal. 2025, 57, 507–520. [Google Scholar] [CrossRef]
- Li, X.; Wang, H.; Qin, S.; Lin, L.; Wang, X.; Cornelis, W. Evaluating ensemble learning in developing pedotransfer functions to predict soil hydraulic properties. J. Hydrol. 2024, 640, 131658. [Google Scholar] [CrossRef]
- Lundberg, S.M.; Lee, S.-I. A unified approach to interpreting model predictions. Adv. Neural Inf. Process. Syst. 2017, 30, 4765–4774. [Google Scholar]
- Chakraborty, T.C.; Lee, X.; Ermida, S.; Zhan, W. On the land emissivity assumption and Landsat-derived surface urban heat islands: A global analysis. Remote Sens. Environ. 2021, 265, 112682. [Google Scholar] [CrossRef]
- Guo, B.; Han, B.; Yang, F.; Fan, Y.; Jiang, L.; Chen, S.; Yang, W.; Gong, R.; Liang, T. Salinization information extraction model based on VI–SI feature space combinations in the Yellow River Delta based on Landsat 8 OLI image. Geomat. Nat. Hazards Risk 2019, 10, 1863–1878. [Google Scholar] [CrossRef]
- Ma, H.; Zhao, W.; Duan, W.; Ma, F.; Li, C.; Li, Z. Inversion model of soil salinity in alfalfa covered farmland based on sensitive variable selection and machine learning algorithms. PeerJ 2024, 12, e18186. [Google Scholar] [CrossRef]
- Dong, X.; Li, X.; Zheng, X.; Jiang, T.; Li, X. Effect of Saline Soil Cracks on Satellite Spectral Inversion Electrical Conductivity. Remote Sens. 2020, 12, 3392. [Google Scholar] [CrossRef]
- Ma, G.; Ding, J.; Han, L.; Zhang, Z.; Ran, S. Digital mapping of soil salinization based on Sentinel-1 and Sentinel-2 data combined with machine learning algorithms. Reg. Sustain. 2021, 2, 177–188. [Google Scholar] [CrossRef]
Strategy | Feature |
---|---|
Strategy I | Sand, silt, clay, Rainfall_mean, LST, NDVI, EVI, GRVI, Aspect, TCA, LULC |
Strategy II | Sand, silt, clay, Rainfall_mean, LST, NDVI, EVI, GRVI, Aspect, TCA, LULC, TBI5, B6, B8, B11 |
Strategy III | Sand, silt, clay, Rainfall_mean, LST, NDVI, EVI, GRVI, Aspect, TCA, LULC, TBI5, B6, B8, B11, S1, S2, S6, SI |
Strategy IV | Sand, silt, clay, Rainfall_mean, LST, NDVI, EVI, GRVI, Aspect, TCA, LULC, TBI5, B6, B8, B11, NDVI_PC1, NDVI_PC2, NDVI_PC3, NDVI_max |
Strategy V | Sand, silt, clay, Rainfall_mean, LST, NDVI, EVI, GRVI, Aspect, TCA, LULC, TBI5, B6, B8, B11, EVI_PC1, EVI_PC2, EVI_PC3, EVI_max |
Strategy VI | Sand, silt, clay, Rainfall_mean, LST, NDVI, EVI, GRVI, Aspect, TCA, LULC, TBI5, B6, B8, B11, S1, S2, S6, SI, NDVI_PC1, NDVI_PC2, NDVI_PC3, NDVI_max |
Strategy VII | Sand, silt, clay, Rainfall_mean, LST, NDVI, EVI, GRVI, Aspect, TCA, LULC, TBI5, B6, B8, B11, S1, S2, S6, SI, EVI_PC1, EVI_PC2, EVI_PC3, EVI_max |
Strategy VIII | Sand, silt, clay, Rainfall_mean, LST, NDVI, EVI, GRVI, Aspect, TCA, LULC, TBI5, B6, B8, B11, NDVI_PC1, NDVI_PC2, NDVI_PC3, NDVI_max, EVI_PC1, EVI_PC2, EVI_PC3, EVI_max |
Strategy IX | Sand, silt, clay, Rainfall_mean, LST, NDVI, EVI, GRVI, Aspect, TCA, LULC, TBI5, B6, B8, B11, S1, S2, S6, SI, NDVI_PC1, NDVI_PC2, NDVI_PC3, NDVI_max, EVI_PC1, EVI_PC2, EVI_PC3, EVI_max |
Salt Sample Data | Mean | SD | Skewness | Kurtosis | CV | Min | Median | Max |
---|---|---|---|---|---|---|---|---|
whole data (n = 105) | 4.87 | 8.32 | 2.34 | 4.46 | 1.71 | 0.4 | 1.08 | 36.34 |
Salt Sample Data | Count | Mean | SD | Skewness | Kurtosis | CV | Min | Median | Max | |
---|---|---|---|---|---|---|---|---|---|---|
LULC | Cropland | 83 | 3.02 | 6.02 | 3.87 | 15.70 | 2.00 | 0.40 | 1.02 | 36.34 |
Built-up | 2 | 11.23 | 6.30 | 0.00 | −2.00 | 0.56 | 6.77 | 11.23 | 15.68 | |
Bare/sparse vegetation | 19 | 12.51 | 12.26 | 0.50 | −1.37 | 0.98 | 0.63 | 7.23 | 34.72 | |
Shrubland | 1 | 1.20 | - | - | - | - | 1.20 | 1.20 | 1.20 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, J.; Ge, X.; Hou, X.; Han, L.; Zhang, Z.; Feng, W.; Zhou, Z.; Luo, X. Strategies for Soil Salinity Mapping Using Remote Sensing and Machine Learning in the Yellow River Delta. Remote Sens. 2025, 17, 2619. https://doi.org/10.3390/rs17152619
Zhang J, Ge X, Hou X, Han L, Zhang Z, Feng W, Zhou Z, Luo X. Strategies for Soil Salinity Mapping Using Remote Sensing and Machine Learning in the Yellow River Delta. Remote Sensing. 2025; 17(15):2619. https://doi.org/10.3390/rs17152619
Chicago/Turabian StyleZhang, Junyong, Xianghe Ge, Xuehui Hou, Lijing Han, Zhuoran Zhang, Wenjie Feng, Zihan Zhou, and Xiubin Luo. 2025. "Strategies for Soil Salinity Mapping Using Remote Sensing and Machine Learning in the Yellow River Delta" Remote Sensing 17, no. 15: 2619. https://doi.org/10.3390/rs17152619
APA StyleZhang, J., Ge, X., Hou, X., Han, L., Zhang, Z., Feng, W., Zhou, Z., & Luo, X. (2025). Strategies for Soil Salinity Mapping Using Remote Sensing and Machine Learning in the Yellow River Delta. Remote Sensing, 17(15), 2619. https://doi.org/10.3390/rs17152619