Water Resource Challenges and Sustainable Management Solutions Under the Interaction of Climate Change and Human Activities

A special issue of Atmosphere (ISSN 2073-4433).

Deadline for manuscript submissions: 31 March 2026 | Viewed by 1715

Special Issue Editors

1. State Key Laboratory of Hydraulic Engineering Simulation and Safety, School of Civil Engineering, Tianjin University, Tianjin 300072, China
2. State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing 100044, China
Interests: climate change; hydrological systems; water resources; SDGs; ecosystem services
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
Waliguan Baseline Observatory, China Meteorological Administration, Xining 810001, China
Interests: atmospheric background monitoring; greenhouse gases and carbon cycle; atmospheric composition and long-range transport; high-altitude atmospheric observations; atmospheric trace gases and source attribution

E-Mail Website
Guest Editor
State Key Laboratory of Cryospheric Science and Frozen Soil Engineering, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
Interests: glacier change; glacier mass balance; glacier meltwater runoff
School of Economics and Management, Southwest University of Science and Technology, Mianyang 621010, China
Interests: low carbon economy; environmental policy; carbon emissions
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

The impacts of climate change and human activities on global water resources are becoming increasingly evident, posing unprecedented challenges to water resource management. With rising global temperatures and changes in atmospheric composition, significant shifts have occurred in global and regional climate patterns. The Waliguan Curve, as a critical reference for global atmospheric baseline data, reveals changes in greenhouse gas concentrations, highlighting the profound impacts of human activities on climate and water resources. Monitoring and assessment efforts by the World Meteorological Organization (WMO) regarding global climate change provide crucial support for predicting changes in regional climate patterns.

This Special Issue aims to explore the close connections between climate change and water resources, particularly examining how regional water supply and demand will evolve amidst the increasing frequency and intensity of extreme weather events such as extreme precipitation, droughts, and floods. Additionally, accelerated melting of glaciers poses potential threats to the sustainable supply of water, further complicating water resource management. In particular, the ever-increasing water demand driven by increasing human activities presents significant challenges for the sustainable utilization of water resources. Meanwhile, balancing human activities with the natural water cycle has become a critical issue for global and regional sustainable development. Furthermore, efficient water use and conservation are vital to achieving the dual-carbon goals (carbon peak and carbon neutrality).

The purpose of this Special Issue is to collect global research findings, examine the multidimensional impacts of climate change and human activities on water resources, and propose targeted solutions. It particularly emphasizes effective water resource management to ensure long-term ecological, economic, and social prosperity in promoting regional sustainable development.

Dr. Xinchen Gu
Dr. Fugang Li
Dr. Hongliang Li
Dr. Pan Jiang
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Atmosphere is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2400 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • climate change
  • water resource management
  • Waliguan curve
  • water cycle mechanism
  • hydrological model
  • glacial water resources
  • dual carbon targets
  • extreme weather
  • regional sustainable development
  • sustainable use of water resources
  • impact of human activities

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (3 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

27 pages, 9431 KB  
Article
Improved Monthly Frequency Method Based on Copula Functions for Studying Ecological Flow in the Hailang River Basin, Northeast China
by Zijun Wang, Yusu Zhao, Jian Shang, Yuanming Wang, Changlei Dai and Enzhong Li
Atmosphere 2025, 16(9), 1110; https://doi.org/10.3390/atmos16091110 - 22 Sep 2025
Viewed by 438
Abstract
Climate change has intensified extreme hydrological events in cold regions, threatening the stability of river ecosystems. The traditional monthly frequency method for calculating ecological flow assumes equal guarantee rates across all months, overlooking the complex nonlinear dependencies between interannual and intermonthly flows. This [...] Read more.
Climate change has intensified extreme hydrological events in cold regions, threatening the stability of river ecosystems. The traditional monthly frequency method for calculating ecological flow assumes equal guarantee rates across all months, overlooking the complex nonlinear dependencies between interannual and intermonthly flows. This approach may result in flow values for certain months during low-flow years exceeding those of corresponding months in high-flow years, failing to align with actual hydrological patterns. This study integrates Copula functions with the monthly frequency method to establish an improved ecological flow calculation framework, accurately characterizing the statistical correlation between interannual and intermonthly flow variability. The Hailang River basin in Northeast China was selected as the study area. First, the SWAT model was employed to simulate natural runoff processes from 1956 to 1965. The calibration phase demonstrated excellent performance (R2 = 0.84, NSE = 0.83), and the validation phase also met standards (R2 = 0.82, NSE = 0.81). The improved method selected optimal Copula functions for each month through rigorous statistical tests (AIC, BIC, RMSE, and K-S test), establishing joint probability distributions for annual and monthly average flows. The results indicate that different Copula types better align with monthly hydrological seasonal characteristics: Gaussian Copula suits February, May, and July; t-Copula suits August; Clayton Copula from September to December; Gumbel Copula for January, March, April, and June. Through conditional probability relationships (P(X0≥x0, 90%) = 0.9), the monthly guarantee rate range determined by the improved method spans 81.83% to 90.08%, significantly outperforming the uniform 90% guarantee rate employed by traditional methods. Verification using the Tennant method confirmed that ecological flows throughout the year met “excellent” or higher standards. Ecological flows exhibited pronounced seasonal variation, ranging from 6.2 m3/s during winter to spring to 96.93 m3/s during summer to autumn, providing scientific basis for basin-scale ecological water management. This study establishes a reliable methodological framework for ecological flow management in cold-region rivers. Full article
Show Figures

Figure 1

12 pages, 3945 KB  
Article
Land-Use Impacts on Soil Nutrients, Particle Composition, and Ecological Functions in the Green Heart of the Chang-Zhu-Tan Urban Agglomeration, China
by Qi Zhong, Zhao Shi, Cong Lin, Hao Zou, Pan Zhang, Ming Cheng, Tianyong Wan, Wei and Cong Zhang
Atmosphere 2025, 16(9), 1063; https://doi.org/10.3390/atmos16091063 - 10 Sep 2025
Viewed by 525
Abstract
Urban green hearts provide essential ecosystem services, including carbon sequestration, water purification, and hydrological regulation. The Green Heart Area of the Chang-Zhu-Tan Urban Agglomeration in Hunan Province, China, is the largest globally, and plays a critical role in regional water management. These functions [...] Read more.
Urban green hearts provide essential ecosystem services, including carbon sequestration, water purification, and hydrological regulation. The Green Heart Area of the Chang-Zhu-Tan Urban Agglomeration in Hunan Province, China, is the largest globally, and plays a critical role in regional water management. These functions are increasingly threatened by intensive land-use, while soil, as the foundational ecosystem component, mediates water retention, nutrient cycling, and erosion resistance. This study examined the effects of four land-use types—cropland, plantation, arbor woodland, and other woodland—on soil particle composition and key nutrients (organic carbon, total nitrogen, and total phosphorus). Statistical comparisons among land-use types were performed. Results indicated that silt was the dominant soil fraction across all land-uses (64–72%). Arbor woodland exhibited significantly higher sand content (29%) compared to cropland (19%; p < 0.05), suggesting improved water permeability and erosion resistance. Cropland showed elevated nutrient levels, with TN (1450.32 mg·kg−1) and TP (718.86 mg·kg−1) exceeding both national averages and those in arbor woodland. Coupled with acidic soil conditions (pH 5.23) and lower stoichiometric ratios (C/N: 10.82; C/P: 35.67; N/P: 3.29), these traits indicate an increased risk of nutrient leaching in croplands. In contrast, arbor woodland displayed more balanced C:N:P ratios (C/N: 12.21; C/P: 48.05; N/P: 3.84), supporting greater nutrient retention and aggregate stability. These findings underscore the significant influence of land-use type on soil ecological functions, including water infiltration, runoff reduction, and climate adaptability. The study highlights the importance of adopting conservation-oriented practices such as reduced tillage and targeted phosphorus management in croplands, alongside reforestation with native species, to improve soil structure and promote long-term ecological sustainability. Full article
Show Figures

Figure 1

Review

Jump to: Research

21 pages, 5696 KB  
Review
Advancing Research on Urban Ecological Corridors in the Context of Carbon Neutrality: Insights from Bibliometric and Systematic Reviews
by Jing Li, Lang Zhang, Yang Yi and Jingbo Hong
Atmosphere 2025, 16(10), 1174; https://doi.org/10.3390/atmos16101174 - 10 Oct 2025
Viewed by 255
Abstract
The construction and maintenance of ecological corridors not only facilitate species migration and gene flow but also enhance ecosystem stability and resilience, providing critical support for achieving global carbon neutrality goals. Despite their importance, research on urban ecological corridors—specifically their role in carbon [...] Read more.
The construction and maintenance of ecological corridors not only facilitate species migration and gene flow but also enhance ecosystem stability and resilience, providing critical support for achieving global carbon neutrality goals. Despite their importance, research on urban ecological corridors—specifically their role in carbon sequestration and emission reduction within urban environments—remains insufficiently explored. To address this gap, we employed bibliometric and network analysis methods, utilizing the CiteSpace6.3.1 visualization tool to systematically review existing literature from the Web of Science Core Collection database. This study examines the research progress and trends in urban ecological corridors from 2000 to 2023, focusing on their role and significance in the context of global carbon neutrality. The findings reveal the following: (1) Research attention has grown steadily from 2000 to 2023, with climate change, carbon emission dynamics, and biodiversity emerging as core themes, reflecting increasing global focus on the carbon neutrality functions of urban ecological corridors. (2) CiteSpace analysis identified key research hotspots through keywords including climate change, carbon cycle, ecosystem services, model simulation, and ecological network analysis, revealing the functional mechanisms and pathways of urban ecological corridors in carbon neutrality contexts. (3) Current scientific challenges focus on understanding three core aspects of urban ecological corridors, the compositional elements, spatial structural design, and functional capacity assessment, requiring systematic theoretical breakthroughs. (4) Future research should prioritize exploring mechanisms to enhance urban ecological corridor functions and constructing low-carbon urban ecological networks, providing theoretical guidance and practical pathways for achieving urban emission reduction and climate goals. This study contributes to integrating research on the effectiveness of urban ecological corridors and carbon sinks, offering theoretical insights and practical guidance for reducing urban emissions and achieving climate goals. Full article
Show Figures

Graphical abstract

Back to TopTop