Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (370)

Search Parameters:
Keywords = clayey soils

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 4097 KB  
Article
Experimental Study on the Rotary Adhesion of Shield Cutterhead Tunneling in Clay Strata at Different Temperatures
by Tao Zhang, Zhe Yuan, Jingchun Pang, Wenqiu Li and Zeen Wan
Buildings 2025, 15(20), 3657; https://doi.org/10.3390/buildings15203657 (registering DOI) - 11 Oct 2025
Viewed by 39
Abstract
In the process of shield tunneling in clayey strata, the fine-grained clay mineral components in the soil easily adhere to the cutter plate. The clay adhering to the cutterhead and the soil compartment then solidifies and hardens, which results in the production of [...] Read more.
In the process of shield tunneling in clayey strata, the fine-grained clay mineral components in the soil easily adhere to the cutter plate. The clay adhering to the cutterhead and the soil compartment then solidifies and hardens, which results in the production of mud cake and clogging. At present, research on cutter plates in clayey ground is limited and has focused mostly on static tests or simplified models. There is a lack of in-depth studies on the effect of temperature on clay adhesion, which is crucial for understanding the clogging risks. In this study, we independently researched and developed a rotary adhesion tester to investigate the adhesion effect and adhesion force change in a shield cutter plate under the influence of different temperatures, water contents (ω), and clay types, revealing the change rule of the adhesion effect under the joint influence of the temperature and the consistency index (Ic). This study provides experimental evidence and an empirical model for assessing the clogging risk in shield tunneling through clay strata, offering valuable insights that support the efficient operation of earth pressure balance (EPB) shields. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

15 pages, 2125 KB  
Article
Surface Mapping by RPAs for Ballast Optimization and Slip Reduction in Plowing Operations
by Lucas Santos Santana, Lucas Gabryel Maciel do Santos, Josiane Maria da Silva, Aldir Carpes Marques Filho, Francesco Toscano, Enio Farias de França e Silva, Alexandre Maniçoba da Rosa Ferraz Jardim, Thieres George Freire da Silva and Marco Antonio Zanella
AgriEngineering 2025, 7(10), 332; https://doi.org/10.3390/agriengineering7100332 - 3 Oct 2025
Viewed by 311
Abstract
Driving wheel slippage in agricultural tractors is influenced by soil moisture, density, and penetration resistance. These surface variations reflect post-tillage composition, enabling dynamic mapping via Remotely Piloted Aircraft (RPAs). This study evaluated ballast recommendations based on soil surface data and slippage percentages, correlating [...] Read more.
Driving wheel slippage in agricultural tractors is influenced by soil moisture, density, and penetration resistance. These surface variations reflect post-tillage composition, enabling dynamic mapping via Remotely Piloted Aircraft (RPAs). This study evaluated ballast recommendations based on soil surface data and slippage percentages, correlating added wheel weights at different speeds for a tractor-reversible plow system. Six 94.5 m2 quadrants were analyzed for slippage monitored by RPA (Mavic3M-RTK) pre- and post-agricultural operation overflights and soil sampling (moisture, density, penetration resistance). A 2 × 2 factorial scheme (F-test) assessed soil-surface attribute correlations and slippage under varying ballasts (52.5–57.5 kg/hp) and speeds. Results showed slippage ranged from 4.06% (52.5 kg/hp, fourth reduced gear) to 11.32% (57.5 kg/hp, same gear), with liquid ballast and gear selection significantly impacting performance in friable clayey soil. Digital Elevation Model (DEM) and spectral indices derived from RPA imagery, including Normalized Difference Red Edge (NDRE), Normalized Difference Water Index (NDWI), Bare Soil Index (BSI), Green–Red Vegetation Index (GRVI), Visible Atmospherically Resistant Index (VARI), and Slope, proved effective. The approach reduced tractor slippage from 11.32% (heavy ballast, 4th gear) to 4.06% (moderate ballast, 4th gear), showing clear improvement in traction performance. The integration of indices and slope metrics supported ballast adjustment strategies, particularly for secondary plowing operations, contributing to improved traction performance and overall operational efficiency. Full article
(This article belongs to the Special Issue Utilization and Development of Tractors in Agriculture)
Show Figures

Figure 1

35 pages, 7715 KB  
Article
Micro-Interface Slip Damping in a Compressed Coir Vibration Isolator
by Jem A. Rongong, Jin-Song Pei, Joseph P. Wright and Gerald A. Miller
Materials 2025, 18(19), 4521; https://doi.org/10.3390/ma18194521 - 29 Sep 2025
Viewed by 209
Abstract
The micro-interface slip damping mechanism is insensitive to temperature, making it suitable for applications where the operating environment makes viscoelastic polymers ineffective. Damping material systems that rely on micro-interface slip typically embody randomly disposed interlocking units leading to complex material behaviors. This work [...] Read more.
The micro-interface slip damping mechanism is insensitive to temperature, making it suitable for applications where the operating environment makes viscoelastic polymers ineffective. Damping material systems that rely on micro-interface slip typically embody randomly disposed interlocking units leading to complex material behaviors. This work studies a compressed coir vibration isolator that provides a lightweight, low cost and environmentally friendly alternative to common polymer devices. Under cyclic loading, it displays highly nonlinear hysteresis and a gradual change in properties based on the load history. The nonlinear hysteresis is captured with a Masing model, which has been shown to provide an adequate phenomenological representation of systems with large numbers of miniature stick-slip contacts. This study further explores a new way to enrich the Masing model by encoding time evolution using restoring force or displacement time integral, directly adopted from mem-models, a new family of models transferred from electrical engineering. In addition to using the data from the coir isolator, two additional datasets from clayey soil, another application of micro-interface slip damping, are used to validate the modeling approach. Full article
Show Figures

Figure 1

23 pages, 4205 KB  
Article
The Effects of Waste Tire Materials and Aerated Concrete Additives for Innovative Soil Stabilization
by Harun Devlet and Ertuğrul Ordu
Buildings 2025, 15(19), 3488; https://doi.org/10.3390/buildings15193488 - 26 Sep 2025
Viewed by 371
Abstract
Soil stabilization is a key process in geotechnical engineering, particularly for expansive clay soils that exhibit low strength and high volume-change potential. This study examines the use of waste tire powder (WTP) and autoclaved aerated concrete powder (ACP) as sustainable soil additives to [...] Read more.
Soil stabilization is a key process in geotechnical engineering, particularly for expansive clay soils that exhibit low strength and high volume-change potential. This study examines the use of waste tire powder (WTP) and autoclaved aerated concrete powder (ACP) as sustainable soil additives to improve mechanical performance while promoting sustainable waste recycling. Clayey soils from the Çorlu/Tekirdağ region were blended with varying proportions of WTP and ACP, and their properties were evaluated through Standard Proctor compaction, unconfined compressive strength (UCS), and California bearing ratio (CBR) tests. The results showed that UCS increased from 3.7 MPa to 4.5 MPa with 5% ACP, while CBR values rose from 21.3% to 29.8% with 17% ACP addition. Incorporating 2% WTP enhanced elasticity and reduced brittleness, although higher WTP contents (4%) lowered cohesion and strength. The optimum formulation, 2% WTP + 5% ACP, produced balanced improvements in strength, stiffness, and deformation resistance. The novelty of this research lies in establishing a hybrid stabilization mechanism that combines the elastic contribution of WTP with the pozzolanic bonding of ACP. Beyond technical improvements, recycling these industrial by-products mitigates environmental pollution, reduces disposal costs, and provides economic benefits. Thus, this study advances both the scientific understanding and practical application of sustainable soil stabilization. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

15 pages, 1327 KB  
Article
Analysis and Prediction of Building Deformation Characteristics Induced by Geological Hazards
by Xuesong Cheng, Qingyu Su, Jingjin Liu, Jibin Sun, Tianyi Luo and Gang Zheng
Buildings 2025, 15(19), 3472; https://doi.org/10.3390/buildings15193472 - 25 Sep 2025
Viewed by 156
Abstract
To address the building settlement issues induced by an urban geological hazard in a northern city, this study utilizes settlement monitoring data from 16 high-rise buildings. The non-uniform temporal data were processed using the Akima interpolation method to construct a settlement prediction model [...] Read more.
To address the building settlement issues induced by an urban geological hazard in a northern city, this study utilizes settlement monitoring data from 16 high-rise buildings. The non-uniform temporal data were processed using the Akima interpolation method to construct a settlement prediction model based on a backpropagation (BP) neural network. The model’s predictive performance was validated against traditional approaches, including the hyperbolic and exponential curve methods, and was further employed to estimate the stabilization time of building settlements. Additionally, spatiotemporal characteristics of settlement behavior under the influence of geological hazards were investigated through a comparative analysis of deformation data across the building group. The results demonstrate that the BP neural network model achieves a 58.3% improvement in predictive accuracy compared to traditional empirical methods, effectively capturing the settlement evolution of buildings. The model also provides reliable predictions for the time required for buildings to reach a stable state. The temporal evolution of building settlement exhibits a distinct three-stage pattern: (1) an initial abrupt phase dominated by rapid water and soil loss; (2) a rapid settlement phase primarily driven by the consolidation of sandy and clayey soils; and (3) a slow consolidation phase governed by the prolonged consolidation of cohesive soils. Spatially, building deformations show significant regional heterogeneity, and the existence of potential finger-like preferential pathways for water and soil loss appears to exert a substantial influence on differential settlements. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

17 pages, 2835 KB  
Article
Sustainable Soil Amendment: Effect of Reusing Saturated Dolomitic Calcareous Amendment (DCAS) on Chemical Properties of Two Types of Agricultural Soils
by Lisa Eliana Samudio Legal, Simeón Aguayo Trinidad, Pedro Gabriel Gamarra Alfonso, María Natalia Piol, Andrea Beatriz Saralegui, Jiam Pires Frigo and Andréia Cristina Furtado
Sustainability 2025, 17(19), 8557; https://doi.org/10.3390/su17198557 - 24 Sep 2025
Viewed by 305
Abstract
Replacing the linear process based on production, consumption, and disposal gives rise to the circular economy, in which materials are reincorporated into a new production process to create new amendments, following the model of sustainable agriculture. Through the circular economy approach, the aim [...] Read more.
Replacing the linear process based on production, consumption, and disposal gives rise to the circular economy, in which materials are reincorporated into a new production process to create new amendments, following the model of sustainable agriculture. Through the circular economy approach, the aim is to add value to the waste generated during the adsorption process by recovering and reusing it as sustainable soil amendments. The present study analyzes the effects of saturated dolomitic calcareous amendment (DCAS) on the chemical properties of sandy-textured and clayey-textured agricultural soils. For this purpose, the dolomitic calcareous amendment, saturated with nutrients from hydroponic effluent through an adsorption process, was reused, and its effects on the chemical properties of agricultural soils were evaluated during incubation periods of 30, 60, and 90 days and compared with other amendments. A completely randomized experimental design was used, applying 4 treatments with 5 replications, totaling 20 experimental units for each soil type (sandy and clayey): T1 (control), T2 (dolomitic calcareous amendment in natura—DCAN), T3 (saturated dolomitic calcareous amendment—DCAS), and T4 (granulated dolomitic calcareous amendment—DCAG). The chemical properties evaluated were: pH in water, exchangeable aluminum, exchangeable calcium and magnesium, and available phosphorus. An interaction test between treatments and incubation periods was performed for each soil type and analyzed through analysis of variance, with means compared using Tukey’s test (p < 0.05) in InfoStat software, version 2020I. Through statistical analysis, it was confirmed that there was both interaction and a time effect for the variables pH, exchangeable aluminum, and available phosphorus in both sandy and clayey soils. Furthermore, the results showed that the saturated dolomitic calcareous amendment—DCAS (T3)—had good compatibility with both soil types, highlighting its ability to improve soil chemical properties by increasing pH, and available phosphorus levels, as well as completely reducing exchangeable aluminum concentration. This indicates that the saturated dolomitic calcareous amendment (DCAS) derived from the adsorption of nutrients from hydroponic effluent, can be effectively used to amend soil chemical properties, thereby promoting more efficient and environmentally sustainable agriculture. Full article
Show Figures

Figure 1

22 pages, 4132 KB  
Article
Sustainable Stabilization of Clay Soil Using Lime and Oryza sativa-Waste-Derived Dried Solid Digestate
by Arunthathi Sendilvadivelu, Balaji Dhandapani, Sivapriya Vijayasimhan and Surya Prakash Pauldurai Kalaiselvi
Sustainability 2025, 17(18), 8447; https://doi.org/10.3390/su17188447 - 20 Sep 2025
Viewed by 530
Abstract
Clay-rich soils are stabilized using fly ash, cement, lime, or solid waste with chemical activators to improve strength and reduce moisture-induced settlement. This study explores the stabilization of clay using lime and dried solid digestate (DSD) derived from food waste to improve its [...] Read more.
Clay-rich soils are stabilized using fly ash, cement, lime, or solid waste with chemical activators to improve strength and reduce moisture-induced settlement. This study explores the stabilization of clay using lime and dried solid digestate (DSD) derived from food waste to improve its strength. A clay sample was treated with varying proportions of DSD (1–5%) along with 4.5% lime, by dry weight of soil. Samples were compacted at optimum moisture content and cured for periods of 0, 7, 14, and 28 days. The improvement in geotechnical behavior was assessed through Atterberg limits, unconfined compressive strength (UCS), and microscopic analyses, including X-ray diffraction (XRD), scanning electron microscopy (SEM), and Fourier-transform infrared spectroscopy (FTIR). Compared with untreated clay (62.03 kPa), the results show that adding 2% DSD and lime significantly increased compressive strength (446.5 kPa) and decreased plasticity by 69%. X-ray fluorescence (XRF) analysis revealed that the lime contained 81% of high calcium oxide (CaO), which supports pozzolanic and carbonation processes, whereas DSD served as a supplementary additive. Hence, the integration of DSD in soil stabilization offers a dual benefit: enhancing geotechnical performance and promoting environmental sustainability by diverting food waste from landfills and supporting circular resource use. Full article
(This article belongs to the Special Issue Solid Waste Management and Sustainable Environmental Remediation)
Show Figures

Graphical abstract

19 pages, 2231 KB  
Article
Mapping and Characterization of Planosols in the Omo-Gibe Basin, Southwestern Ethiopia
by Eyasu Elias, Alemayehu Regassa, Gudina Legesse Feyisa and Abreham Berta Aneseyee
Sustainability 2025, 17(18), 8341; https://doi.org/10.3390/su17188341 - 17 Sep 2025
Viewed by 450
Abstract
Planosols are seasonally waterlogged soils characterized by an abrupt transition from coarse-textured surface horizons to dense, clay-enriched subsoils. Despite the increased agricultural expansion in the Planosol landscapes, these soils have been largely overlooked in Ethiopia. The FAO soil map of Ethiopia (1:200,000 scale) [...] Read more.
Planosols are seasonally waterlogged soils characterized by an abrupt transition from coarse-textured surface horizons to dense, clay-enriched subsoils. Despite the increased agricultural expansion in the Planosol landscapes, these soils have been largely overlooked in Ethiopia. The FAO soil map of Ethiopia (1:200,000 scale) does not recognize the presence of Planosols. In contrast, the more recent digital soil map of Ethiopia, EthoSoilGrids v1.0, at a 250 spatial resolution, was not detailed enough to capture Planosol landscapes, reflecting their historical undersampling in the legacy data. To address this gap, we conducted a thorough mapping and characterization of Planosols in the Omo-Gibe basin, southwestern Ethiopian highlands. Using over 200 auger observations, 74 georeferenced soil profiles, 296 laboratory analyses, and Random Forest modeling, we produced a 30 m-resolution soil-landscape map. Our results show that Planosols cover about 18% of the basin, a substantial extent previously unrecognized in national exploratory maps. Morphologically, these soils exhibit abrupt textural change from the coarse-textured, light grey Ap/Eg horizon (about 30–40 cm thick) to a very clayey, grey–black Bssg/Bt horizon occurring below 40 cm depth. Analytical data on selected parameters show the following pattern: low clay contents (20–29%) and acidic pH (5.2–5.8) with relatively low CEC values (11–26 cmol/kg) in the surface horizons (Ap/Eg), but pronounced clay increase (37–74%), higher bulk density (1.3 g/cm3), higher pH (up to 6.5), and substantially higher CEC (37–47 cmol/kg) in the sub-surface horizons (Bss/Bt). In terms of soil fertility, Planosols are low in SOC, TN, and exchangeable K contents, but micronutrient levels are variable—high in Fe-Mn-Zn and low in B and Cu. The findings confirm the diagnostic features of WRB Planosols and align with regional East African averages, underscoring the reproducibility of our approach. By rectifying long-standing misclassifications and generating fine-scale, field-validated evidence on soil fertility constraints and management options, this study establishes a strong foundation for targeted soil management in Ethiopia. It offers transferable insights for Planosol-dominated agroecosystems across Eastern Africa. Globally, the dataset contributes to enriching the global scientific knowledge and evidence base on Planosols, thereby supporting their improved characterization and management. Full article
(This article belongs to the Special Issue The Sustainability of Agricultural Soils)
Show Figures

Figure 1

19 pages, 3845 KB  
Article
Image-Based Quantification of Soil Disturbance in Vane Shear Tests on Reconstituted Kaolinitic Clayey Soil
by Juan Carlos Ruge, Diego Caballero-Rojas, Fausto Molina-Gómez, Renato Pinto da Cunha and Diego Meléndez-Suarez
Geotechnics 2025, 5(3), 66; https://doi.org/10.3390/geotechnics5030066 - 17 Sep 2025
Viewed by 419
Abstract
The insertion into the soil stratum to be evaluated is the factor that most affects the results obtained by the vane shear test (VST). According to the literature, it has been identified that there is a disturbance in the fabric and even in [...] Read more.
The insertion into the soil stratum to be evaluated is the factor that most affects the results obtained by the vane shear test (VST). According to the literature, it has been identified that there is a disturbance in the fabric and even in the movement of soil particles around the probe. The current study allowed the VST to be carried out on kaolinitic clayey soils reconstituted in the laboratory at different historical preconsolidation artificial stresses. The influence of the disturbance on the alteration of the soil analysed is directly linked to the thickness of the vane blades and their corresponding vane area ratio (VA). For this reason, a digital image correlation (DIC) technique was proposed to analyse images taken during the test’s development. The alteration produced by the disturbance was recorded, and the result obtained was compared with previous studies. This analysis established the effect on the reconstituted samples by employing a disturbance parameter specific to this study. Full article
(This article belongs to the Special Issue Recent Advances in Geotechnical Engineering (3rd Edition))
Show Figures

Figure 1

29 pages, 23339 KB  
Article
Pullout Behaviour and Influencing Mechanisms of Desert Plant Roots in Clayey Sand During Thawing
by Xiaofei Yang, Qinglin Li, Shuailong Yu, Pengrui Feng, Meixue Zhang, Wenjuan Chen and Guang Yang
Plants 2025, 14(18), 2876; https://doi.org/10.3390/plants14182876 - 16 Sep 2025
Viewed by 489
Abstract
In cold and arid regions, the mechanical properties and influencing mechanisms of the root–soil interface during the thawing stage remain poorly understood. This study focuses on Alhagi sparsifolia root–clayey sand composites to investigate the effects of temperature (−10 °C to 25 °C), initial [...] Read more.
In cold and arid regions, the mechanical properties and influencing mechanisms of the root–soil interface during the thawing stage remain poorly understood. This study focuses on Alhagi sparsifolia root–clayey sand composites to investigate the effects of temperature (−10 °C to 25 °C), initial soil water content (4–12%), and naturally varying root diameter (4.50–5.05 mm) on root pullout behaviour, and integrates endoscopic macro-observation, environmental scanning electron microscopy (ESEM), soil water migration tests, and nuclear magnetic resonance (NMR) techniques to reveal the dominant influencing mechanisms. Key findings reveal the following: (1) An increase in soil water content from 4% to 12%, and a temperature rise from −10 °C to 25 °C led to a maximum reduction in the average peak pullout force (FT) of roots exceeding 95%. (2) There is a non-monotonic relationship between root diameter and pull-out force, which can be attributed to two distinct failure modes: a newly observed failure mode known as root bark peeling, occurring under high soil moisture conditions (≥8%), and a commonly observed failure mode referred to as partial soil detachment, occurring under low soil moisture conditions (≤6%). (3) The coupling effects of temperature and water content reveal that the increase in temperature predominantly contributes to strength loss (>63%) during the ice–water phase transition (−10 °C to 0 °C), while soil water content primarily influences root pullout behaviour in the liquid water stage (5 °C to 25 °C). (4) As the temperature rises, in soils with low water content (4–6%), the reinforcing effect of roots appears to stabilize at −1 °C, whereas in soils with high water content (8–12%), stabilization occurs only beyond 5 °C. These findings enhance the understanding of root–soil interactions in thawing environments and provide a theoretical basis for soil bioengineering techniques aimed at slope stabilization in cold and arid regions. Full article
(This article belongs to the Section Plant Response to Abiotic Stress and Climate Change)
Show Figures

Figure 1

20 pages, 4854 KB  
Article
Sustainable Talcum Powder: A Developing Solution for Reduction the Swelling Potential of Expansive Soil
by Mohamed Sakr, Ashraf Nazir, Waseim Azzam and Hesham Eleraky
Geosciences 2025, 15(9), 352; https://doi.org/10.3390/geosciences15090352 - 6 Sep 2025
Viewed by 697
Abstract
Expansive soils are clayey soils that undergo significant volume changes due to moisture content variations which can severely affect the stability of foundations and infrastructure. This study investigates the use of talcum powder as a novel stabilizing additive to reduce the swelling potential [...] Read more.
Expansive soils are clayey soils that undergo significant volume changes due to moisture content variations which can severely affect the stability of foundations and infrastructure. This study investigates the use of talcum powder as a novel stabilizing additive to reduce the swelling potential of expansive soils with particular focus on the behavior of the treated soil under curing conditions. Talcum powder concentrations of 5%, 10%, 15%, 20% and 25% by dry weight of soil was considered. A comprehensive series of laboratory tests were conducted, including swelling pressure, Atterberg limits, modified Proctor compaction and unconfined compressive strength at 4 curing times: 0 days, 7 days, 14 days and 28 days. In addition, mineralogical and microstructural analyses were carried out using X-ray diffraction (XRD) and scanning electron microscopy (SEM). Experimental results revealed that incorporating talcum powder at a content of 25% by dry weight effectively reduced the swelling pressure by 37.5%. The compression index decreases with the increase in the talcum powder content. The results highlight the material’s significant capability to enhance the engineering properties of expansive soils, particularly under curing conditions and offer a cost-effective and readily available solution for soil stabilization applications. Full article
(This article belongs to the Section Geomechanics)
Show Figures

Figure 1

17 pages, 4855 KB  
Article
The Combined Use of Fly Ash and Lime to Stabilize a Clayey Soil: A Sustainable and Promising Approach
by Marta Di Sante, Muhammad Khizar Khan, Luca Calò, Evelina Fratalocchi and Francesco Mazzieri
Geosciences 2025, 15(9), 346; https://doi.org/10.3390/geosciences15090346 - 3 Sep 2025
Viewed by 753
Abstract
The aim of the present note is to contribute to the search for sustainable binders to be used for soil stabilization purposes. Fly ash and quicklime are added to a clayey soil of low plasticity in different proportions; samples were prepared by wet [...] Read more.
The aim of the present note is to contribute to the search for sustainable binders to be used for soil stabilization purposes. Fly ash and quicklime are added to a clayey soil of low plasticity in different proportions; samples were prepared by wet mixing and Standard Proctor compaction of the soil–water–binder mixture. Permeability tests were carried out for the first 28 days of curing, varying the moulding water content of the investigated samples. Compressibility was evaluated through one-dimensional consolidation tests performed after 7 days of curing and shear strength was investigated at the same curing time. Reactions development was successfully monitored by measuring pH and small strain shear modulus by means of bender elements testing for the first 28 days of curing. Microstructural investigation through scanning electron microscope and Energy dispersive X-Ray Spectroscopy revealed the presence of pozzolanic products in the mixture, reflecting the reduction in compressibility and the improvement in the mechanical characteristics of the soil of concern, after the treatment. The addition of the combination of fly ash and quicklime allowed to enhance the draining capability of the mixtures, especially when the mixture is compacted at optimum water content. Full article
(This article belongs to the Section Geomechanics)
Show Figures

Figure 1

12 pages, 732 KB  
Article
Ecotoxicological Assessment of Soils Reclaimed with Waste
by Marta Bik-Małodzińska, Kamila Rybczyńska-Tkaczyk and Anna Jakubczyk
Appl. Sci. 2025, 15(16), 8770; https://doi.org/10.3390/app15168770 - 8 Aug 2025
Viewed by 293
Abstract
This study aimed to conduct an ecotoxicological assessment of soils reclaimed with waste, assessing the treatments’ impacts on both plants and the soils themselves. The reclamation experiment was conducted on the former sulfur mine “Jeziórko”. A microplot experiment was established on a slightly [...] Read more.
This study aimed to conduct an ecotoxicological assessment of soils reclaimed with waste, assessing the treatments’ impacts on both plants and the soils themselves. The reclamation experiment was conducted on the former sulfur mine “Jeziórko”. A microplot experiment was established on a slightly clayey sand to assess the possibilities of different technologies for applying mineral wool to degraded soil. The highest toxicity level was observed in the unreclaimed degraded soil. The M index value was 200%, indicating the death of half of the test organisms. At the same time, root growth inhibition reached 75%, indicating significantly limited root system development. The addition of lime and mineral fertilizers contributed to a slight reduction in toxicity—M = 250%, GI = 50%. Application of sewage sludge at a dose of 100 Mg·ha−1 significantly reduced environmental toxicity—M decreased to 333.3% and 500%, and GI to 35% and 10%, respectively. The addition of mineral wool resulted in further improvement. The best results were achieved in the variant where the soil was enriched with lime, sewage sludge and a large volume of mineral wool (400 m3·ha−1). The GI and M levels indicate that, in this variant, soil toxicity was practically eliminated. Full article
(This article belongs to the Special Issue Degraded Soil Treatment and Influence on Biodiversity)
Show Figures

Figure 1

21 pages, 4076 KB  
Article
Tissue Paper-Based Hydrogels for Soil Water Maintenance and Nitrogen Release
by Ana Carla Kuneski, Hima Haridevan, Elena Ninkovic, Ena McLeary, Darren Martin and Gunnar Kirchhof
Gels 2025, 11(8), 599; https://doi.org/10.3390/gels11080599 - 1 Aug 2025
Viewed by 669
Abstract
Hydrogels are widely known for their ability to increase soil water retention and for their potential slow nutrient release mechanism. They have been constantly improved to meet the growing demand for sustainability in agriculture. Research focused on the development of biodegradable hydrogels, produced [...] Read more.
Hydrogels are widely known for their ability to increase soil water retention and for their potential slow nutrient release mechanism. They have been constantly improved to meet the growing demand for sustainability in agriculture. Research focused on the development of biodegradable hydrogels, produced from industrial cellulose waste, are an ecological and efficient alternative soil ameliorant for the improvement of agricultural land. The objective of this study was to evaluate the impacts of two types of hydrogel (processed in a glass reactor versus a twin-screw extruder) on soils with different textures (clay and sandy loam), testing their water retention capacity, nitrogen leaching, and effects on seed germination. The methodology included the evaluation of water retention capacity at different pressures with different hydrogel addition rates in the soil, leaching tests in columns filled with soil and hydrogel layers, and germination tests of sorghum and corn. The results indicated that the addition of hydrogel significantly improved water retention, especially in sandy loam soils. The hydrogels also reduced nitrogen leaching, acting as nitrification inhibitors and limiting the conversion of ammonium to nitrate, with greater effectiveness in clayey soils. In the tested formulations, it was observed that the hydrogel doses applied to the columns favored nitrogen retention in the region close to the roots, directly influencing the initial stages of germination. This behavior highlights the potential of hydrogels as tools for directing nutrients in the soil profile, indicating that adjustments to the C:N ratio, nutrient release rate, and applied doses can optimize their application for different crops. Full article
Show Figures

Figure 1

21 pages, 1471 KB  
Article
Impact of Basalt Rock Powder on Ryegrass Growth and Nutrition on Sandy and Loamy Acid Soils
by Charles Desmalles, Lionel Jordan-Meille, Javier Hernandez, Cathy L. Thomas, Sarah Dunham, Feifei Deng, Steve P. McGrath and Stephan M. Haefele
Agronomy 2025, 15(8), 1791; https://doi.org/10.3390/agronomy15081791 - 25 Jul 2025
Viewed by 1644
Abstract
Enhanced weathering of silicate rocks in agriculture is an option for atmospheric CO2 removal and fertility improvement. The objective of our work is to characterise some of the agricultural consequences of a basaltic powder amendment on soil-crop systems. Two doses of basalt [...] Read more.
Enhanced weathering of silicate rocks in agriculture is an option for atmospheric CO2 removal and fertility improvement. The objective of our work is to characterise some of the agricultural consequences of a basaltic powder amendment on soil-crop systems. Two doses of basalt (80 and 160 t ha−1) were applied to two types of slightly acid soils (sandy or silty clayey), derived from long-term trials at Bordeaux (INRAE, France) and Rothamsted Research (England), respectively. For each soil, half of the pots were planted with ryegrass; the other half were left bare. Thus, the experiment had twelve treatments with four replications per treatment. Soil pH increased with the addition of basalt (+0.8 unit), with a 5% equivalence of that of reactive chalk. The basalt contained macro- and micronutrients. Some cations extractable in the basalt before being mixed to the soil became more extractable with increased weathering, independent of plant cover. Plant uptake generally increased for macronutrients and decreased for micronutrients, due to increased stock (macro) and reduced availability (micronutrients and P), related to pH increases. K supplied in the basalt was responsible for a significant increase in plant yield on the sandy soil, linked to an average basalt K utilisation efficiency of 33%. Our general conclusion is that rock dust applications have to be re-evaluated at each site with differing soil characteristics. Full article
(This article belongs to the Section Grassland and Pasture Science)
Show Figures

Figure 1

Back to TopTop