Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (4,423)

Search Parameters:
Keywords = climate goals

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 700 KB  
Article
Identifying Key Factors Influencing the Selection of Sustainable Building Materials in New Zealand
by Ali Hashemi Araghi, Eziaku Onyeizu Rasheed, Vishnupriya Vishnupriya and Jeff Seadon
Sustainability 2025, 17(20), 9071; https://doi.org/10.3390/su17209071 (registering DOI) - 13 Oct 2025
Abstract
The construction sector is a major contributor to climate change, with embodied carbon emissions from building materials representing a critical share of its environmental footprint. Selecting zero-carbon materials is therefore essential for reducing life-cycle emissions while advancing global climate goals. This study investigates [...] Read more.
The construction sector is a major contributor to climate change, with embodied carbon emissions from building materials representing a critical share of its environmental footprint. Selecting zero-carbon materials is therefore essential for reducing life-cycle emissions while advancing global climate goals. This study investigates six decision-making factors, including cost-effectiveness, durability, buildability, embodied carbon, availability, and aesthetics, and evaluates four alternative materials (wood, hemp, rammed earth, and straw bale) in the New Zealand context. A survey of 203 industry professionals was analysed using descriptive statistics, one-sample t-tests, and structural equation modelling (SEM). Using a 5-point Likert scale, the survey assessed six factors affecting material choice: cost-effectiveness, durability, buildability, embodied carbon, aesthetics, and material availability. Descriptive and inferential analyses were performed using SEM via Partial Least Squares analysis. The results revealed that embodied carbon and material availability were the most influential factors shaping zero-carbon material selection. Among the available alternatives, hemp emerged as the most preferred material, while cost-effectiveness and wood showed moderate impacts, and aesthetic considerations had the least influence. These findings highlight that environmental performance and practical accessibility are central drivers of decision-making when adopting zero-carbon materials. This study contributes to developing effective strategies for promoting the widespread adoption of zero-carbon materials, thereby supporting New Zealand’s progress toward achieving the Sustainable Development Goals and the 2030 Agenda for reducing greenhouse gas emissions. Full article
(This article belongs to the Special Issue Building Sustainability within a Smart Built Environment)
Show Figures

Figure 1

28 pages, 47366 KB  
Article
Spatial–Temporal Evolution and Influencing Factors of Land-Use Carbon Emissions: A Case Study of Jiangxi Province
by Tengfei Zhao, Xian Zhou, Zhiyu Jian, Jianlin Zhu, Mengba Liu and Shiping Yin
Appl. Sci. 2025, 15(20), 10986; https://doi.org/10.3390/app152010986 - 13 Oct 2025
Abstract
Land-use carbon emissions denote the release or sequestration of greenhouse gases (e.g., CO2, N2O) resulting from human land-use activities, with land-use changes exerting a major influence on land-use carbon emissions. Revealing the coupling mechanism between land-use changes and carbon [...] Read more.
Land-use carbon emissions denote the release or sequestration of greenhouse gases (e.g., CO2, N2O) resulting from human land-use activities, with land-use changes exerting a major influence on land-use carbon emissions. Revealing the coupling mechanism between land-use changes and carbon emissions is of crucial theoretical significance for achieving “dual carbon” goals and mitigating global climate change. Based on the land-use change data of Jiangxi Province, this study explored the Spatial–temporal relationship between land-use carbon emissions and land-use changes in Jiangxi Province from 2000 to 2020 using a model of land-use dynamic degrees, a model of land-use transfer matrices, and the IPCC carbon emission accounting model. In this study, the factors influencing changes in land-use carbon emissions were comprehensively analyzed using an LMDI model and the Tapio decoupling model. The results indicated that: (1) Jiangxi Province’s land-use changes show a “two-increase, four-decrease” trend, with construction land and unused land experiencing the most significant shifts, while water, grassland, cropland, and forestland changes stayed near 1%. (2) Net land-use carbon emissions exhibit a rapid then gradual increase, with higher emissions in the north/south and lower levels in central regions. While overall land-use carbon emission intensity is declining, per capita emissions continue to rise. (3) Land-use carbon emission changes are primarily driven by emission intensity, land-use structure, efficiency, and economic level. In Jiangxi, economic growth mainly increases land-use carbon emissions, while land-use efficiency enhancement counters this trend. Jiangxi Province shows weak land-use carbon emission–economic growth decoupling, with land-use carbon emissions rising more slowly than economic growth. This study not only provides a typical case analysis and methodological framework for understanding the carbon emission effects of human–land relationships in rapidly urbanizing regions but also offers a specific scientific basis and policy insights for Jiangxi Province and other similar regions to formulate differentiated territorial spatial planning, promote ecological protection and restoration, and achieve green and low-carbon development pathways under the “dual carbon” goals. Full article
(This article belongs to the Special Issue Soil Analysis in Different Ecosystems)
20 pages, 1463 KB  
Article
Europe 2020 Strategy and 20/20/20 Targets: An Ex Post Assessment Across EU Member States
by Norbert Życzyński, Bożena Sowa, Tadeusz Olejarz, Alina Walenia, Wiesław Lewicki and Krzysztof Gurba
Sustainability 2025, 17(20), 9030; https://doi.org/10.3390/su17209030 (registering DOI) - 12 Oct 2025
Abstract
The 2020 Europe Strategy was designed as a comprehensive framework to promote smart, sustainable and inclusive growth in the European Union (EU), particularly emphasising the ‘20/20/20’ targets related to climate protection and energy policy. This study provides an ex post evaluation of the [...] Read more.
The 2020 Europe Strategy was designed as a comprehensive framework to promote smart, sustainable and inclusive growth in the European Union (EU), particularly emphasising the ‘20/20/20’ targets related to climate protection and energy policy. This study provides an ex post evaluation of the extent to which the strategy’s objectives were achieved in the member states of the EU in the period 2010–2020. The analysis is based on Eurostat data and uses Hellwig’s multidimensional comparative analysis to construct a synthetic indicator of progress. The results show that EU countries have made significant advances in reducing greenhouse gas emissions and increasing the share of renewable energy in gross final energy consumption, with Sweden and Finland identified as leaders, while Malta and Hungary lagged behind. Primary energy consumption overall decreased, although only a minority of the member states reached the planned thresholds. Progress was less evident in research and development (R&D) expenditure, where the average value of the EU remained below the 3% GDP target, and strong disparities persisted between innovation leaders and weaker performers. Improvements in higher education attainment were observed, contributing to the long-term goal of a knowledge-based economy, although labour market difficulties, especially among young people, remained unresolved. The findings suggest that, although the Strategy contributed to tangible progress in several areas, uneven achievements among member states limited its overall effectiveness. The study is limited by the reliance on aggregate statistical data and a single methodological approach. Future research should extend the analysis to longer time horizons, include qualitative assessments of national policies, and address implications for the implementation of the European Green Deal and subsequent EU development strategies. Full article
17 pages, 6434 KB  
Article
UAV and 3D Modeling for Automated Rooftop Parameter Analysis and Photovoltaic Performance Estimation
by Wioleta Błaszczak-Bąk, Marcin Pacześniak, Artur Oleksiak and Grzegorz Grunwald
Energies 2025, 18(20), 5358; https://doi.org/10.3390/en18205358 (registering DOI) - 11 Oct 2025
Viewed by 29
Abstract
The global shift towards renewable energy sources necessitates efficient methods for assessing solar potential in urban areas. Rooftop photovoltaic (PV) systems present a sustainable solution for decentralized energy production; however, their effectiveness is influenced by structural and environmental factors, including roof slope, azimuth, [...] Read more.
The global shift towards renewable energy sources necessitates efficient methods for assessing solar potential in urban areas. Rooftop photovoltaic (PV) systems present a sustainable solution for decentralized energy production; however, their effectiveness is influenced by structural and environmental factors, including roof slope, azimuth, and shading. This study aims to develop and validate a UAV-based methodology for assessing rooftop solar potential in urban areas. The authors propose a low-cost, innovative tool that utilizes a commercial unmanned aerial vehicle (UAV), specifically the DJI Air 3, combined with advanced photogrammetry and 3D modeling techniques to analyze rooftop characteristics relevant to PV installations. The methodology includes UAV-based data collection, image processing to generate high-resolution 3D models, calibration and validation against reference objects, and the estimation of solar potential based on rooftop characteristics and solar irradiance data using the proposed Model Analysis Tool (MAT). MAT is a novel solution introduced and described for the first time in this study, representing an original computational framework for the geometric and energetic analysis of rooftops. The innovative aspect of this study lies in combining consumer-grade UAVs with automated photogrammetry and the MAT, creating a low-cost yet accurate framework for rooftop solar assessment that reduces reliance on high-end surveying methods. By being presented in this study for the first time, MAT expands the methodological toolkit for solar potential evaluation, offering new opportunities for urban energy research and practice. The comparison of PVGIS and MAT shows that MAT consistently predicts higher daily energy yields, ranging from 9 to 12.5% across three datasets. The outcomes of this study contribute to facilitating the broader adoption of solar energy, thereby supporting sustainable energy transitions and climate neutrality goals in the face of increasing urban energy demands. Full article
(This article belongs to the Section G: Energy and Buildings)
Show Figures

Figure 1

20 pages, 307 KB  
Article
Pathways for Hydrogen Adoption in the Brazilian Trucking Industry: A Low-Carbon Alternative to Fossil Fuels
by Daniel Monge Nogueira, Geraldo Cardoso Oliveira Neto, Claudia Aparecida de Mattos and Gabriela Scur
Processes 2025, 13(10), 3240; https://doi.org/10.3390/pr13103240 (registering DOI) - 11 Oct 2025
Viewed by 31
Abstract
The growing demand for sustainable solutions in the transportation sector and global decarbonization goals have fueled debate on using hydrogen as an energy source. Although hydrogen’s potential is recognized in Brazil, its application in heavy-duty vehicles still faces structural and technological barriers. This [...] Read more.
The growing demand for sustainable solutions in the transportation sector and global decarbonization goals have fueled debate on using hydrogen as an energy source. Although hydrogen’s potential is recognized in Brazil, its application in heavy-duty vehicles still faces structural and technological barriers. This study aimed to analyze the viability of hydrogen as an energy alternative for trucks in Brazil. The research adopted an exploratory qualitative approach, based on the expert analysis method, through semi-structured interviews with development engineers, representatives of heavy-duty vehicle manufacturers, and researchers specializing in hydrogen technologies. The data were organized into a thematic framework and interpreted using content analysis. The results show that, although there is growing interest and ongoing initiatives, challenges such as the cost of fuel cells, the lack of refueling infrastructure, and low technological maturity hinder large-scale adoption. From a theoretical perspective, the study contributes by integrating specialized literature with practical insights from key industry players, broadening the understanding of the energy transition. In practical terms, it outlines some strategic paths, such as expanding technological development and forming partnerships. From a social perspective, it emphasizes the importance of hydrogen as a pillar for sustainable, low-carbon mobility, capable of positively impacting public health and mitigating climate change. Full article
(This article belongs to the Special Issue Recent Advances in Green Hydrogen Production Processes)
26 pages, 764 KB  
Article
A Multidimensional Impact Study of Heterogeneous Market-Based Environmental Regulations on Carbon Emissions
by Zizhuo Li, Yiniu Cui and Mengyao Guo
Sustainability 2025, 17(20), 9013; https://doi.org/10.3390/su17209013 (registering DOI) - 11 Oct 2025
Viewed by 57
Abstract
Within the context of global climate change and China’s commitment to the “Dual Carbon” goals (carbon peak and carbon neutrality), this study proposes a novel taxonomy of market-based environmental regulations, dividing them into investment-driven and tax-based supervisory mechanisms. Using panel data from 30 [...] Read more.
Within the context of global climate change and China’s commitment to the “Dual Carbon” goals (carbon peak and carbon neutrality), this study proposes a novel taxonomy of market-based environmental regulations, dividing them into investment-driven and tax-based supervisory mechanisms. Using panel data from 30 Chinese provinces between 2010 and 2023, we empirically investigate their differential effects on carbon emissions. Results indicate that both regulatory approaches significantly curb carbon emissions, each exhibiting distinct nonlinear patterns: an inverted-U curve for investment-oriented measures and a U-shaped trajectory for tax-oriented policies, implying that excessively stringent tax supervision may lead to a rebound in emissions due to effects such as the “resource curse” and “innovation crowding-out.” Industrial structure transformation functions as a common mediating channel, while green innovation efficiency exerts a distinct moderating influence. Both policy types demonstrate adverse spatial spillover effects, with no support found for the “pollution haven” or “race to the bottom” hypotheses. This study offers new empirical insights into how environmental regulations facilitate green and low-carbon transition through market mechanisms, providing valuable implications for designing ecological policy systems that harmonize emission reduction efficiency with sustainability in China and other emerging economies. Full article
Show Figures

Figure 1

22 pages, 7794 KB  
Article
Contemporary Tendencies in Snow Cover, Winter Precipitation, and Winter Air Temperatures in the Mountain Regions of Bulgaria
by Dimitar Nikolov and Cvetan Dimitrov
Climate 2025, 13(10), 212; https://doi.org/10.3390/cli13100212 - 11 Oct 2025
Viewed by 37
Abstract
Snow is an essential meteorological variable and an indicator of the changing climate. Its variations, particularly in snow depth and snow water equivalent, result mainly from changes in winter precipitation and air temperature. Recently, these conditions have been thoroughly investigated worldwide, revealing a [...] Read more.
Snow is an essential meteorological variable and an indicator of the changing climate. Its variations, particularly in snow depth and snow water equivalent, result mainly from changes in winter precipitation and air temperature. Recently, these conditions have been thoroughly investigated worldwide, revealing a general prevailing decline in precipitation and increasing tendencies in air temperatures. However, no systematic or up-to-date studies for Bulgaria exist. The main goal of the current project is to fill this national knowledge gap in the snow conditions in our mountains. For that purpose, we used 31 stations with altitudes ranging from 527 to 2925 m a.s.l. for the period between 1961 and 2020, covering two significant reference climatic periods. We extracted data about snow cover maximums, mean air temperatures, and precipitation amounts for the whole winter season in mountainous regions from October to April; however, we mainly present the results for the three winter months: December, January, and February. Most of the stations do not demonstrate any significant trends for snow depth maximums, except for the three lower stations in central west Bulgaria, which show significant increases. On the opposite end of the scale, two of the highest stations demonstrated notable decreases. The time series for the precipitation amounts are also predominantly indefinite. Significant decreasing trends can be found at the highest three alpine stations. The change in the mean seasonal air temperature is predominantly positive—17 of the stations show positive trends, and for 12, the increases are significant. The altitude of the strongest seasonal temperature rise lies between 1000 and 1700 m. Finally, due to the obvious nonlinearity of some of the time series, we decided to check for change points and a nonlinear approach to fit the data. This analysis demonstrates general changes in the investigated characteristics from the beginning of the 1970s to the middle of the 1980s. Full article
Show Figures

Figure 1

19 pages, 2080 KB  
Article
Design and Optimization of a Wave-Adaptive Mechanical Converter for Renewable Energy Harvesting Along NEOM’s Surf Coast
by Abderraouf Gherissi, Ibrahim ELnasri, Abderrahim Lakhouit and Malek Ali
Processes 2025, 13(10), 3229; https://doi.org/10.3390/pr13103229 - 10 Oct 2025
Viewed by 158
Abstract
This study introduces a novel adaptive Mechanical Wave Energy Converter (MWEC) designed to efficiently capture nearshore wave energy for sustainable electricity generation along the southeast surf coast of NEOM (135° longitude). The MWEC system features a polyvinyl chloride (PVC) cubic buoy integrated with [...] Read more.
This study introduces a novel adaptive Mechanical Wave Energy Converter (MWEC) designed to efficiently capture nearshore wave energy for sustainable electricity generation along the southeast surf coast of NEOM (135° longitude). The MWEC system features a polyvinyl chloride (PVC) cubic buoy integrated with a mechanical power take-off (PTO) mechanism, optimized for deployment in shallow waters for a depth of around 1 m. Three buoy volumes, V1: 6000 cm3, V2: 30,000 cm3, and V3: 72,000 cm3, were experimentally evaluated under consistent PTO and spring tension configurations. The findings reveal a direct relationship between buoy volume and force output, with larger buoys exhibiting greater energy capture potential, while smaller buoys provided faster and more stable response dynamics. The energy retention efficiency of the buoy–PTO system was measured at 20% for V1, 14% for V2, and 10% for V3, indicating a trade-off between responsiveness and total energy capture. Notably, the largest buoy (V3) generated a peak power output of 213 W at an average wave amplitude of 65 cm, confirming its suitability for high-energy conditions along NEOM’s surf coast. In contrast, the smaller buoy (V1) performed more effectively during periods of reduced wave activity. Wave climate data collected during November and December 2024 support a hybrid deployment strategy, utilizing different buoy sizes to adapt to seasonal wave variability. These results highlight the potential of modular, wave-adaptive mechanical systems for scalable, site-specific renewable energy solutions in coastal environments like NEOM. The proposed MWEC offers a promising path toward low-cost, low-maintenance wave energy harvesting in shallow waters, contributing to Saudi Arabia’s sustainable energy goals. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

21 pages, 5696 KB  
Review
Advancing Research on Urban Ecological Corridors in the Context of Carbon Neutrality: Insights from Bibliometric and Systematic Reviews
by Jing Li, Lang Zhang, Yang Yi and Jingbo Hong
Atmosphere 2025, 16(10), 1174; https://doi.org/10.3390/atmos16101174 - 10 Oct 2025
Viewed by 90
Abstract
The construction and maintenance of ecological corridors not only facilitate species migration and gene flow but also enhance ecosystem stability and resilience, providing critical support for achieving global carbon neutrality goals. Despite their importance, research on urban ecological corridors—specifically their role in carbon [...] Read more.
The construction and maintenance of ecological corridors not only facilitate species migration and gene flow but also enhance ecosystem stability and resilience, providing critical support for achieving global carbon neutrality goals. Despite their importance, research on urban ecological corridors—specifically their role in carbon sequestration and emission reduction within urban environments—remains insufficiently explored. To address this gap, we employed bibliometric and network analysis methods, utilizing the CiteSpace6.3.1 visualization tool to systematically review existing literature from the Web of Science Core Collection database. This study examines the research progress and trends in urban ecological corridors from 2000 to 2023, focusing on their role and significance in the context of global carbon neutrality. The findings reveal the following: (1) Research attention has grown steadily from 2000 to 2023, with climate change, carbon emission dynamics, and biodiversity emerging as core themes, reflecting increasing global focus on the carbon neutrality functions of urban ecological corridors. (2) CiteSpace analysis identified key research hotspots through keywords including climate change, carbon cycle, ecosystem services, model simulation, and ecological network analysis, revealing the functional mechanisms and pathways of urban ecological corridors in carbon neutrality contexts. (3) Current scientific challenges focus on understanding three core aspects of urban ecological corridors, the compositional elements, spatial structural design, and functional capacity assessment, requiring systematic theoretical breakthroughs. (4) Future research should prioritize exploring mechanisms to enhance urban ecological corridor functions and constructing low-carbon urban ecological networks, providing theoretical guidance and practical pathways for achieving urban emission reduction and climate goals. This study contributes to integrating research on the effectiveness of urban ecological corridors and carbon sinks, offering theoretical insights and practical guidance for reducing urban emissions and achieving climate goals. Full article
Show Figures

Graphical abstract

30 pages, 1655 KB  
Review
Harnessing Renewable Waste as a Pathway and Opportunities Toward Sustainability in Saudi Arabia and the Gulf Region
by Abdullah Alghafis, Haneen Bawayan, Sultan Alghamdi, Mohamed Nejlaoui and Abdullah Alrashidi
Sustainability 2025, 17(20), 8980; https://doi.org/10.3390/su17208980 - 10 Oct 2025
Viewed by 239
Abstract
This review examines the vast opportunities and key challenges in renewable waste management across the Gulf region, with a particular emphasis on Saudi Arabia. As global demand for sustainable energy intensifies, driven by technological advancements and environmental concerns, the Gulf Cooperation Council nations, [...] Read more.
This review examines the vast opportunities and key challenges in renewable waste management across the Gulf region, with a particular emphasis on Saudi Arabia. As global demand for sustainable energy intensifies, driven by technological advancements and environmental concerns, the Gulf Cooperation Council nations, notably Saudi Arabia, are beginning to acknowledge the urgency of transitioning from fossil fuel reliance to renewable waste management. This review identifies the abundant renewable resources in the region and highlights progress in policy development while emphasizing the need for comprehensive frameworks and financial incentives to drive further investment and innovation. Waste-to-energy (WTE) technologies offer a promising avenue for reducing environmental degradation and bolstering energy security. With Saudi Arabia targeting the development of 3 Gigawatts of WTE capacity by 2030 as part of national sustainability initiatives, barriers such as regulatory complexities, financial constraints, and public misconceptions persist. Ultimately, this review concludes that advancing renewable waste management in the Gulf, particularly through stronger policies, stakeholders’ collaboration, investment in WTE and an enhancement in public awareness and education, is critical for achieving sustainability goals. By harnessing these opportunities, the region can take decisive steps toward achieving sustainability, positioning Saudi Arabia as a leader in the global fight against climate change and resource depletion. Full article
Show Figures

Figure 1

21 pages, 2925 KB  
Review
Tree Endotherapy: A Comprehensive Review of the Benefits and Drawbacks of Trunk Injection Treatments in Tree Care and Protection
by Alessandra Benigno, Chiara Aglietti, Viola Papini, Mario Riolo, Santa Olga Cacciola and Salvatore Moricca
Plants 2025, 14(19), 3108; https://doi.org/10.3390/plants14193108 - 9 Oct 2025
Viewed by 287
Abstract
Tree endotherapy has risen to prominence in the field of precision agriculture as an innovative and sustainable method of tree care, being respectful of both environmental protection and consumer health needs. A comprehensive review of the state of the art of research in [...] Read more.
Tree endotherapy has risen to prominence in the field of precision agriculture as an innovative and sustainable method of tree care, being respectful of both environmental protection and consumer health needs. A comprehensive review of the state of the art of research in this field has made it possible to spotlight the main advantages of tree infusion, which has undergone significant progress in step with technological innovation and an increased understanding of tree anatomy and physiology. The major criticalities associated with this technique, as well as the biological and technical–operational obstacles that still hinder its wider use, are also highlighted. What emerges is an innovative and rapidly expanding technique in tree care, in both the cultivation and phytosanitary management of fruit and ornamental trees. Some of the strengths of the endotherapy technique, such as the next-to-no water consumption, the strong reduction in the use of fertilizers and pesticides, the possibility of using biological control agents (BCAs) or other products of natural origin, the precision administration of the product inside the xylem of the tree, and the efficacy (20–90%) and persistence (1–2 years) of treatments, make it one of the cornerstones of sustainable tree protection at present. With a very low consumption of the “active ingredient”, endotherapy has a negligible impact on the external environment, minimizing the drift and dispersal of the active ingredient and thus limiting the exposure of non-target organisms such as beneficial insects, birds, and wildlife. The large-scale application of the technique would therefore also help to achieve an important goal in “climate-smart agriculture”, the saving of water resources, significantly contributing to climate change mitigation, especially in those areas of the planet where water is a precious resource. Full article
(This article belongs to the Section Plant Protection and Biotic Interactions)
Show Figures

Figure 1

30 pages, 1769 KB  
Review
Decarbonizing the Cement Industry: Technological, Economic, and Policy Barriers to CO2 Mitigation Adoption
by Oluwafemi Ezekiel Ige and Musasa Kabeya
Clean Technol. 2025, 7(4), 85; https://doi.org/10.3390/cleantechnol7040085 - 9 Oct 2025
Viewed by 425
Abstract
The cement industry accounts for approximately 7–8% of global CO2 emissions, primarily due to energy-intensive clinker production and limestone calcination. With cement demand continuing to rise, particularly in emerging economies, decarbonization has become an urgent global challenge. The objective of this study [...] Read more.
The cement industry accounts for approximately 7–8% of global CO2 emissions, primarily due to energy-intensive clinker production and limestone calcination. With cement demand continuing to rise, particularly in emerging economies, decarbonization has become an urgent global challenge. The objective of this study is to systematically map and synthesize existing evidence on technological pathways, policy measures, and economic barriers to four core decarbonization strategies: clinker substitution, energy efficiency, alternative fuels, as well as carbon capture, utilization, and storage (CCUS) in the cement sector, with the goal of identifying practical strategies that can align industry practice with long-term climate goals. A scoping review methodology was adopted, drawing on peer-reviewed journal articles, technical reports, and policy documents to ensure a comprehensive perspective. The results demonstrate that each mitigation pathway is technically feasible but faces substantial real-world constraints. Clinker substitution delivers immediate reduction but is limited by SCM availability/quality, durability qualification, and conservative codes; LC3 is promising where clay logistics allow. Energy-efficiency measures like waste-heat recovery and advanced controls reduce fuel use but face high capital expenditure, downtime, and diminishing returns in modern plants. Alternative fuels can reduce combustion-related emissions but face challenges of supply chains, technical integration challenges, quality, weak waste-management systems, and regulatory acceptance. CCUS, the most considerable long-term potential, addresses process CO2 and enables deep reductions, but remains commercially unviable due to current economics, high costs, limited policy support, lack of large-scale deployment, and access to transport and storage. Cross-cutting economic challenges, regulatory gaps, skill shortages, and social resistance including NIMBYism further slow adoption, particularly in low-income regions. This study concludes that a single pathway is insufficient. An integrated portfolio supported by modernized standards, targeted policy incentives, expanded access to SCMs and waste fuels, scaled CCUS investment, and international collaboration is essential to bridge the gap between climate ambition and industrial implementation. Key recommendations include modernizing cement standards to support higher clinker replacement, providing incentives for energy-efficient upgrades, scaling CCUS through joint investment and carbon pricing and expanding access to biomass and waste-derived fuels. Full article
Show Figures

Figure 1

24 pages, 810 KB  
Article
Harnessing ESG Sustainability, Climate Policy Uncertainty and Information and Communication Technology for Energy Transition
by Ali Ragab Ali, Kolawole Iyiola and Ahmad Alzubi
Energies 2025, 18(19), 5301; https://doi.org/10.3390/en18195301 - 8 Oct 2025
Viewed by 201
Abstract
This study addresses a significant gap in the existing literature by introducing novel perspectives. First, it provides a comprehensive assessment of the impact of ESG sustainability and information and communication technology (ICT) on energy transition using updated quarterly data from 2002 Q3 to [...] Read more.
This study addresses a significant gap in the existing literature by introducing novel perspectives. First, it provides a comprehensive assessment of the impact of ESG sustainability and information and communication technology (ICT) on energy transition using updated quarterly data from 2002 Q3 to 2024 Q4. Second, it uniquely integrates climate policy uncertainty (CPU) and financial development (FD) as core explanatory variables, which have been largely neglected in prior research. Third, this study applies advanced quantile-based methodologies, including the Quantile Autoregressive Distributed Lag (QARDL) model and Quantile Cointegration (QC) techniques, to enhance empirical rigor and ensure policy relevance across the entire conditional distribution. The results showed that at lower quantiles (τ = 0.05–0.30), FD positively influences ET, supporting early-stage clean energy adoption. ICT shows a short-term negative effect (τ = 0.05–0.40). Based on these findings, policymakers should strengthen financial development to accelerate clean energy adoption at early stages, while addressing the short-term negative impacts of ICT by promoting supportive digital and energy policies that align technology use with sustainability goals. Full article
(This article belongs to the Special Issue Financial Development and Energy Consumption Nexus—Third Edition)
Show Figures

Figure 1

18 pages, 14975 KB  
Article
Precision Carbon Stock Estimation in Urban Campuses Using Fused Backpack and UAV LiDAR Data
by Shijun Zhang, Nan Li, Longwei Li, Yuchan Liu, Hong Wang, Tingting Xue, Jing Ma and Mengyi Hu
Forests 2025, 16(10), 1550; https://doi.org/10.3390/f16101550 - 8 Oct 2025
Viewed by 189
Abstract
Accurate quantification of campus vegetation carbon stocks is essential for advancing carbon neutrality goals and refining urban carbon management strategies. This study pioneers the integration of drone and backpack LiDAR data to overcome limitations in conventional carbon estimation approaches. The Comparative Shortest-Path (CSP) [...] Read more.
Accurate quantification of campus vegetation carbon stocks is essential for advancing carbon neutrality goals and refining urban carbon management strategies. This study pioneers the integration of drone and backpack LiDAR data to overcome limitations in conventional carbon estimation approaches. The Comparative Shortest-Path (CSP) algorithm was originally developed to segment tree crowns from point cloud data, with its design informed by metabolic ecology theory—specifically, that vascular plants tend to minimize the transport distance to their roots. In this study, we deployed the Comparative Shortest-Path (CSP) algorithm for individual tree recognition across 897 campus trees, achieving 88.52% recall, 72.45% precision, and 79.68% F-score—with 100% accuracy for eight dominant species. Diameter at breast height (DBH) was extracted via least-squares circle fitting, attaining >95% accuracy for key species such as Magnolia grandiflora and Triadica sebifera. Carbon storage was calculated through species-specific allometric models integrated with field inventory data, revealing a total stock of 163,601 kg (mean 182.4 kg/tree). Four dominant species—Cinnamomum camphora, Liriodendron chinense, Salix babylonica, and Metasequoia glyptostroboides—collectively contributed 84.3% of total storage. As the first integrated application of multi-platform LiDAR for campus-scale carbon mapping, this work establishes a replicable framework for precision urban carbon sink assessment, supporting data-driven campus greening strategies and climate action planning. Full article
(This article belongs to the Special Issue Urban Forests and Greening for Sustainable Cities)
Show Figures

Figure 1

28 pages, 2454 KB  
Review
Beyond Food Processing: How Can We Sustainably Use Plant-Based Residues?
by Dragana Mladenović, Jovana Grbić, Andromachi Tzani, Mihajlo Bogdanović, Anastasia Detsi, Milivoj Radojčin and Aleksandra Djukić-Vuković
Processes 2025, 13(10), 3179; https://doi.org/10.3390/pr13103179 - 7 Oct 2025
Viewed by 320
Abstract
Plant-based residues generated within the agri-food system represent an abundant resource with significant potential for sustainable valorization. However, they are still underutilized and place a substantial burden on the environment and climate. This review discusses research trends over the past decade, combining bibliometric [...] Read more.
Plant-based residues generated within the agri-food system represent an abundant resource with significant potential for sustainable valorization. However, they are still underutilized and place a substantial burden on the environment and climate. This review discusses research trends over the past decade, combining bibliometric analysis with an overview of emerging technologies applied to the processing of residues generated from conventional crops and medicinal and aromatic plants. The bibliometric analysis reveals main valorization pathways, ranging from energy production to recovery of high-value bioactive compounds. Recent advances in this field are discussed in detail, with emphasis on low-energy and non-thermal processing (ultrasound, microwave, cold plasma), green solvents (natural deep eutectic solvents, bio-based solvents), biological pretreatments (with ligninolytic microorganisms and enzymes), thermochemical technologies (hydrothermal carbonization, pyrolysis), and emerging cascade strategies applied for multi-product recovery. Published research proves that these approaches have a great potential for sustainable valorization, while process optimization and economic feasibility remain a challenge at industrial scales for wider adoption. By providing an integrated perspective on diverse types of plant-based residues, this review highlights the importance of developing cascade and circular processing strategies, which align with global sustainability goals and encourage innovation in bio-based industries. New knowledge and advances in this field are highly required and will further help the transition of the current agri-food system towards greater circularity and sustainability. Full article
Show Figures

Figure 1

Back to TopTop