Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,752)

Search Parameters:
Keywords = climate driver

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 7625 KB  
Article
Outdoor Ice Rinks in Ontario, Canada—An Oversimplified Model for Ice Water Equivalent and Operational Duration to Evaluate Changing Climate
by Huaxia Yao and Steven R. Fassnacht
Hydrology 2025, 12(10), 263; https://doi.org/10.3390/hydrology12100263 (registering DOI) - 5 Oct 2025
Abstract
Outdoor ice rinks have long been a staple for inexpensive exercise and entertainment in cold environments. However, the possible deterioration of or impact on outdoor ice rinks from a changing climate is poorly understood due to no or little monitoring of data of [...] Read more.
Outdoor ice rinks have long been a staple for inexpensive exercise and entertainment in cold environments. However, the possible deterioration of or impact on outdoor ice rinks from a changing climate is poorly understood due to no or little monitoring of data of such facilities. To investigate long-term changes in ice rinks over recent decades, an energy-balance-based ice rink model (with three versions considering precipitation and melt) was applied to a simulated ice rink for two representative area—Dorset of south-central Ontario and the Experimental Lakes Area (ELA) of northwestern Ontario, Canada. The model was calibrated and tested using four-year ice rink data (since limited data are available) and applied to a 40-year period starting in 1978 to reproduce the dates of rink-on and rink-off, rink duration in a season, and ice water equivalent under daily climate inputs, and to illustrate any changing trend in these variables, i.e., the ice rink responses to changed climate. Results showed no clear trend in any ice rink features over four decades, attributed to winter temperature that did not increase substantially (a weak driver), no change in events of rain-on-ice and snowfall-on-rink, and reduced wind speed (possibly slowing ice melting). This is the first trial of a physically based rink model to evaluate outdoor ice rinks. More in situ monitoring and in-depth modelling are necessary, and this model can help guide the monitoring. Full article
Show Figures

Figure 1

21 pages, 3683 KB  
Article
Quantifying the Contribution of Driving Factors on Distribution and Change in Vegetation NPP in the Huang–Huai–Hai Plain, China
by Zhuang Li, Hongwei Liu, Jinjie Miao, Yaonan Bai, Bo Han, Danhong Xu, Fengtian Yang and Yubo Xia
Sustainability 2025, 17(19), 8877; https://doi.org/10.3390/su17198877 (registering DOI) - 4 Oct 2025
Abstract
As a fundamental metric for assessing carbon sequestration, Net Primary Productivity (NPP) and the mechanisms driving its spatiotemporal dynamics constitute a critical research domain within global change science. This research centered on the Huang–Huai–Hai Plain (HHHP), combining 2001–2023 MODIS-NPP data with natural (landform, [...] Read more.
As a fundamental metric for assessing carbon sequestration, Net Primary Productivity (NPP) and the mechanisms driving its spatiotemporal dynamics constitute a critical research domain within global change science. This research centered on the Huang–Huai–Hai Plain (HHHP), combining 2001–2023 MODIS-NPP data with natural (landform, temperature, precipitation, soil) and socio-economic (population density, GDP density, land use) drivers. Trend analysis, coefficient of variation, and Hurst index were applied to clarify the spatiotemporal evolution of NPP and its future trends, while geographic detectors and structural equation models were used to quantify the contribution of drivers. Key findings: (1) Across the HHHP, the multi-year average NPP ranged between 30.05 and 1019.76 gC·m−2·a−1, with higher values found in Shandong and Henan provinces, and lower values concentrated in the northwestern dam-top plateau and central plain regions; 44.11% of the entire region showed a statistically highly significant increasing trend. (2) The overall fluctuation of NPP was low-amplitude, with a stable center of gravity and the standard deviation ellipse retaining a southwest-to-northeast direction. (3) Future changes in NPP exhibited persistence and anti-persistence, with 44.98% of the region being confronted with vegetation degradation risk. (4) NPP variations originated from the synergistic impacts of multiple elements: among individual elements, precipitation, soil type, and elevation had the highest explanatory capacity, while synergistic interactions between two elements notably enhanced the explanatory capacity. (5) Climate variation exerted the strongest influence on NPP (direct coefficient of 0.743), followed by the basic natural environment (0.734), whereas human-related activities had the weakest direct impact (−0.098). This research offers scientific backing for regional carbon sink evaluation, ecological security early warning, and sustainable development policies. Full article
Show Figures

Figure 1

14 pages, 5038 KB  
Article
The Diversity Pattern of Two Endangered Dung Beetles in China Under the Influence of Climate Change
by Nina Zhang, Yijie Tong, Lulu Li, Ming Lai, Xinpu Wang and Ming Bai
Diversity 2025, 17(10), 696; https://doi.org/10.3390/d17100696 (registering DOI) - 4 Oct 2025
Abstract
Comprehending the effects of climate change on the range of endangered species is essential for formulating successful conservation strategies. This research examines two nationally protected dung beetle species (Heliocopris dominus and Heliocopris bucephalus) in China to forecast their probable habitat range [...] Read more.
Comprehending the effects of climate change on the range of endangered species is essential for formulating successful conservation strategies. This research examines two nationally protected dung beetle species (Heliocopris dominus and Heliocopris bucephalus) in China to forecast their probable habitat range under present and future climate scenarios. Employing MaxEnt modeling with validated occurrence records and environmental variables, we discerned critical factors affecting their distribution and anticipated changes in habitat suitability. Results reveal that isothermality, temperature seasonality, maximum temperature of the warmest month, and annual precipitation are the principal environmental drivers. Presently, appropriate habitats are primarily located in southern Yunnan and Hainan, with future forecasts indicating a northward extension into additional areas. These findings offer critical insights for choosing conservation zones for these vulnerable species amid shifting climate conditions. Full article
(This article belongs to the Special Issue Diversity and Taxonomy of Scarabaeoidea)
Show Figures

Figure 1

34 pages, 1866 KB  
Review
Building Climate Resilient Fisheries and Aquaculture in Bangladesh: A Review of Impacts and Adaptation Strategies
by Mohammad Mahfujul Haque, Md. Naim Mahmud, A. K. Shakur Ahammad, Md. Mehedi Alam, Alif Layla Bablee, Neaz A. Hasan, Abul Bashar and Md. Mahmudul Hasan
Climate 2025, 13(10), 209; https://doi.org/10.3390/cli13100209 (registering DOI) - 4 Oct 2025
Abstract
This study examines the impacts of climate change on fisheries and aquaculture in Bangladesh, one of the most climate-vulnerable countries in the world. The fisheries and aquaculture sectors contribute significantly to the national GDP and support the livelihoods of 12% of the total [...] Read more.
This study examines the impacts of climate change on fisheries and aquaculture in Bangladesh, one of the most climate-vulnerable countries in the world. The fisheries and aquaculture sectors contribute significantly to the national GDP and support the livelihoods of 12% of the total population. Using a Critical Literature Review (CLR) approach, peer-reviewed articles, government reports, and official datasets published between 2006 and 2025 were reviewed across databases such as Scopus, Web of Science, FAO, and the Bangladesh Department of Fisheries (DoF). The analysis identifies major climate drivers, including rising temperature, erratic rainfall, salinity intrusion, sea-level rise, floods, droughts, cyclones, and extreme events, and reviews their differentiated impacts on key components of the sector: inland capture fisheries, marine fisheries, and aquaculture systems. For inland capture fisheries, the review highlights habitat degradation, biodiversity loss, and disrupted fish migration and breeding cycles. In aquaculture, particularly in coastal systems, this study reviews the challenges posed by disease outbreaks, water quality deterioration, and disruptions in seed supply, affecting species such as carp, tilapia, pangasius, and shrimp. Coastal aquaculture is also particularly vulnerable to cyclones, tidal surges, and saline water intrusion, with documented economic losses from events such as Cyclones Yaas, Bulbul, Amphan, and Remal. The study synthesizes key findings related to climate-resilient aquaculture practices, monitoring frameworks, ecosystem-based approaches, and community-based adaptation strategies. It underscores the need for targeted interventions, especially in coastal areas facing increasing salinity levels and frequent storms. This study calls for collective action through policy interventions, research and development, and the promotion of climate-smart technologies to enhance resilience and sustain fisheries and aquaculture in the context of a rapidly changing climate. Full article
(This article belongs to the Collection Adaptation and Mitigation Practices and Frameworks)
21 pages, 5265 KB  
Article
Optimizing Ecosystem Service Patterns with Dynamic Bayesian Networks for Sustainable Land Management Under Climate Change: A Case Study in China’s Sanjiangyuan Region
by Qingmin Cheng, Xiaofeng Liu, Xiaowen Han, Jiayuan Yin, Junji Li, Xue Cheng, Hucheng Li, Qinyi Huang, Yuefeng Wang, Haotian You, Zhiwei Wang and Jianjun Chen
Remote Sens. 2025, 17(19), 3357; https://doi.org/10.3390/rs17193357 - 3 Oct 2025
Abstract
Identifying suitable areas for ecosystem services (ES) development is essential for balancing economic growth with environmental sustainability in ecologically fragile regions. However, existing studies often neglect integrating future climate and socioeconomic drivers into ES optimization, hindering the design of robust strategies for sustainable [...] Read more.
Identifying suitable areas for ecosystem services (ES) development is essential for balancing economic growth with environmental sustainability in ecologically fragile regions. However, existing studies often neglect integrating future climate and socioeconomic drivers into ES optimization, hindering the design of robust strategies for sustainable resource management. In this study, we propose a novel framework integrating the System Dynamics (SD) model, the Patch-based Land Use Simulation (PLUS) model, the Integrated Valuation of Ecosystem Services and Trade-offs (InVEST) model, and the Dynamic Bayesian Network (DBN) to optimize ES patterns in the Sanjiangyuan region under three climate scenarios (SSP126, SSP245, and SSP585) from 2030 to 2060. Our results show the following: (1) Ecological land (forest) expanded by 0.86% under SSP126, but declined by 11.54% under SSP585 due to unsustainable land use intensification. (2) SSP126 emerged as the optimal scenario for ES sustainability, increasing carbon storage and sequestration, habitat quality, and water conservation by 3.2%, 1%, and 1.4%, respectively, compared to SSP585. (3) The central part of the Sanjiangyuan region, characterized by gentle topography and adequate rainfall, was identified as a priority zone for ES development. This study provides a transferable framework for aligning ecological conservation with low-carbon transitions in global biodiversity hotspots. Full article
(This article belongs to the Section Ecological Remote Sensing)
Show Figures

Figure 1

24 pages, 8041 KB  
Article
Stable Water Isotopes and Machine Learning Approaches to Investigate Seawater Intrusion in the Magra River Estuary (Italy)
by Marco Sabattini, Francesco Ronchetti, Gianpiero Brozzo and Diego Arosio
Hydrology 2025, 12(10), 262; https://doi.org/10.3390/hydrology12100262 - 3 Oct 2025
Abstract
Seawater intrusion into coastal river systems poses increasing challenges for freshwater availability and estuarine ecosystem integrity, especially under evolving climatic and anthropogenic pressures. This study presents a multidisciplinary investigation of marine intrusion dynamics within the Magra River estuary (Northwest Italy), integrating field monitoring, [...] Read more.
Seawater intrusion into coastal river systems poses increasing challenges for freshwater availability and estuarine ecosystem integrity, especially under evolving climatic and anthropogenic pressures. This study presents a multidisciplinary investigation of marine intrusion dynamics within the Magra River estuary (Northwest Italy), integrating field monitoring, isotopic tracing (δ18O; δD), and multivariate statistical modeling. Over an 18-month period, 11 fixed stations were monitored across six seasonal campaigns, yielding a comprehensive dataset of water electrical conductivity (EC) and stable isotope measurements from fresh water to salty water. EC and oxygen isotopic ratios displayed strong spatial and temporal coherence (R2 = 0.99), confirming their combined effectiveness in identifying intrusion patterns. The mass-balance model based on δ18O revealed that marine water fractions exceeded 50% in the lower estuary for up to eight months annually, reaching as far as 8.5 km inland during dry periods. Complementary δD measurements provided additional insight into water origin and fractionation processes, revealing a slight excess relative to the local meteoric water line (LMWL), indicative of evaporative enrichment during anomalously warm periods. Multivariate regression models (PLS, Ridge, LASSO, and Elastic Net) identified river discharge as the primary limiting factor of intrusion, while wind intensity emerged as a key promoting variable, particularly when aligned with the valley axis. Tidal effects were marginal under standard conditions, except during anomalous events such as tidal surges. The results demonstrate that marine intrusion is governed by complex and interacting environmental drivers. Combined isotopic and machine learning approaches can offer high-resolution insights for environmental monitoring, early-warning systems, and adaptive resource management under climate-change scenarios. Full article
32 pages, 2827 KB  
Article
Understanding Post-COVID-19 Household Vehicle Ownership Dynamics Through Explainable Machine Learning
by Mahbub Hassan, Saikat Sarkar Shraban, Ferdoushi Ahmed, Mohammad Bin Amin and Zoltán Nagy
Future Transp. 2025, 5(4), 136; https://doi.org/10.3390/futuretransp5040136 - 2 Oct 2025
Abstract
Understanding household vehicle ownership dynamics in the post-COVID-19 era is critical for designing equitable, resilient, and sustainable transportation policies. This study employs an interpretable machine learning framework to model household vehicle ownership using data from the 2022 National Household Travel Survey (NHTS)—the first [...] Read more.
Understanding household vehicle ownership dynamics in the post-COVID-19 era is critical for designing equitable, resilient, and sustainable transportation policies. This study employs an interpretable machine learning framework to model household vehicle ownership using data from the 2022 National Household Travel Survey (NHTS)—the first nationally representative U.S. dataset collected after the onset of the pandemic. A binary classification task distinguishes between single- and multi-vehicle households, applying an ensemble of algorithms, including Random Forest, XGBoost, Support Vector Machines (SVM), and Naïve Bayes. The Random Forest model achieved the highest predictive accuracy (86.9%). To address the interpretability limitations of conventional machine learning approaches, SHapley Additive exPlanations (SHAP) were applied to extract global feature importance and directionality. Results indicate that the number of drivers, household income, and vehicle age are the most influential predictors of multi-vehicle ownership, while contextual factors such as housing tenure, urbanicity, and household lifecycle stage also exert substantial influence highlighting the spatial and demographic heterogeneity in ownership behavior. Policy implications include the design of equity-sensitive strategies such as targeted mobility subsidies, vehicle scrappage incentives, and rural transit innovations. By integrating explainable artificial intelligence into national-scale transportation modeling, this research bridges the gap between predictive accuracy and interpretability, contributing to adaptive mobility strategies aligned with the United Nations Sustainable Development Goals (SDGs), particularly SDG 11 (Sustainable Cities), SDG 10 (Reduced Inequalities), and SDG 13 (Climate Action). Full article
Show Figures

Figure 1

16 pages, 2540 KB  
Article
Monthly and Daily Dynamics of Stomoxys calcitrans (Linnaeus, 1758) (Diptera: Muscidae) in Livestock Farms of the Batna Region (Northeastern Algeria)
by Chaimaa Azzouzi, Mehdi Boucheikhchoukh, Noureddine Mechouk, Scherazad Sedraoui and Safia Zenia
Parasitologia 2025, 5(4), 52; https://doi.org/10.3390/parasitologia5040052 - 2 Oct 2025
Abstract
Stomoxys calcitrans (Linnaeus, 1758) is a hematophagous fly species of veterinary importance, known for its negative effects on animal health and productivity. The stress caused by their painful bites results in losses in milk and meat production. Despite its impact, data on its [...] Read more.
Stomoxys calcitrans (Linnaeus, 1758) is a hematophagous fly species of veterinary importance, known for its negative effects on animal health and productivity. The stress caused by their painful bites results in losses in milk and meat production. Despite its impact, data on its ecology and activity in Algeria are lacking. Such knowledge is needed to evaluate its potential effects on livestock production and rural health, and to support surveillance, outbreak prediction, and control strategies. This study aimed to investigate the monthly and daily dynamics of S. calcitrans in livestock farms in the Batna region and evaluate the influence of climatic factors on its abundance. From July 2022 to July 2023, Vavoua traps were placed monthly from 7 a.m. to 6 p.m. on four farms in the Batna region, representing different livestock types. Captured flies were identified, sexed, and counted every two hours. Climatic data were collected both in situ and from NASA POWER datasets. Fly abundance was analyzed using non-parametric statistics, Spearman’s correlation, and multiple regression analysis. A total of 1244 S. calcitrans were captured, mainly from cattle farms. Activity occurred from August to December, with a peak in September. Males were more abundant and exhibited a bimodal activity in September. Fly abundance was positively correlated with temperature and precipitation and negatively correlated with wind speed and humidity. This study presents the first ecological data on S. calcitrans in northeastern Algeria, highlighting its seasonal dynamics and the climatic drivers that influence it. The results highlight the species’ preference for cattle and indicate that temperature and rainfall are key factors influencing its abundance. These findings lay the groundwork for targeted control strategies against this neglected pest in Algeria. Full article
Show Figures

Figure 1

40 pages, 5643 KB  
Article
Energy Systems in Transition: A Regional Analysis of Eastern Europe’s Energy Challenges
by Robert Santa, Mladen Bošnjaković, Monika Rajcsanyi-Molnar and Istvan Andras
Clean Technol. 2025, 7(4), 84; https://doi.org/10.3390/cleantechnol7040084 - 2 Oct 2025
Abstract
This study presents a comprehensive assessment of the energy systems in eight Eastern European countries—Bulgaria, Croatia, the Czech Republic, Hungary, Poland, Romania, Slovakia, and Slovenia—focusing on their energy transition, security of supply, decarbonisation, and energy efficiency. Using principal component analysis (PCA) and clustering [...] Read more.
This study presents a comprehensive assessment of the energy systems in eight Eastern European countries—Bulgaria, Croatia, the Czech Republic, Hungary, Poland, Romania, Slovakia, and Slovenia—focusing on their energy transition, security of supply, decarbonisation, and energy efficiency. Using principal component analysis (PCA) and clustering techniques, we identify three different energy profiles: countries dependent on fossil fuels (e.g., Poland, Bulgaria), countries with a balanced mix of nuclear and fossil fuels (e.g., the Czech Republic, Slovakia, Hungary), and countries focusing mainly on renewables (e.g., Slovenia, Croatia). The sectoral analysis shows that industry and transport are the main drivers of energy consumption and CO2 emissions, and the challenges and policy priorities of decarbonisation are determined. Regression modelling shows that dependence on fossil fuels strongly influences the use of renewable energy and electricity consumption patterns, while national differences in per capita electricity consumption are influenced by socio-economic and political factors that go beyond the energy structure. The Decarbonisation Level Index (DLI) indicator shows that Bulgaria and the Czech Republic achieve a high degree of self-sufficiency in domestic energy, while Hungary and Slovakia are the most dependent on imports. A typology based on energy intensity and import dependency categorises Romania as resilient, several countries as balanced, and Hungary, Slovakia, and Croatia as vulnerable. The projected investments up to 2030 indicate an annual increase in clean energy production of around 123–138 TWh through the expansion of nuclear energy, the development of renewable energy, the phasing out of coal, and the improvement of energy efficiency, which could reduce CO2 emissions across the region by around 119–143 million tons per year. The policy recommendations emphasise the accelerated phase-out of coal, supported by just transition measures, the use of nuclear energy as a stable backbone, the expansion of renewables and energy storage, and a focus on the electrification of transport and industry. The study emphasises the significant influence of European Union (EU) policies—such as the “Clean Energy for All Europeans” and “Fit for 55” packages—on the design of national strategies through regulatory frameworks, financing, and market mechanisms. This analysis provides important insights into the heterogeneity of Eastern European energy systems and supports the design of customised, coordinated policy measures to achieve a sustainable, secure, and climate-resilient energy transition in the region. Full article
Show Figures

Figure 1

21 pages, 4247 KB  
Article
Diverging Carbon Balance and Driving Mechanisms of Expanding and Shrinking Cities in Transitional China
by Jiawei Lei, Keyu Luo, Le Xia and Zhenyu Wang
Atmosphere 2025, 16(10), 1155; https://doi.org/10.3390/atmos16101155 - 1 Oct 2025
Abstract
The synergy between carbon neutrality and urbanization is essential for effective climate governance and socio-ecological intelligent transition. From the perspective of coupled urban dynamic evolution and carbon metabolism systems, this study integrates the Sen-MK trend test and the geographical detector model to explore [...] Read more.
The synergy between carbon neutrality and urbanization is essential for effective climate governance and socio-ecological intelligent transition. From the perspective of coupled urban dynamic evolution and carbon metabolism systems, this study integrates the Sen-MK trend test and the geographical detector model to explore the spatial–temporal differentiation patterns and driving mechanisms of carbon balance across 337 prefecture-level cities in China from 2012 to 2022. The results reveal a spatial–temporal mismatch between carbon emissions and carbon storage, forming an asymmetric carbon metabolism pattern characterized by “expansion-dominated and shrinkage-dissipative” dynamics. Carbon compensation rates exhibit a west–high to east–low gradient distribution, with hotspots of expansionary cities clustered in the southwest, while shrinking cities display a dispersed pattern from the northwest to the northeast. Based on the four-quadrant carbon balance classification, expansionary cities are mainly located in the “high economic–low ecological” quadrant, whereas shrinking cities concentrate in the “low economic–high ecological” quadrant. Industrial structure and population scale serve as the dual-core drivers of carbon compensation. Expansionary cities are positively regulated by urbanization rates, while shrinking cities are negatively constrained by energy intensity. These findings suggest that differentiated regulation strategies can help optimize carbon governance within national territorial space. Full article
(This article belongs to the Section Air Quality)
Show Figures

Figure 1

24 pages, 6015 KB  
Article
Soil–Atmosphere Greenhouse Gas Fluxes Across a Land-Use Gradient in the Andes–Amazon Transition Zone: Insights for Climate Innovation
by Armando Sterling, Yerson D. Suárez-Córdoba, Natalia A. Rodríguez-Castillo and Carlos H. Rodríguez-León
Land 2025, 14(10), 1980; https://doi.org/10.3390/land14101980 - 1 Oct 2025
Abstract
This study evaluated the seasonal variability of soil–atmosphere greenhouse gas (GHG) fluxes—carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O)—across a land-use gradient in the Andean–Amazon transition zone of Colombia. The gradient included five land-use types incorporating [...] Read more.
This study evaluated the seasonal variability of soil–atmosphere greenhouse gas (GHG) fluxes—carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O)—across a land-use gradient in the Andean–Amazon transition zone of Colombia. The gradient included five land-use types incorporating at least one innovative climate-smart practice—improved pasture (IP), cacao agroforestry system (CaAS), copoazu agroforestry system (CoAS), secondary forest with agroforestry enrichment (SFAE), and moriche palm swamp ecosystem (MPSE)—alongside the dominant regional land uses, old-growth forest (OF) and degraded pasture (DP). Soil GHG fluxes varied markedly among land-use types and between seasons. CO2 fluxes were consistently higher during the dry season, whereas CH4 and N2O fluxes peaked in the rainy season. Agroecological and restoration systems exhibited substantially lower CO2 emissions (7.34–9.74 Mg CO2-C ha−1 yr−1) compared with DP (18.85 Mg CO2-C ha−1 yr−1) during the rainy season, and lower N2O fluxes (0.21–1.04 Mg CO2-C ha−1 yr−1) during the dry season. In contrast, the MPSE presented high CH4 emissions in the rainy season (300.45 kg CH4-C ha−1 yr−1). Across all land uses, CO2 was the dominant contributor to the total GWP (>95% of emissions). The highest global warming potential (GWP) occurred in DP, whereas CaAS, CoAS and MPSE exhibited the lowest values. Soil temperature, pH, exchangeable acidity, texture, and bulk density play a decisive role in regulating GHG fluxes, whereas climatic factors, such as air temperature and relative humidity, influence fluxes indirectly by modulating soil conditions. These findings underscore the role of diversified agroforestry and restoration systems in mitigating GHG emissions and the need to integrate soil and climate drivers into regional climate models. Full article
(This article belongs to the Special Issue Land Use Effects on Carbon Storage and Greenhouse Gas Emissions)
27 pages, 6300 KB  
Article
From Trends to Drivers: Vegetation Degradation and Land-Use Change in Babil and Al-Qadisiyah, Iraq (2000–2023)
by Nawar Al-Tameemi, Zhang Xuexia, Fahad Shahzad, Kaleem Mehmood, Xiao Linying and Jinxing Zhou
Remote Sens. 2025, 17(19), 3343; https://doi.org/10.3390/rs17193343 - 1 Oct 2025
Abstract
Land degradation in Iraq’s Mesopotamian plain threatens food security and rural livelihoods, yet the relative roles of climatic water deficits versus anthropogenic pressures remain poorly attributed in space. We test the hypothesis that multi-timescale climatic water deficits (SPEI-03/-06/-12) exert a stronger effect on [...] Read more.
Land degradation in Iraq’s Mesopotamian plain threatens food security and rural livelihoods, yet the relative roles of climatic water deficits versus anthropogenic pressures remain poorly attributed in space. We test the hypothesis that multi-timescale climatic water deficits (SPEI-03/-06/-12) exert a stronger effect on vegetation degradation risk than anthropogenic pressures, conditional on hydrological connectivity and irrigation. Using Babil and Al-Qadisiyah (2000–2023) as a case, we implement a four-part pipeline: (i) Fractional Vegetation Cover with Mann–Kendall/Sen’s slope to quantify greening/browning trends; (ii) LandTrendr to extract disturbance timing and magnitude; (iii) annual LULC maps from a Random Forest classifier to resolve transitions; and (iv) an XGBoost classifier to map degradation risk and attribute climate vs. anthropogenic influence via drop-group permutation (ΔAUC), grouped SHAP shares, and leave-group-out ablation, all under spatial block cross-validation. Driver attribution shows mid-term and short-term drought (SPEI-06, SPEI-03) as the strongest predictors, and conditional permutation yields a larger average AUC loss for the climate block than for the anthropogenic block, while grouped SHAP shares are comparable between the two, and ablation suggests a neutral to weak anthropogenic edge. The XGBoost model attains AUC = 0.884 (test) and maps 9.7% of the area as high risk (>0.70), concentrated away from perennial water bodies. Over 2000–2023, LULC change indicates CA +515 km2, HO +129 km2, UL +70 km2, BL −697 km2, WB −16.7 km2. Trend analysis shows recovery across 51.5% of the landscape (+29.6% dec−1 median) and severe decline over 2.5% (−22.0% dec−1). The integrated design couples trend mapping with driver attribution, clarifying how compounded climatic stress and intensive land use shape contemporary desertification risk and providing spatial priorities for restoration and adaptive water management. Full article
Show Figures

Figure 1

28 pages, 5524 KB  
Article
Quantifying the Spatiotemporal Response of Winter Wheat Yield to Climate Change in Henan Province via APSIM Simulations
by Donglin Wang, Tielin Sun, Yijie Li, Hanglong Zhang, Zongyang Li, Shaobo Liu, Qinge Dong and Yanbin Li
Agriculture 2025, 15(19), 2059; https://doi.org/10.3390/agriculture15192059 - 30 Sep 2025
Abstract
Global warming poses a growing threat to winter wheat production in Henan Province, a critical region for China’s food security, necessitating a quantitative assessment of climate impacts. This study aimed to quantify the dominant climatic drivers of winter wheat yield and assess its [...] Read more.
Global warming poses a growing threat to winter wheat production in Henan Province, a critical region for China’s food security, necessitating a quantitative assessment of climate impacts. This study aimed to quantify the dominant climatic drivers of winter wheat yield and assess its spatiotemporal evolution and future risks under climate change, thereby providing a scientific basis for targeted adaptation strategies. Thus, the APSIM model in combination with the Geodetector method was applied to quantify the spatiotemporal response of winter wheat yield to climate change in Henan Province under historical (1957–2020) and SSP245 scenarios. The study results demonstrated significant trends in climatic factors during the winter wheat growing season: precipitation decreased by an average of 3.09 mm/decade, sunshine hours declined by 36 h/decade, wind speed reduced by 0.447 m/(s·decade), and evaporation decreased by 14.7 mm/decade. In contrast, the accumulated temperature ≥ 0 °C significantly increased by 70.9 °C·d/decade. Geodetector analysis further identified accumulated temperature as the dominant climatic driver (q = 0.548), followed by precipitation (q = 0.340) and sunshine hours (q = 0.261). Yield simulations from 1960 to 2018 indicated that most regions maintained stable or slightly increasing yields (<50 kg·ha−1·decade−1), though some areas experienced fluctuating declines. Under future scenarios, major production regions in Henan Province (Zhengzhou, Xinxiang, Luoyang) are projected to see substantial yield increases, with growth rates of 147.2–148.9 kg·ha−1·decade−1. Specifically, Xinxiang is expected to achieve yields of 6200 kg·ha−1. The frequency of climate-induced negative yield years decreased by approximately 35% after 2003, highlighting the role of improved agricultural technologies in enhancing climate resilience. This study clarifies how multiple climatic factors jointly affect winter wheat yield, identifying rising accumulated temperature and water stress as key future constraints. It recommends optimizing varietal selection and cultivation practices according to regional climate patterns to improve policy relevance and local applicability. Full article
(This article belongs to the Section Ecosystem, Environment and Climate Change in Agriculture)
Show Figures

Figure 1

25 pages, 4270 KB  
Article
Policy Coordination and Green Transformation of STAR Market Enterprises Under “Dual Carbon” Goals
by Wenchao Feng, Yueyue Liu and Zhenxing Liu
Sustainability 2025, 17(19), 8790; https://doi.org/10.3390/su17198790 - 30 Sep 2025
Abstract
China’s dual carbon goals necessitate green transformation across industries, with STAR Market enterprises serving as crucial drivers of technological innovation. Existing studies predominantly focus on traditional sectors, overlooking dynamic policy interactions and structural heterogeneity in these technology-intensive firms. This study examines how coordinated [...] Read more.
China’s dual carbon goals necessitate green transformation across industries, with STAR Market enterprises serving as crucial drivers of technological innovation. Existing studies predominantly focus on traditional sectors, overlooking dynamic policy interactions and structural heterogeneity in these technology-intensive firms. This study examines how coordinated environmental tax reforms, green finance initiatives, and equity network synergies collectively shape enterprise green transition, using multi-period difference-in-differences and triple-difference models across 2019 Q3–2023 Q4. By integrating financial records, patent filings, and carbon emission data from 487 STAR Market firms, the analysis identifies environmental cost pressures as the dominant policy driver, complemented by delayed financing incentives and accelerated resource integration through corporate networks. Regional institutional environments further modulate these effects, with areas implementing stricter tax reforms exhibiting stronger outcomes. The findings advocate for adaptive policy designs that align fiscal instruments with regional innovation capacities, optimize financial tools for technology commercialization cycles, and leverage inter-firm networks to amplify sustainability efforts. These insights contribute to refining China’s climate governance framework for emerging technology sectors. Full article
Show Figures

Figure 1

15 pages, 1897 KB  
Article
Sources and Reactivity of Ambient VOCs on the Tibetan Plateau: Insights from a Multi-Site Campaign (2012–2014) for Assessing Decadal Change
by Fangkun Wu, Jie Sun, Yinghong Wang and Zirui Liu
Atmosphere 2025, 16(10), 1148; https://doi.org/10.3390/atmos16101148 - 30 Sep 2025
Abstract
Investigating atmospheric volatile organic compounds (VOCs) is critical for understanding their sources, chemical reactivity, and impacts on air quality, climate, and human health, especially in remote regions like the Tibetan Plateau where baseline data remains scarce. In this study, ambient VOCs species were [...] Read more.
Investigating atmospheric volatile organic compounds (VOCs) is critical for understanding their sources, chemical reactivity, and impacts on air quality, climate, and human health, especially in remote regions like the Tibetan Plateau where baseline data remains scarce. In this study, ambient VOCs species were simultaneously measured at four remote background sites on the Tibetan Plateau (Nyingchi, Namtso, Ngari, and Mount Everest) from 2012 to 2014 to investigate their concentration, composition, sources, and chemical reactivity. Weekly integrated samples were collected and analyzed using a Gas Chromatograph-Mass Spectrometer/Flame Ionization Detector (GC-MS/FID) system. The total VOC mixing ratios exhibited site-dependent variability, with the highest levels observed in Nyingchi, followed by Mount Everest, Ngari and Namtso. The VOC composition in those remote sites was dominated by alkanes (25.7–48.5%) and aromatics (11.4–34.7%), followed by halocarbons (19.1–28.1%) and alkenes (11.5–18.5%). A distinct seasonal trend was observed, with higher VOC concentrations in summer and lower levels in spring and autumn. Source analysis based on correlations between specific VOC species suggests that combustion emissions (e.g., biomass burning or residential heating) were a major contributor during winter and spring, while traffic-related emissions influenced summer VOC levels. In addition, long-range transport of pollutants from South Asia also significantly impacted VOC concentrations across the plateau. Furthermore, reactivity assessments indicated that alkenes were the dominant contributors to OH radical loss rates, whereas aromatics were the largest drivers of ozone formation potential (OFP). These findings highlight the complex interplay of local emissions and regional transport in shaping VOC chemistry in this high-altitude background environment, with implications for atmospheric oxidation capacity and secondary pollutant formation. Full article
Show Figures

Figure 1

Back to TopTop