Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,135)

Search Parameters:
Keywords = coastal flood

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 3015 KiB  
Article
Determining Early Warning Thresholds to Detect Tree Mortality Risk in a Southeastern U.S. Bottomland Hardwood Wetland
by Maricar Aguilos, Jiayin Zhang, Miko Lorenzo Belgado, Ge Sun, Steve McNulty and John King
Forests 2025, 16(8), 1255; https://doi.org/10.3390/f16081255 (registering DOI) - 1 Aug 2025
Abstract
Prolonged inundations are altering coastal forest ecosystems of the southeastern US, causing extensive tree die-offs and the development of ghost forests. This hydrological stressor also alters carbon fluxes, threatening the stability of coastal carbon sinks. This study was conducted to investigate the interactions [...] Read more.
Prolonged inundations are altering coastal forest ecosystems of the southeastern US, causing extensive tree die-offs and the development of ghost forests. This hydrological stressor also alters carbon fluxes, threatening the stability of coastal carbon sinks. This study was conducted to investigate the interactions between hydrological drivers and ecosystem responses by analyzing daily eddy covariance flux data from a wetland forest in North Carolina, USA, spanning 2009–2019. We analyzed temporal patterns of net ecosystem exchange (NEE), gross primary productivity (GPP), and ecosystem respiration (RE) under both flooded and non-flooded conditions and evaluated their relationships with observed tree mortality. Generalized Additive Modeling (GAM) revealed that groundwater table depth (GWT), leaf area index (LAI), NEE, and net radiation (Rn) were key predictors of mortality transitions (R2 = 0.98). Elevated GWT induces root anoxia; declining LAI reduces productivity; elevated NEE signals physiological breakdown; and higher Rn may amplify evapotranspiration stress. Receiver Operating Characteristic (ROC) analysis revealed critical early warning thresholds for tree mortality: GWT = 2.23 cm, LAI = 2.99, NEE = 1.27 g C m−2 d−1, and Rn = 167.54 W m−2. These values offer a basis for forecasting forest mortality risk and guiding early warning systems. Our findings highlight the dominant role of hydrological variability in ecosystem degradation and offer a threshold-based framework for early detection of mortality risks. This approach provides insights into managing coastal forest resilience amid accelerating sea level rise. Full article
(This article belongs to the Special Issue Water and Carbon Cycles and Their Coupling in Forest)
Show Figures

Figure 1

22 pages, 9790 KiB  
Article
Assessing the Hazard of Flooding from Breaching of the Alacranes Dam in Villa Clara, Cuba
by Victor Manuel Carvajal González, Carlos Lázaro Castillo García, Lisdelys González-Rodriguez, Luciana Silva and Jorge Jiménez
Sustainability 2025, 17(15), 6864; https://doi.org/10.3390/su17156864 - 28 Jul 2025
Viewed by 634
Abstract
Flooding due to dam failures is a critical issue with significant impacts on human safety, infrastructure, and the environment. This study assessed the potential flood hazard that could be generated from breaching of the Alacranes dam in Villa Clara, Cuba. Thirteen reservoir breaching [...] Read more.
Flooding due to dam failures is a critical issue with significant impacts on human safety, infrastructure, and the environment. This study assessed the potential flood hazard that could be generated from breaching of the Alacranes dam in Villa Clara, Cuba. Thirteen reservoir breaching scenarios were simulated under several criteria for modeling the flood wave through the 2D Saint Venant equations using the Hydrologic Engineering Center’s River Analysis System (HEC-RAS). A sensitivity analysis was performed on Manning’s roughness coefficient, demonstrating a low variability of the model outputs for these events. The results show that, for all modeled scenarios, the terrain topography of the coastal plain expands the flood wave, reaching a maximum width of up to 105,057 km. The most critical scenario included a 350 m breach in just 0.67 h. Flood, velocity, and hazard maps were generated, identifying populated areas potentially affected by the flooding events. The reported depths, velocities, and maximum flows could pose extreme danger to infrastructure and populated areas downstream. These types of studies are crucial for both risk assessment and emergency planning in the event of a potential dam breach. Full article
(This article belongs to the Section Hazards and Sustainability)
Show Figures

Figure 1

21 pages, 979 KiB  
Article
AI-Enhanced Coastal Flood Risk Assessment: A Real-Time Web Platform with Multi-Source Integration and Chesapeake Bay Case Study
by Paul Magoulick
Water 2025, 17(15), 2231; https://doi.org/10.3390/w17152231 - 26 Jul 2025
Viewed by 273
Abstract
A critical gap exists between coastal communities’ need for accessible flood risk assessment tools and the availability of sophisticated modeling, which remains limited by technical barriers and computational demands. This study introduces three key innovations through Coastal Defense Pro: (1) the first operational [...] Read more.
A critical gap exists between coastal communities’ need for accessible flood risk assessment tools and the availability of sophisticated modeling, which remains limited by technical barriers and computational demands. This study introduces three key innovations through Coastal Defense Pro: (1) the first operational web-based AI ensemble for coastal flood risk assessment integrating real-time multi-agency data, (2) an automated regional calibration system that corrects systematic model biases through machine learning, and (3) browser-accessible implementation of research-grade modeling previously requiring specialized computational resources. The system combines Bayesian neural networks with optional LSTM and attention-based models, implementing automatic regional calibration and multi-source elevation consensus through a modular Python architecture. Real-time API integration achieves >99% system uptime with sub-3-second response times via intelligent caching. Validation against Hurricane Isabel (2003) demonstrates correction from 197% overprediction (6.92 m predicted vs. 2.33 m observed) to accurate prediction through automated identification of a Chesapeake Bay-specific reduction factor of 0.337. Comprehensive validation against 15 major storms (1992–2024) shows substantial improvement over standard methods (RMSE = 0.436 m vs. 2.267 m; R2 = 0.934 vs. −0.786). Economic assessment using NACCS fragility curves demonstrates 12.7-year payback periods for flood protection investments. The open-source Streamlit implementation democratizes access to research-grade risk assessment, transforming months-long specialist analyses into immediate browser-based tools without compromising scientific rigor. Full article
(This article belongs to the Special Issue Coastal Flood Hazard Risk Assessment and Mitigation Strategies)
Show Figures

Figure 1

24 pages, 10881 KiB  
Article
Dynamics of Water Quality in the Mirim–Patos–Mangueira Coastal Lagoon System with Sentinel-3 OLCI Data
by Paula Andrea Contreras Rojas, Felipe de Lucia Lobo, Wesley J. Moses, Gilberto Loguercio Collares and Lino Sander de Carvalho
Geomatics 2025, 5(3), 36; https://doi.org/10.3390/geomatics5030036 - 25 Jul 2025
Viewed by 246
Abstract
The Mirim–Patos–Mangueira coastal lagoon system provides a wide range of ecosystem services. However, its vast territorial extent and the political boundaries that divide it hinder integrated assessments, especially during extreme hydrological events. This study is divided into two parts. First, we assessed the [...] Read more.
The Mirim–Patos–Mangueira coastal lagoon system provides a wide range of ecosystem services. However, its vast territorial extent and the political boundaries that divide it hinder integrated assessments, especially during extreme hydrological events. This study is divided into two parts. First, we assessed the spatial and temporal patterns of water quality in the lagoon system using Sentinel-3/OLCI satellite imagery. Atmospheric correction was performed using ACOLITE, followed by spectral grouping and classification into optical water types (OWTs) using the Sentinel Applications Platform (SNAP). To explore the behavior of water quality parameters across OWTs, Chlorophyll-a and turbidity were estimated using semi-empirical algorithms specifically designed for complex inland and coastal waters. Results showed a gradual increase in mean turbidity from OWT 2 to OWT 6 and a rise in chlorophyll-a from OWT 2 to OWT 4, with a decline at OWT 6. These OWTs correspond, in general terms, to distinct water masses: OWT 2 to clearer waters, OWT 3 and 4 to intermediate/mixed conditions, and OWT 6 to turbid environments. In the second part, we analyzed the response of the Patos Lagoon to flooding in Rio Grande do Sul during an extreme weather event in May 2024. Satellite-derived turbidity estimates were compared with in situ measurements, revealing a systematic underestimation, with a negative bias of 2.6%, a mean relative error of 78%, and a correlation coefficient of 0.85. The findings highlight the utility of OWT classification for tracking changes in water quality and support the use of remote sensing tools to improve environmental monitoring in data-scarce regions, particularly under extreme hydrometeorological conditions. Full article
(This article belongs to the Special Issue Advances in Ocean Mapping and Hydrospatial Applications)
Show Figures

Figure 1

25 pages, 6316 KiB  
Article
Integration of Remote Sensing and Machine Learning Approaches for Operational Flood Monitoring Along the Coastlines of Bangladesh Under Extreme Weather Events
by Shampa, Nusaiba Nueri Nasir, Mushrufa Mushreen Winey, Sujoy Dey, S. M. Tasin Zahid, Zarin Tasnim, A. K. M. Saiful Islam, Mohammad Asad Hussain, Md. Parvez Hossain and Hussain Muhammad Muktadir
Water 2025, 17(15), 2189; https://doi.org/10.3390/w17152189 - 23 Jul 2025
Viewed by 644
Abstract
The Ganges–Brahmaputra–Meghna (GBM) delta, characterized by complex topography and hydrological conditions, is highly susceptible to recurrent flooding, particularly in its coastal regions where tidal dynamics hinder floodwater discharge. This study integrates Synthetic Aperture Radar (SAR) imagery with machine learning (ML) techniques to assess [...] Read more.
The Ganges–Brahmaputra–Meghna (GBM) delta, characterized by complex topography and hydrological conditions, is highly susceptible to recurrent flooding, particularly in its coastal regions where tidal dynamics hinder floodwater discharge. This study integrates Synthetic Aperture Radar (SAR) imagery with machine learning (ML) techniques to assess near real-time flood inundation patterns associated with extreme weather events, including recent cyclones between 2017 to 2024 (namely, Mora, Titli, Fani, Amphan, Yaas, Sitrang, Midhili, and Remal) as well as intense monsoonal rainfall during the same period, across a large spatial scale, to support disaster risk management efforts. Three machine learning algorithms, namely, random forest (RF), support vector machine (SVM), and K-nearest neighbors (KNN), were applied to flood extent data derived from SAR imagery to enhance flood detection accuracy. Among these, the SVM algorithm demonstrated the highest classification accuracy (75%) and exhibited superior robustness in delineating flood-affected areas. The analysis reveals that both cyclone intensity and rainfall magnitude significantly influence flood extent, with the western coastal zone (e.g., Morrelganj and Kaliganj) being most consistently affected. The peak inundation extent was observed during the 2023 monsoon (10,333 sq. km), while interannual variability in rainfall intensity directly influenced the spatial extent of flood-affected zones. In parallel, eight major cyclones, including Amphan (2020) and Remal (2024), triggered substantial flooding, with the most severe inundation recorded during Cyclone Remal with an area of 9243 sq. km. Morrelganj and Chakaria were consistently identified as flood hotspots during both monsoonal and cyclonic events. Comparative analysis indicates that cyclones result in larger areas with low-level inundation (19,085 sq. km) compared to monsoons (13,829 sq. km). However, monsoon events result in a larger area impacted by frequent inundation, underscoring the critical role of rainfall intensity. These findings underscore the utility of SAR-ML integration in operational flood monitoring and highlight the urgent need for localized, event-specific flood risk management strategies to enhance flood resilience in the GBM delta. Full article
Show Figures

Figure 1

21 pages, 1716 KiB  
Article
Research on the Comprehensive Evaluation Model of Risk in Flood Disaster Environments
by Yan Yu and Tianhua Zhou
Water 2025, 17(15), 2178; https://doi.org/10.3390/w17152178 - 22 Jul 2025
Viewed by 183
Abstract
Losses from floods and the wide range of impacts have been at the forefront of hazard-triggered disasters in China. Affected by large-scale human activities and the environmental evolution, China’s defense flood situation is undergoing significant changes. This paper constructs a comprehensive flood disaster [...] Read more.
Losses from floods and the wide range of impacts have been at the forefront of hazard-triggered disasters in China. Affected by large-scale human activities and the environmental evolution, China’s defense flood situation is undergoing significant changes. This paper constructs a comprehensive flood disaster risk assessment model through systematic analysis of four key factors—hazard (H), exposure (E), susceptibility/sensitivity (S), and disaster prevention capabilities (C)—and establishes an evaluation index system. Using the Analytic Hierarchy Process (AHP), we determined indicator weights and quantified flood risk via the following formula R = H × E × V × C. After we applied this model to 16 towns in coastal Zhejiang Province, the results reveal three distinct risk tiers: low (R < 0.04), medium (0.04 ≤ R ≤ 0.1), and high (R > 0.1). High-risk areas (e.g., Longxi and Shitang towns) are primarily constrained by natural hazards and socioeconomic vulnerability, while low-risk towns benefit from a robust disaster mitigation capacity. Risk typology analysis further classifies towns into natural, social–structural, capacity-driven, or mixed profiles, providing granular insights for targeted flood management. The spatial risk distribution offers a scientific basis for optimizing flood control planning and resource allocation in the district. Full article
Show Figures

Figure 1

21 pages, 3532 KiB  
Review
Climate Hazards Management of Historic Urban Centers: The Case of Kaštela Bay in Croatia
by Jure Margeta
Climate 2025, 13(7), 153; https://doi.org/10.3390/cli13070153 - 19 Jul 2025
Viewed by 516
Abstract
The preservation and protection of historic urban centers in climate-sensitive coastal areas contributes to the promotion of culture as a driver and enabler of achieving temporal and spatial sustainability, as it is recognized that urban heritage is an integral part of the urban [...] Read more.
The preservation and protection of historic urban centers in climate-sensitive coastal areas contributes to the promotion of culture as a driver and enabler of achieving temporal and spatial sustainability, as it is recognized that urban heritage is an integral part of the urban landscape, culture, and economy. The aim of this study was to enhance the resilience and protection of cultural heritage and historic urban centers (HUCs) in the coastal area of Kaštela, Croatia, by providing recommendations and action guidelines in response to climate change impacts, including rising temperatures, sea levels, storms, droughts, and flooding. Preserving HUCs is essential to maintain their cultural values, original structures, and appearance. Many ancient coastal Roman HUCs lie partially or entirely below mean sea level, while low-lying medieval castles, urban areas, and modern developments are increasingly at risk. Based on vulnerability assessments, targeted mitigation and adaptation measures were proposed to address HUC vulnerability sources. The Historical Urban Landscape Approach tool was used to transition and manage HUCs, linking past, present, and future hazard contexts to enable rational, comprehensive, and sustainable solutions. The effective protection of HUCs requires a deeper understanding of the evolution of urban development, climate dynamics, and the natural environments, including both tangible and intangible urban heritage elements. The “hazard-specific” vulnerability assessment framework, which incorporates hazard-relevant indicators of sensitivity and adaptive capacity, was a practical tool for risk reduction. This method relies on analyzing the historical performance and physical characteristics of the system, without necessitating additional simulations of transformation processes. Full article
(This article belongs to the Special Issue Coastal Hazards under Climate Change)
Show Figures

Figure 1

21 pages, 13177 KiB  
Article
Links Between the Coastal Climate, Landscape Hydrology, and Beach Dynamics near Cape Vidal, South Africa
by Mark R. Jury
Coasts 2025, 5(3), 25; https://doi.org/10.3390/coasts5030025 - 18 Jul 2025
Viewed by 259
Abstract
Coastal climate processes that affect landscape hydrology and beach dynamics are studied using local and remote data sets near Cape Vidal (28.12° S, 32.55° E). The sporadic intra-seasonal pulsing of coastal runoff, vegetation, and winds is analyzed to understand sediment inputs and transport [...] Read more.
Coastal climate processes that affect landscape hydrology and beach dynamics are studied using local and remote data sets near Cape Vidal (28.12° S, 32.55° E). The sporadic intra-seasonal pulsing of coastal runoff, vegetation, and winds is analyzed to understand sediment inputs and transport by near-shore wind-waves and currents. River-borne sediments, eroded coral substrates, and reworked beach sand are mobilized by frequent storms. Surf-zone currents ~0.4 m/s instill the northward transport of ~6 105 kg/yr/m. An analysis of the mean annual cycle over the period of 1997–2024 indicates a crest of rainfall over the Umfolozi catchment during summer (Oct–Mar), whereas coastal suspended sediment, based on satellite red-band reflectivity, rises in winter (Apr–Sep) due to a deeper mixed layer and larger northward wave heights. Sediment input to the beaches near Cape Vidal exhibit a 3–6-year cycle of southeasterly waves and rainy weather associated with cool La Nina tropical sea temperatures. Beachfront sand dunes are wind-swept and release sediment at ~103 m3/yr/m, which builds tall back-dunes and helps replenish the shoreline, especially during anticyclonic dry spells. A wind event in Nov 2018 is analyzed to quantify aeolian transport, and a flood in Jan–Feb 2025 is studied for river plumes that meet with stormy seas. Management efforts to limit development and recreational access have contributed to a sustainable coastal environment despite rising tides and inland temperatures. Full article
Show Figures

Figure 1

24 pages, 3783 KiB  
Article
Morphodynamic Interactions Between Sandbar, Beach Profile, and Dune Under Variable Hydrodynamic and Morphological Conditions
by Alirio Sequeira, Carlos Coelho and Márcia Lima
Water 2025, 17(14), 2112; https://doi.org/10.3390/w17142112 - 16 Jul 2025
Viewed by 217
Abstract
Coastal areas are increasingly vulnerable to erosion, a process that can lead to severe consequences such as flooding and land loss. This study investigates strategies for preventing and mitigating coastal erosion, with a particular focus on nature-based solutions, notably artificial sand nourishment. Artificial [...] Read more.
Coastal areas are increasingly vulnerable to erosion, a process that can lead to severe consequences such as flooding and land loss. This study investigates strategies for preventing and mitigating coastal erosion, with a particular focus on nature-based solutions, notably artificial sand nourishment. Artificial nourishment has proven to be an effective method for erosion control. However, its success depends on factors such as the placement location, sediment volume, and frequency of operations. To optimize these interventions, simulations were conducted using both a numerical model (CS-Model) and a physical flume model, based on the same cross-section beach/dune profile, to compare cross-shore nourishment performance across different scenarios. The numerical modeling approach is presented first, including a description of the reference prototype-scale scenario. This is followed by an overview of the physical modeling, detailing the experimental 2D cross-section flume setup and tested scenarios. These scenarios simulate nourishment interventions with variations in beach profile, aiming to assess the influence of water level, berm width, bar volume, and bar geometry. The results from both numerical and physical simulations are presented, focusing on the cross-shore morphological response of the beach profile under wave action, particularly the effects on profile shape, water level, bar volume, and the position and depth of the bar crest. The main conclusion highlights that a wider initial berm leads to greater wave energy dissipation, thereby contributing to the mitigation of dune erosion. Full article
Show Figures

Figure 1

25 pages, 4572 KiB  
Article
Subsiding Cities: A Case Study of Governance and Environmental Drivers in Semarang, Indonesia
by Syarifah Aini Dalimunthe, Budi Heru Santosa, Gusti Ayu Ketut Surtiari, Abdul Fikri Angga Reksa, Ruki Ardiyanto, Sepanie Putiamini, Agustan Agustan, Takeo Ito and Rachmadhi Purwana
Urban Sci. 2025, 9(7), 266; https://doi.org/10.3390/urbansci9070266 - 10 Jul 2025
Viewed by 662
Abstract
Land subsidence significantly threatens vulnerable coastal environments. This study aims to explore how Semarang’s government, local communities, and researchers address land subsidence and its role in exacerbating flood risk, against the backdrop of ongoing efforts within flood risk governance. Employing an integrated mixed-methods [...] Read more.
Land subsidence significantly threatens vulnerable coastal environments. This study aims to explore how Semarang’s government, local communities, and researchers address land subsidence and its role in exacerbating flood risk, against the backdrop of ongoing efforts within flood risk governance. Employing an integrated mixed-methods approach, the research combined quantitative geospatial analysis (InSAR and land cover change detection) with qualitative socio-political and governance analysis (interviews, FGDs, field observations). Findings show high subsidence rates in Semarang. Line of sight displacement measurements revealed a continuous downward trend from late 2014 to mid-2023, with rates varying from −8.8 to −10.1 cm/year in Karangroto and Sembungharjo. Built-up areas concurrently expanded from 21,512 hectares in 2017 to 23,755 hectares in 2023, largely displacing cropland and tree cover. Groundwater extraction was identified as the dominant driver, alongside urbanization and geological factors. A critical disconnect emerged: community views focused on flooding, often overlooking subsidence’s fundamental role as an exacerbating factor. The study concluded that multi-level collaboration, improved risk communication, and sustainable land management are critical for enhancing urban coastal resilience against dual threats of subsidence and flooding. These insights offer guidance for similar rapidly developing coastal cities. Full article
(This article belongs to the Special Issue Sustainable Urbanization, Regional Planning and Development)
Show Figures

Figure 1

15 pages, 2181 KiB  
Article
The Impact of Shifts in Both Precipitation Pattern and Temperature Changes on River Discharge in Central Japan
by Bing Zhang, Jingyan Han, Jianbo Liu and Yong Zhao
Hydrology 2025, 12(7), 187; https://doi.org/10.3390/hydrology12070187 - 9 Jul 2025
Viewed by 427
Abstract
Rivers play a crucial role in the hydrological cycle and serve as essential freshwater resources for both human populations and ecosystems. Climate change significantly alters precipitation patterns and river discharge variability. However, the impact of precipitation patterns (rainfall and snowfall) and air temperature [...] Read more.
Rivers play a crucial role in the hydrological cycle and serve as essential freshwater resources for both human populations and ecosystems. Climate change significantly alters precipitation patterns and river discharge variability. However, the impact of precipitation patterns (rainfall and snowfall) and air temperature on river discharge in coastal zones remains inadequately understood. This study focused on Toyama Prefecture, located along the Sea of Japan, as a representative coastal area. We analyzed over 30 years of datasets, including air temperature, precipitation, snowfall, and river discharge, to assess the effects of climate change on river discharge. Trends in hydroclimatic datasets were assessed using the rescaled adjusted partial sums (RAPS) method and the Mann–Kendall (MK) non-parametric test. Furthermore, a correlation analysis and the Structural Equation Model (SEM) were applied to construct a relationship between precipitation, temperature, and river discharge. Our findings indicated a significant increase in air temperature at a rate of 0.2 °C per decade, with notable warming observed in late winter (January and February) and early spring (March). The average river fluxes for the Jinzu, Oyabe, Kurobe, Shou, and Joganji rivers were 182.52 m3/s, 60.37 m3/s, 41.40 m3/s, 38.33 m3/s, and 18.72 m3/s, respectively. The tipping point for snowfall decline occurred in 1992, marked by an obvious decrease in snowfall depth. The SEM showed that, although rainfall dominated the changes in river discharge (loading = 0.94), the transition from solid (snow) to liquid (rain) precipitation may alter the river discharge regime. The percentage of flood occurrence increased from 19% (1940–1992) to 41% (1993–2020). These changes highlight the urgent need to raise awareness about the impacts of climate change on river floods and freshwater resources in global coastal regions. Full article
Show Figures

Figure 1

16 pages, 5095 KiB  
Article
Analyzing the Impact of Climate Change on Compound Flooding Under Interdecadal Variations in Rainfall and Tide
by Jiun-Huei Jang, Tien-Hao Chang, Yen-Mo Wu, Ting-En Liao and Chih-Hung Hsu
Hydrology 2025, 12(7), 182; https://doi.org/10.3390/hydrology12070182 - 6 Jul 2025
Viewed by 522
Abstract
Coastal regions are increasingly threatened by compound flooding due to the increasing intensities of storm surges and rainfall under climate change. However, relevant research has been limited because significant amounts of data, scenarios, and computations are often required to evaluate long-term variations in [...] Read more.
Coastal regions are increasingly threatened by compound flooding due to the increasing intensities of storm surges and rainfall under climate change. However, relevant research has been limited because significant amounts of data, scenarios, and computations are often required to evaluate long-term variations in compound flood risk. In this study, a framework was proposed through efficient hydraulic simulations and a consequence-based statistical method using data projected under different general circulation models (GCMs). The analysis focuses on analyzing the interdecadal trends of compound flood risk for a coastal area in southwestern Taiwan across a baseline period and four future periods in the short-term (2021–2040), mid-term (2041–2060), mid-to-long-term (2061–2080), and long-term (2081–2100). Although discrepancies exist in the short term, the results show that the values of the annual maximum flood area exhibit an increasing pattern in the future for all GCMs by increasing about 27.8% on average at the end of the 21st century. This means that, under the same flood areas given in the baseline period, the return periods will decrease, and flood events will occur more frequently in the future. This framework can be extended to other regions to assess the impacts of compound flooding with different geographical and meteorological conditions. Full article
(This article belongs to the Special Issue Runoff Modelling under Climate Change)
Show Figures

Figure 1

26 pages, 41871 KiB  
Article
Episodic vs. Sea Level Rise Coastal Flooding Scenarios at the Urban Scale: Extreme Event Analysis and Adaptation Strategies
by Sebastian Spadotto, Saverio Fracaros, Annelore Bezzi and Giorgio Fontolan
Water 2025, 17(13), 1991; https://doi.org/10.3390/w17131991 - 2 Jul 2025
Viewed by 476
Abstract
Sea level rise (SLR) and increased urbanisation of coastal areas have exacerbated coastal flood threats, making them even more severe in important cultural sites. In this context, the role of hard coastal defences such as promenades and embankments needs to be carefully assessed. [...] Read more.
Sea level rise (SLR) and increased urbanisation of coastal areas have exacerbated coastal flood threats, making them even more severe in important cultural sites. In this context, the role of hard coastal defences such as promenades and embankments needs to be carefully assessed. Here, a thorough investigation is conducted in Grado, one of the most significant coastal and historical towns in the Friuli Venezia Giulia region of Italy. Grado is located on a barrier island of the homonymous lagoon, the northernmost of the Adriatic Sea, and is prone to flooding from both the sea and the back lagoon. The mean and maximum sea levels from the historical dataset of Venice (1950–2023) were analysed using the Gumbel-type distribution, allowing for the identification of annual extremes based on their respective return periods (RPs). Grado and Trieste sea level datasets (1991–2023) were used to calibrate the statistics of the extremes and to calculate the local component (subsidence) of relative SLR. The research examined the occurrence of annual exceedance of the minimum threshold water level of 110 cm, indicating Grado’s initial notable marine ingression. The study includes a detailed analysis of flood impacts on the urban fabric, categorised into sectors based on the promenade elevation on the lagoon side, the most vulnerable to flooding. Inundated areas were obtained using a high-resolution digital terrain model through a GIS-based technique, assessing both the magnitude and exposure of the urban environment to flood risk due to storm surges, also considering relative SLR projections for 2050 and 2100. Currently, approximately 42% of Grado’s inhabited area is inundated with a sea level threshold value of 151 cm, which occurs during surge episodes with a 30-year RP. By 2100, with an optimistic forecast (SSP1-2.6) of local SLR of around +53 cm, the same threshold will be met with a surge of ca. 100 cm, which occurs once a year. Thus, extreme levels linked with more catastrophic events with current secular RPs will be achieved with a multi-year frequency, inundating more than 60% of the urbanized area. Grado, like Venice, exemplifies trends that may impact other coastal regions and historically significant towns of national importance. As a result, the generated simulations, as well as detailed analyses of urban sectors where coastal flooding may occur, are critical for medium- to long-term urban planning aimed at adopting proper adaptation measures. Full article
(This article belongs to the Special Issue Urban Flood Frequency Analysis and Risk Assessment)
Show Figures

Figure 1

15 pages, 1382 KiB  
Article
Wave Run-Up Distance Prediction Combined Data-Driven Method and Physical Experiments
by Peng Qin, Hangwei Zhu, Fan Jin, Wangtao Lu, Zhenzhu Meng, Chunmei Ding, Xian Liu and Chunmei Cheng
J. Mar. Sci. Eng. 2025, 13(7), 1298; https://doi.org/10.3390/jmse13071298 - 1 Jul 2025
Viewed by 260
Abstract
Predicting wave run-up on seawalls is essential for assessing coastal flood risk and guiding resilient design. In this study, we combine physical model experiments with a hybrid data driven method to forecast wave run-up distance. Laboratory tests generated a nonlinear data set spanning [...] Read more.
Predicting wave run-up on seawalls is essential for assessing coastal flood risk and guiding resilient design. In this study, we combine physical model experiments with a hybrid data driven method to forecast wave run-up distance. Laboratory tests generated a nonlinear data set spanning a wide range of wave amplitudes, wavelengths, Froude numbers. To capture the underlying physical regimes, the records were first classified using a Gaussian Mixture Model (GMM), which automatically grouped waves of similar hydrodynamic character. Within each cluster a Gradient Boosting Regressor (GBR) was then trained, allowing the model to learn tailored input–output relationships instead of forcing a single global fit. Results demonstrate that the GMM-GBR combined model achieves a coefficient of determination R2 greater than 0.91, outperforming a conventional, non-clustered GBR model. This approach offers a reliable tool for predicting seawall performance under varying wave conditions, contributing to better coastal management and resilience strategies. Full article
(This article belongs to the Special Issue Wave Hydrodynamics in Coastal Areas)
Show Figures

Figure 1

19 pages, 6238 KiB  
Article
Overtopping over Vertical Walls with Storm Walls on Steep Foreshores
by Damjan Bujak, Nino Krvavica, Goran Lončar and Dalibor Carević
J. Mar. Sci. Eng. 2025, 13(7), 1285; https://doi.org/10.3390/jmse13071285 - 30 Jun 2025
Viewed by 223
Abstract
As sea levels rise and extreme weather events become more frequent due to climate change, coastal urban areas are increasingly vulnerable to wave overtopping and flooding. Retrofitting existing vertical seawalls with retreated storm walls represents a key adaptive strategy, especially in the Mediterranean, [...] Read more.
As sea levels rise and extreme weather events become more frequent due to climate change, coastal urban areas are increasingly vulnerable to wave overtopping and flooding. Retrofitting existing vertical seawalls with retreated storm walls represents a key adaptive strategy, especially in the Mediterranean, where steep foreshores and limited public space constrain conventional coastal defenses. This study investigates the effectiveness of storm walls in reducing wave overtopping on vertical walls with steep foreshores (1:7 to 1:10) through high-fidelity numerical simulations using the SWASH model. A comprehensive parametric study, involving 450 test cases, was conducted using Latin Hypercube Sampling to explore the influence of geometric and hydrodynamic variables on overtopping rate. Model validation against Eurotop/CLASH physical data demonstrated strong agreement (r = 0.96), confirming the reliability of SWASH for such applications. Key findings indicate that longer promenades (Gc) and reduced impulsiveness of the wave conditions reduce overtopping. A new empirical reduction factor, calibrated for integration into the Eurotop overtopping equation for plain vertical walls, is proposed based on dimensionless promenade width and water depth. The modified empirical model shows strong predictive performance (r = 0.94) against SWASH-calculated overtopping rates. This work highlights the practical value of integrating storm walls into urban seawall design and offers engineers a validated tool for enhancing coastal resilience. Future research should extend the framework to other superstructure adaptations, such as parapets or stilling basins, to further improve flood protection in the face of climate change. Full article
(This article belongs to the Special Issue Climate Change Adaptation Strategies in Coastal and Ocean Engineering)
Show Figures

Figure 1

Back to TopTop