Pullout Behaviour and Influencing Mechanisms of Desert Plant Roots in Clayey Sand During Thawing
Abstract
1. Introduction
2. Materials and Methods
2.1. Test Material
2.2. Test Scheme
2.3. Sample Preparation
2.3.1. Root–Soil Composites for Pullout Testing
2.3.2. ESEM Samples
2.3.3. NMR Soil Samples
2.4. Test Method
2.4.1. Pullout Test During the Thawing Process
2.4.2. Endoscopic Imaging Test
2.4.3. ESEM Test
2.4.4. Soil Water Migration Test
2.4.5. NMR Test
3. Results
3.1. Effects of Root Diameter, Temperature and Soil Water Content on Root Pullout Behaviour
3.1.1. Effects of Root Diameter and Temperature on Root Pullout Behaviour
3.1.2. Effects of Soil Water Content on Root Pullout Behaviour
3.1.3. Evaluation of the Main Influencing Factors on Root Pullout Behaviour
3.2. Effects of Root–Soil Interface, Soil Water Distribution, Ice–Water Phase States and Pore Structure on Root Pullout Behaviour
3.2.1. Effects of the Root–Soil Interface on Root Pullout Behaviour
3.2.2. Effects of Soil Water Distribution Characteristics on Root Pullout Behaviour
3.2.3. Effects of Ice–Water Phase States and Pore Structure on the Pullout Behaviour of Roots
4. Discussion
4.1. The Unique Root Pullout Behaviour During Thawing
4.2. The Significance of Factors Influencing Root Pullout Behaviour During Thawing
5. Conclusions
- (1)
- The temperature, water content, and diameter are significant factors that influence root pullout behaviour. During the ice–water coexistence stage, which spans from −10 °C to 0 °C, temperature changes are the dominant influence. In the liquid water stage, ranging from 5 °C to 25 °C, the primary factor is soil water content. In both stages, the effect of root diameter is the weakest.
- (2)
- Rising temperature significantly weakens the root reinforcement effect, and the weakening becomes more severe with increasing soil water content. As the temperature increased from −10 °C to 25 °C and soil water content increased from 4% to 12%, these changes led to a maximum reduction in the average peak pullout force (FT) of roots exceeding 95%. During the ice–water phase transition stage (−10 °C to 0 °C), the FT of roots sharply decreased by more than 63%. Thus, these findings indicated that the sharp decline in root reinforcement capacity during the thawing period should be taken into account in slope engineering design in cold and arid regions.
- (3)
- Regarding the rapid decline in root reinforcement capacity during thawing, this study reveals that in soils with low water content (4–6%), the peak pullout force (FP) of roots tended to stabilize at −1 °C, while in soils with high water content (≥8%), stabilization occurred when the temperature exceeded 5 °C. This indicates that the FP values obtained at ≤−1 °C (low water content), ≤5 °C (high water content) and normal temperature are highly significant for the protection engineering of clayey sand slopes in arid and cold regions. They can facilitate more straightforward slope stability calculations and enhance the accuracy of numerical analyses.
- (4)
- A new failure mode has been discovered: root bark peeling that occurs under low-temperature conditions (≤0 °C) and high soil moisture conditions (≥8%). This finding suggests that in cold arid regions, especially on high-slope snow-covered areas, employing vegetation with strong root bark integrity and strong adhesion between the root bark and root core is essential for preventing slope failures caused by the weight of snow accumulation or other overburden stress increases.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Borrelli, P.; Panagos, P.; Alewell, C.; Ballabio, C.; Fagundes, H.d.O.; Haregeweyn, N.; Lugato, E.; Maerker, M.; Poesen, J.; Vanmaercke, M.; et al. Policy implications of multiple concurrent soil erosion processes in European farmland. Nat. Sustain. 2023, 6, 103–112. [Google Scholar] [CrossRef]
- Wang, Q.; Xu, C.; Ma, J.; Huang, Y.; Zhang, S.; Gao, H. Preliminary Analysis of the July 30, 2024, Wayanad Landslide Disaster in India: Causes and Impacts. Nat. Hazards Res. 2025; in press. [Google Scholar] [CrossRef]
- Han, J.B.; Jing, G.B.; Zhang, S.S.; Yu, Q.; Yao, M.X.; Kou, J.Y. Effects of infiltrated rain during the construction stage on the deformation law of a sulphated gravel embankment in regions with seasonally frozen soil. Soil Tillage Res. 2025, 250, 106507. [Google Scholar] [CrossRef]
- Liu, J.J.; Zhang, K.D.; Shi, W.B.; Yan, J.X. Effects of freeze–thaw on the detachment capacity of soils with different textures on the Loess Plateau, China. J. Hydrol. 2024, 644, 132082. [Google Scholar] [CrossRef]
- Kou, H.L.; Sun, Y.; Chen, Q.; Huang, J.M.; Zhang, X.X. Shear behavior of cold region clay-concrete interface under temperature-controlled direct shear tests. J. Build. Eng. 2024, 98, 111203. [Google Scholar] [CrossRef]
- Zhang, H.H.; Zhang, H.J.; Liu, Z.B.; Guo, X.K.; Tang, G.H.; Ma, X.F. Visualization of soil freezing phase transition and moisture migration using polymer optical fibers. Measurement 2024, 229, 114402. [Google Scholar] [CrossRef]
- Wang, Q.Y.; Tang, H.M.; An, P.J.; Fang, K.; Zhang, J.R.; Miao, M.H.; Tan, Q.W.; Huang, L.; Hu, S.M. Insight into the Permeability and Microstructure Evolution Mechanism of the Sliding Zone Soil: A Case Study from the Huangtupo Landslide, Three Gorges Reservoir, China. J. Earth Sci. 2024, 35, 941–954. [Google Scholar] [CrossRef]
- Xia, M.; Ren, G.M.; Yang, X.L. Mechanism of a catastrophic landslide occurred on May 12, 2019, Qinghai Province, China. Landslides 2021, 18, 707–720. [Google Scholar] [CrossRef]
- Keybondori, S.; Abdi, E.; Deljouei, A.; Cislaghi, A.; Shakeri, Z.; Etemad, V. Soil-bioengineering to stabilize gravel roadside slopes in the steep Hyrcanian Forests of Northern Iran. Ecol. Eng. 2025, 214, 107569. [Google Scholar] [CrossRef]
- Bischetti, G.B.; De Cesare, G.; Mickovski, S.B.; Rauch, H.P.; Schwarz, M.; Stangl, R. Design and temporal issues in Soil Bioengineering structures for the stabilisation of shallow soil movements. Ecol. Eng. 2021, 169, 106309. [Google Scholar] [CrossRef]
- Rey, F.; Bifulco, C.; Bischetti, G.B.; Bourrier, F.; De Cesare, G.; Florineth, F.; Graf, F.; Marden, M.; Mickovski, S.B.; Phillips, C.; et al. Soil and water bioengineering: Practice and research needs for reconciling natural hazard control and ecological restoration. Sci. Total Environ. 2019, 648, 1210–1218. [Google Scholar] [CrossRef]
- Liu, J.X.; Wang, B.; Duan, X.W.; Yang, Y.F.; Liu, G.B. Seasonal variation in soil erosion resistance to overland flow in gully-filled farmland on the Loess Plateau, China. Soil Tillage Res. 2022, 218, 105297. [Google Scholar] [CrossRef]
- Pang, L.H.; Tian, C.J.; Yuan, Q.Z.; Deng, W. Effects of different restoration years on soil carbon sequestration and water retention capacity in bamboo forest: A case study in Southwest China Karst. Ecol. Eng. 2025, 210, 107434. [Google Scholar] [CrossRef]
- Wang, H.; Zhao, C.Y.; Liu, Y.Y.; Chang, Y.P.; Huang, G.Z.; Zang, F. Exploring the spatiotemporal distribution and driving factors of vegetation canopy rainfall interception in the Qilian Mountains, Northwest China. CATENA 2024, 237, 107829. [Google Scholar] [CrossRef]
- Hao, G.L.; Wang, L.G.; Liu, X.F. Methods for Studying the Effect of Plant Roots on Soil Mechanical Reinforcement: A Review. J. Soil Sci. Plant Nutr. 2023, 23, 2893–2912. [Google Scholar] [CrossRef]
- Hu, J.H.; Wang, B.; Bai, L.Y.; Li, Y.W.; Zhang, X.; Liu, J.; Zhao, C.X. Quantifying the contribution of shrub roots to soil mechanical reinforcement using in situ shearing and assessing model reliability in coal mine subsidence areas, China. CATENA 2024, 246, 108459. [Google Scholar] [CrossRef]
- Preti, F.; Dani, A.; Noto, L.V.; Arnone, E. On the Leonardo’s rule for the assessment of root profile. Ecol. Eng. 2022, 179, 106620. [Google Scholar] [CrossRef]
- Marzini, L.; D’Addario, E.; Papasidero, M.P.; Chianucci, F.; Disperati, L. Influence of Root Reinforcement on Shallow Landslide Distribution: A Case Study in Garfagnana (Northern Tuscany, Italy). Geosciences 2023, 13, 326. [Google Scholar] [CrossRef]
- Song, B.Y.; Nakamura, D.; Kawaguchi, T.; Kawajiri, S.; Rui, D.H. Quantifying the shear behavior of fine-grained soil with herbaceous plant roots under freeze-thaw conditions using X-ray CT scan. Soil Tillage Res. 2025, 246, 106326. [Google Scholar] [CrossRef]
- Jeon, M.K.; Burrall, M.; Kwon, T.H.; DeJong, J.T.; Martinez, A. Architecture characterization of orchard trees for mechanical behavior investigations. Biogeotechnics 2025, 3, 100138. [Google Scholar] [CrossRef]
- Yang, L.; Cao, L.N.; Cao, T.; Xiang, H.Y.; He, C.G.; Li, J.; Zhang, X.Y.; Abu Dumusa, S.; Leng, Y. Riparian restoration in sandy zones with alfalfa as pioneer plant in initial stage of soil and water bioengineering. Ecol. Eng. 2024, 209, 107410. [Google Scholar] [CrossRef]
- Fan, C.C.; Lu, J.Z.; Chen, H.H. The pullout resistance of plant roots in the field at different soil water conditions and root geometries. CATENA 2021, 207, 105593. [Google Scholar] [CrossRef]
- Yang, Q.H.; Zhang, C.B.; Liu, P.C.; Jiang, J. The Role of Root Morphology and Pulling Direction in Pullout Resistance of Alfalfa Roots. Front. Plant Sci. 2021, 12, 580825. [Google Scholar] [CrossRef] [PubMed]
- Alam, S.; Manzur, T.; Borquist, E.; Williams, J.; Rogers, C.; Hall, D.; Patterson, W.B.; Higuera, J.; Eklund, E.; Wang, J.; et al. In-situ assessment of soil-root bonding strength to aid in preventing soil erosion. Soil Tillage Res. 2021, 213, 105140. [Google Scholar] [CrossRef]
- Waldron, L.J.; Dakessian, S. Soil reinforcement by roots: Calculation of increased soil shear resistance from root properties. Soil Sci. 1981, 132, 427–435. [Google Scholar] [CrossRef]
- Pollen, N.; Simon, A. Estimating the mechanical effects of riparian vegetation on stream bank stability using a fiber bundle model. Water Resour. Res. 2005, 41, 11. [Google Scholar] [CrossRef]
- Schwarz, M.; Cohen, D.; Or, D. Pullout tests of root analogs and natural root bundles in soil: Experiments and modeling. J. Geophys. Res.-Earth Surf. 2011, 116, 14. [Google Scholar] [CrossRef]
- Giadrossich, F.; Schwarz, M.; Cohen, D.; Preti, F.; Or, D. Mechanical interactions between neighbouring roots during pullout tests. Plant Soil 2013, 367, 391–406. [Google Scholar] [CrossRef]
- Cohen, D.; Schwarz, M.; Or, D. An analytical fiber bundle model for pullout mechanics of root bundles. J. Geophys. Res.-Earth Surf. 2011, 116, 20. [Google Scholar] [CrossRef]
- Meijer, G.J.; Wood, D.M.; Knappett, J.A.; Bengough, G.A.; Liang, T. Analysis of coupled axial and lateral deformation of roots in soil. Int. J. Numer. Anal. Methods Geomech. 2019, 43, 684–707. [Google Scholar] [CrossRef]
- De Baets, S.; Denbigh, T.D.G.; Smyth, K.M.; Eldridge, B.M.; Weldon, L.; Higgins, B.; Matyjaszkiewicz, A.; Meersmans, J.; Larson, E.R.; Chenchiah, I.; et al. Micro-scale interactions between Arabidopsis root hairs and soil particles influence soil erosion. Commun. Biol. 2020, 3, 164. [Google Scholar] [CrossRef] [PubMed]
- Mao, Z.J.; Bi, Y.L.; Geng, M.M.; An, N. Pull-out characteristics of herbaceous roots of alfalfa on the loess in different growth stages and their impacts on slope stability. Soil Tillage Res. 2023, 225, 105542. [Google Scholar] [CrossRef]
- Houette, T.; Dibia, M.; Mahabadi, N.; King, H. Pullout resistance of biomimetic root-inspired foundation systems. Acta Geotech. 2024, 19, 1191–1210. [Google Scholar] [CrossRef]
- Chen, Y.; Huang, Y.H.; Cai, Z.Y.; Su, A.S. Failure mechanism and treatment measures for expansive soil canals in cold regions: A case study of the Xinjiang Water Conveyance Canal in China. Cold Reg. Sci. Technol. 2023, 216, 103991. [Google Scholar] [CrossRef]
- Qin, Z.P.; Lai, Y.M.; Tian, Y.; Zhang, M.Y. Stability behavior of a reservoir soil bank slope under freeze-thaw cycles in cold regions. Cold Reg. Sci. Technol. 2021, 181, 103181. [Google Scholar] [CrossRef]
- Zhao, G.X.; Tariq, A.; Mu, Z.B.; Zhang, Z.H.; Graciano, C.; Cong, M.F.; Dong, X.P.; Sardans, J.; Al-Bakre, D.A.; Penuelas, J.; et al. Allocation Patterns and Strategies of Carbon, Nitrogen, and Phosphorus Densities in Three Typical Desert Plants. Plants 2025, 14, 1595. [Google Scholar] [CrossRef]
- Zhang, Y.L.; Du, Y.; Zhang, Z.H.; Islam, W.; Zeng, F.J. Variation in Root-Associated Microbial Communities among Three Different Plant Species in Natural Desert Ecosystem. Plants 2024, 13, 2468. [Google Scholar] [CrossRef]
- Tariq, A.; Ullah, A.; Sardans, J.; Zeng, F.J.; Graciano, C.; Li, X.Y.; Wang, W.Q.; Ahmed, Z.; Ali, S.; Zhang, Z.H.; et al. Alhagi sparsifolia: An ideal phreatophyte for combating desertification and land degradation. Sci. Total Environ. 2022, 844, 157228. [Google Scholar] [CrossRef]
- Du, Y.; Zhang, Y.L.; Guo, Z.C.; Zhang, Z.H.; Zeng, F.J. Vein Network and Climatic Factors Predict the Leaf Economic Spectrum of Desert Plants in Xinjiang, China. Plants 2023, 12, 581. [Google Scholar] [CrossRef]
- Gao, Q.F.; Yu, H.; Zeng, L.; Zhang, R.; Zhang, Y.H. Roles of vetiver roots in desiccation cracking and tensile strengths of near-surface lateritic soil. CATENA 2023, 226, 107068. [Google Scholar] [CrossRef]
- GB/T 50123-2019; Standard for Geotechnical Testing Method. National Standards of the People’s Republic of China: Beijing, China, 2019.
- Wendel, A.S.; Bauke, S.L.; Amelung, W.; Knief, C. Root-rhizosphere-soil interactions in biopores. Plant Soil 2022, 475, 253–277. [Google Scholar] [CrossRef]
- Haupenthal, A.; Duddek, P.; Benard, P.; Knott, M.; Carminati, A.; Jungkunst, H.F.; Kroener, E.; Brüggemann, N. A root mucilage analogue from chia seeds reduces soil gas diffusivity. Eur. J. Soil Sci. 2024, 75, e13576. [Google Scholar] [CrossRef]
- Mo, X.H.; Wang, M.K.; Zeng, H.; Wang, J.J. Systematic review and meta-analysis Rhizosheath: Distinct features and environmental functions. Geoderma 2023, 435, 116500. [Google Scholar] [CrossRef]
- Tao, Y.; Yang, P.; Yang, Z.H.; Yuan, H.S.; Zhang, T. Microscopic pore water freezing and thawing of saline silty clay under confining pressures using NMR. Cold Reg. Sci. Technol. 2025, 231, 104420. [Google Scholar] [CrossRef]
- Wang, E.; Zhou, T.; Jiang, H.; Liu, X.; Wu, C. Effects of carbon nanotubes treatment on engineering properties of sandy fine-grained soils subject to freeze-thaw cycles. Res. Cold Arid Reg. 2025, in press. [CrossRef]
- Zhao, Y.X.; Wu, L.Z.; Li, X. NMR-based pore water distribution characteristics of silty clay during the soil compaction, saturation, and drying processes. J. Hydrol. 2024, 636, 131240. [Google Scholar] [CrossRef]
- Hossain, T.; Rognon, P. Rate-dependent drag instability in granular materials. Granul. Matter 2020, 22, 72. [Google Scholar] [CrossRef]
- Cao, Y.; Su, X.; Zhou, Z.; Liu, J.; Chen, M.; Wang, N.; Zhu, B.; Wang, P.; Liu, F. Effects of root traits on shear performance of root-soil complex and soil reinforcement in the Loess Plateau. Soil Tillage Res. 2025, 252, 106625. [Google Scholar] [CrossRef]
- Hao, G.L.; Wang, L.G.; Liu, X.F.; Zhang, Y. Geometric distribution characteristics and mechanical reinforcement effect of herbaceous plant roots at different growth periods. Soil Tillage Res. 2023, 229, 105682. [Google Scholar] [CrossRef]
- Li, Y.L.; Yang, G.L.; Lin, Y.L.; Zhao, T.Y.; Duan, R.K.; Li, H.F. Research on the shallow landslide stability of vegetated slopes with expansive soils based on root morphology. Ecol. Model. 2024, 496, 110808. [Google Scholar] [CrossRef]
- Wang, X.; Hong, M.M.; Huang, Z.; Zhao, Y.F.; Ou, Y.S.; Ji, H.X.; Li, J. Biomechanical properties of plant root systems and their ability to stabilize slopes in geohazard-prone regions. Soil Tillage Res. 2019, 189, 148–157. [Google Scholar] [CrossRef]
- Yin, W.L.; Pan, Y.S.; Yang, M.; Li, Z.H. The root reinforcement on the slope under the condition of colonization of various herbaceous plants. Heliyon 2024, 10, e37108. [Google Scholar] [CrossRef]
- Zhu, J.Q.; Mao, Z.; Wang, Y.Q.; Wang, Y.J.; Tong, L.; Wang, K.; Langendoen, E.J.; Zheng, B.F. Soil moisture and hysteresis affect both magnitude and efficiency of root reinforcement. CATENA 2022, 219, 106574. [Google Scholar] [CrossRef]
- Kong, L.M.; Wang, Y.S.; Sun, W.J.; Qi, J.L. Influence of plasticity on unfrozen water content of frozen soils as determined by nuclear magnetic resonance. Cold Reg. Sci. Technol. 2020, 172, 102993. [Google Scholar] [CrossRef]
- Tian, H.H.; Wei, C.F.; Lai, Y.M.; Chen, P. Quantification of Water Content during Freeze–Thaw Cycles: A Nuclear Magnetic Resonance Based Method. Vadose Zone J. 2018, 17, 160124. [Google Scholar] [CrossRef]
- Chen, Y.Q.; Zhou, Z.F.; Wang, J.G.; Zhao, Y.; Dou, Z. Quantification and division of unfrozen water content during the freezing process and the influence of soil properties by low-field nuclear magnetic resonance. J. Hydrol. 2021, 602, 126719. [Google Scholar] [CrossRef]
- Zheng, S.F.; Li, X.; Zhao, Y.X.; Wang, M.; Li, X.K. Comparative study of unfrozen water content measurement principles and calculation methods based on NMR. Cold Reg. Sci. Technol. 2024, 226, 104255. [Google Scholar] [CrossRef]
- Li, Y.P.; Wang, Y.Q.; Wang, Y.J.; Ma, C. Effects of Vitex negundo root properties on soil resistance caused by pull-out forces at different positions around the stem. CATENA 2017, 158, 148–160. [Google Scholar] [CrossRef]
- Huang, Q.; Wang, Y.; Leung, A.K.; Zhu, J. Large-deformation simulations of root pull-out and breakage using material point method with a multi-level grid. Ecol. Eng. 2024, 201, 107216. [Google Scholar] [CrossRef]
- Lv, M.; Song, D.R.; Ni, J.J. Root-soil interface friction jointly amplified by high root density and shear deflection. Can. Geotech. J. 2025, 62, 1–17. [Google Scholar] [CrossRef]
- Ning, P.; Xia, X.; Jiang, Y.J. An Estimation Model of the Ultimate Shear Strength of Root-Permeated Soil, Fully Considering Interface Bonding. Forests 2023, 14, 819. [Google Scholar] [CrossRef]
- Tang, C.S.; Cheng, Q.; Leng, T.; Shi, B.; Zeng, H.; Inyang, H.I. Effects of wetting-drying cycles and desiccation cracks on mechanical behavior of an unsaturated soil. CATENA 2020, 194, 104721. [Google Scholar] [CrossRef]
- Wei, J.; Shi, B.L.; Li, J.L.; Li, S.S.; He, X.B. Shear strength of purple soil bunds under different soil water contents and dry densities: A case study in the Three Gorges Reservoir Area, China. CATENA 2018, 166, 124–133. [Google Scholar] [CrossRef]
- Zhao, J.L.; Peng, L.Y.; Hao, Z.L.; Wang, J.Y.; Wang, D.Y.; Qi, J.L. A novel large-scale direct shear apparatus considering size effects on strength of frozen coarse-grained soils. Transp. Geotech. 2024, 48, 104721. [Google Scholar] [CrossRef]
- Zhu, J.L.; El-Zein, A.; Hubble, T.C.T.; Miao, G.E. Effects of soil saturation and suction on root reinforcement performance: Pull-out experiments on six native Australian plants. Acta Geotech. 2025, 20, 2075–2092. [Google Scholar] [CrossRef]
- Wang, H.; Li, X.; Huang, W.H.; Vanapalli, S.K. Experimental investigations of the shear strength and deformation behavior of a frozen unsaturated silt. Cold Reg. Sci. Technol. 2024, 228, 104332. [Google Scholar] [CrossRef]
- Yang, Y.L.; Huang, S.B.; Yu, S.Y.; Cai, H.W.; Zhai, J.W. Experimental investigation on the temperature-dependent shear strength of frozen coarse-grained soil-rock interfaces by considering three-dimensional roughness. Transp. Geotech. 2024, 49, 101434. [Google Scholar] [CrossRef]
- Tang, G.H.; Ma, X.F.; Zhang, H.H.; Liu, Z.B.; He, Y.L. Real-time determination of soil suction in unsaturated clay based on POF sensor. Measurement 2025, 245, 116569. [Google Scholar] [CrossRef]
- He, P.; Hou, G.; Cao, H.; Yue, F. The influence of geosynthetic properties on their shear behaviors at the interface with frozen soil. Geotext. Geomembr. 2025, 53, 497–509. [Google Scholar] [CrossRef]
- Ren, Z.Q.; Dong, W.; Dong, X.R. Analysis of fractal and erosion characteristics of aeolian sand concrete pore structure under capillary absorption. J. Build. Eng. 2025, 104, 112258. [Google Scholar] [CrossRef]
- Shi, Y.J.; Kong, X.B.; Ma, W.; Zhang, L.H.; Yang, C.S.; Mu, Y.H. Experimental study on the water and heat dynamic characteristics of silty clay at different depths under temperature gradient. Case Stud. Therm. Eng. 2024, 57, 104366. [Google Scholar] [CrossRef]
- Shi, Y.J.; Zhang, L.H.; Mu, Y.H.; Ma, W.; Kong, X.B.; Yang, C.S. Dynamic characteristics of soil pore structure and water-heat variations during freeze-thaw process. Eng. Geol. 2024, 343, 107785. [Google Scholar] [CrossRef]
- Zhang, C.B.; Liu, Y.T.; Liu, P.C.; Jiang, J.; Yang, Q.H. Untangling the influence of soil moisture on root pullout property of alfafa plant. J. Arid Land 2020, 12, 666–675. [Google Scholar] [CrossRef]
- Wang, X.Y.; Qin, X.X.; Tan, J.H.; Yang, L.X.; Ou, L.X.; Duan, X.Q.; Deng, Y.S. Effect of the moisture content and dry density on the shear strength parameters of collapsing wall in hilly granite areas of South China. Int. Soil Water Conserv. Res. 2024, 12, 697–713. [Google Scholar] [CrossRef]
- Wei, Y.J.; Wu, X.L.; Xia, J.W.; Miller, G.A.; Cai, C.F.; Guo, Z.L.; Arash, H. The effect of water content on the shear strength characteristics of granitic soils in South China. Soil Tillage Res. 2019, 187, 50–59. [Google Scholar] [CrossRef]
- Schaefer, M.L.; Bogacki, W.; Lopez Caceres, M.L.; Kirschbauer, L.; Kato, C.; Kikuchi, S.-i. Influence of Slope aspect and vegetation on the soil moisture response to snowmelt in the German Alps. Hydrology 2024, 11, 101. [Google Scholar] [CrossRef]
- Demir, G.; Guswa, A.J.; Filipzik, J.; Metzger, J.C.; Römermann, C.; Hildebrandt, A. Root water uptake patterns are controlled by tree species interactions and soil water variability. Hydrol. Earth Syst. Sci. 2024, 28, 1441–1461. [Google Scholar] [CrossRef]
- Zhang, C.B.; Feng, X.H.; Qu, G.; Yang, Q.H.; Jiang, J. How Does Embedding Angle Affect Root-Soil Mechanical Interactions? Sustainability 2023, 15, 3709. [Google Scholar] [CrossRef]
- He, P.F.; Mu, Y.H.; Yang, Z.H.; Ma, W.; Dong, J.H.; Huang, Y.T. Freeze-thaw cycling impact on the shear behavior of frozen soil-concrete interface. Cold Reg. Sci. Technol. 2020, 173, 103024. [Google Scholar] [CrossRef]
- Zhang, K.; Yan, J.L.; Mu, Y.H.; Zhu, X.M.; Zhang, L.H. Global and Local Shear Behavior of the Frozen Soil-Concrete Interface: Effects of Temperature, Water Content, Normal Stress, and Shear Rate. Buildings 2024, 14, 3319. [Google Scholar] [CrossRef]
- Wei, X.; Shen, Y.J.; Wei, Z.L.; Wang, Y.; Wang, Y.Z. Resistivity and unfrozen water content of moraine soil at freezing temperatures: Experiments and thermodynamic modeling. Cold Reg. Sci. Technol. 2025, 235, 104494. [Google Scholar] [CrossRef]
- Ren, Z.F.; Zheng, Y.Y.; Li, B.; Liu, J.K.; Wei, P.C.; Yao, Z.Y. Characterization and quantitative analysis of unfrozen water at ultra-low temperatures: Insights from NMR and MD study. J. Hydrol. 2025, 647, 132354. [Google Scholar] [CrossRef]
- Zhu, X.W.; Tian, B.; Quan, L.; Li, L.H.; Zhou, K.; Wang, H.W. Thawing process of high-ice-content frozen soil subjected to saturated steam. Appl. Therm. Eng. 2024, 247, 123122. [Google Scholar] [CrossRef]
- DiBiagio, A.; Capobianco, V.; Oen, A.; Tallaksen, L.M. State-of-the-art: Parametrization of hydrological and mechanical reinforcement effects of vegetation in slope stability models for shallow landslides. Landslides 2024, 21, 2417–2446. [Google Scholar] [CrossRef]
- Liu, Q.; Huang, J.K.; Zhang, Z.W.; Liu, G.M.; Jiang, Q.N.; Liu, L.H.; Khan, I. Effect of Freeze-Thaw Cycles on the Shear Strength of Root-Soil Composite. Materials 2024, 17, 285. [Google Scholar] [CrossRef]
- Shi, Y.J.; Ma, W.; Zhang, L.H.; Yang, C.S.; Shang, F.; Chen, C. Change of pore water near the freezing front during soil freezing: Migration and mechanisms. Pedosphere 2024, 34, 770–782. [Google Scholar] [CrossRef]
- Wang, T.L.; Wang, H.H.; Hu, T.F.; Song, H.F. Experimental study on the mechanical properties of soil-structure interface under frozen conditions using an improved roughness algorithm. Cold Reg. Sci. Technol. 2019, 158, 62–68. [Google Scholar] [CrossRef]
- Meloche, F.; Gauthier, F.; Langlois, A. Snow mechanical property variability at the slope scale—Implication for snow mechanical modelling. Cryosphere 2024, 18, 1359–1380. [Google Scholar] [CrossRef]
- Subramanian, S.S.; Ishikawa, T.; Tokoro, T. Stability assessment approach for soil slopes in seasonal cold regions. Eng. Geol. 2017, 221, 154–169. [Google Scholar] [CrossRef]
- Chen, J.Y.; Yan, Y.; Liu, Y.L. Characteristics of water and heat change during the freezing-thawing process at an alpine steppe in seasonally frozen ground of the Northern Tibetan plateau. Front. Environ. Sci. 2024, 12, 1411704. [Google Scholar] [CrossRef]
- Shan, W.; Wu, J.X.; Guo, Y. Establishment and Experimental Validation of a Temperature-Unfrozen Water Content Model for Frozen Soil. Water 2025, 17, 846. [Google Scholar] [CrossRef]
- Cui, X.; Xu, G.; He, X.F.; Luo, D.Q. Influences of Seasonal Soil Moisture and Temperature on Vegetation Phenology in the Qilian Mountains. Remote Sens. 2022, 14, 3645. [Google Scholar] [CrossRef]
- Tariq, A.; Graciano, C.; Sardans, J.; Zeng, F.J.; Hughes, A.C.; Ahmed, Z.; Ullah, A.; Ali, S.; Gao, Y.J.; Peñuelas, J. Plant root mechanisms and their effects on carbon and nutrient accumulation in desert ecosystems under changes in land use and climate. New Phytol. 2024, 242, 916–934. [Google Scholar] [CrossRef]
- Zhu, Y.L.; Ishikawa, T.; Subramanian, S.S.; Luo, B. Early warning system for rainfall- and snowmelt-induced slope failure in seasonally cold regions. Soils Found. 2021, 61, 198–217. [Google Scholar] [CrossRef]
- Subramanian, S.S.; Fan, X.; Yunus, A.P.; van Asch, T.; Scaringi, G.; Xu, Q.; Dai, L.; Ishikawa, T.; Huang, R. A Sequentially Coupled Catchment-Scale Numerical Model for Snowmelt-Induced Soil Slope Instabilities. J. Geophys. Res.-Earth Surf. 2020, 125, e2019JF005468. [Google Scholar] [CrossRef]
- Xian, Y.; Wei, X.L.; Zhou, H.B.; Chen, N.S.; Liu, Y.; Liu, F.; Sun, H. Snowmelt-triggered reactivation of a loess landslide in Yili, Xinjiang, China: Mode and mechanism. Landslides 2022, 19, 1843–1860. [Google Scholar] [CrossRef]
- Wulamu, K.; Zhang, Z.Z.; Lv, Q.L.; Shi, G.M.; Zhang, Y.Y.; Liang, S.C. Triggering mechanics and early warning for snowmelt-rainfall-induced loess landslide. Sci. Rep. 2024, 14, 26787. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Zhai, P.M.; Qin, D.H. New perspectives on ‘warming-wetting’ trend in Xinjiang, China. Adv. Clim. Change Res. 2020, 11, 252–260. [Google Scholar] [CrossRef]
- Marzini, L.; Ciofini, D.; Agresti, J.; Ciaccheri, L.; D’Addario, E.; Disperati, L.; Siano, S.; Osticioli, I. Exploring the Potential of Portable Spectroscopic Techniques for the Biochemical Characterization of Roots in Shallow Landslides. Forests 2023, 14, 825. [Google Scholar] [CrossRef]
- Cislaghi, A. Exploring the variability in elastic properties of roots in Alpine tree species. J. For. Sci. 2021, 67, 338–356. [Google Scholar] [CrossRef]
Basic physical parameters of the experimental root | Natural water content | 64.50% |
Tissue density | 0.780 g/cm3 | |
Maximum water absorption | 385.30% | |
Maximum longitudinal shrinkage | 12.43% | |
Maximum radial shrinkage | 52.38% | |
Main physical properties of experimental soil | Natural water content | 8.15% |
Natural dry density | 1.576 g/cm3 | |
Optimum water content | 11.23% | |
Maximum dry density | 1.97 g/cm3 | |
Cohesion | 7.68 kPa | |
Friction angle | 15.26° | |
Liquid limit | 27.15% | |
Plastic limit | 12.03% | |
Plasticity index | 15.12 | |
Diameter 10% weigh sift | 0.0037 mm | |
Diameter 30% weigh sift | 0.0103 mm | |
Diameter 60% weigh sift | 0.1169 mm | |
Uniformity coefficient | 31.59 | |
Coefficient of curvature | 0.25 | |
USCS classification | Clayey sand (SC) |
Parameter | Value |
---|---|
Pullout speed (mm/min) | 20 |
Root diameter (mm) | 4.50–4.55, 4.55–4.65, 4.65–4.75, 4.75–4.85, 4.85–4.95, 4.95–5.05 |
Root embedment depth (mm) | 80 |
Soil water content (%) | 4, 6, 8, 10, 12 |
Soil dry density (g/cm3) | 1.576 |
Root–soil composite volume (cm3) | 512 |
Test temperature (°C) | −10, −5, −1, 0, 5, 25 |
Pre-freezing temperature (°C) | −14, −9, −5, −4, 1, 25 |
Freezing time (h) | 4 |
Total number of samples | 180 |
Test Type | Parameter | Value |
---|---|---|
Endoscopic imaging test | Root diameter (mm) | 4.95–5.05 |
Soil water content (%) | 4, 6, 8, 10, 12 | |
Thawing temperature (°C) | −10, −5, −1, 0, 5, 25 | |
Total number of samples | 30 | |
ESEM test | Soil water content (%) | 12 |
Environmental temperature (°C) | −10 | |
Total number of samples | 3 | |
Soil water migration test | Soil water content (%) | 4, 6, 8, 10, 12 |
Thawing temperature (°C) | −10, −5, −1, 0, 5, 25 | |
Sampling position | a, b, c | |
Sampling depth (mm) | 80 | |
Total number of samples | 90 | |
NMR test | Soil water content (%) | 4, 6, 8, 10, 12 |
Soil dry density (g/cm3) | 1.576 | |
Thawing temperature (°C) | −15, −10, −7.5, −5, −3, −2, −1.5, −1, −0.5, 0, 5 | |
Total number of samples | 5 |
Parameter | Condition 1 | Condition 2 | Condition 3 | Condition 4 | Condition 5 | Condition 6 |
---|---|---|---|---|---|---|
Pre-freezing temperature (°C) | −14 | −9 | −5 | −4 | 1 | 25 |
Room-temperature thawing | ⬇ | ⬇ | ⬇ | ⬇ | ⬇ | ⬇ |
Test temperature (°C) | −10 | −5 | −1 | 0 | 5 | 25 |
Thawing Phase | Variable | Unstandardized Coefficient (B) | Std. Error | Standardized Coefficient (Beta) | p-Value | R2 | F Value |
---|---|---|---|---|---|---|---|
Ice–water coexistence (−10 °C to 0 °C) | Constant | −129.310 | 68.555 | - | 0.062 | 0.873 | 266.932 ** |
Root diameter | 33.829 | 14.317 | 0.078 | 0.020 * | |||
Temperature | −16.756 | 0.603 | −0.918 | 0.000 ** | |||
Soil water content | 397.045 | 83.883 | 0.156 | 0.000 ** | |||
Liquid water phase (5 °C to 25 °C) | Constant | 27.499 | 33.919 | - | 0.421 | 0.812 | 80.700 ** |
Root diameter | 13.682 | 7.044 | 0.113 | 0.057 | |||
Temperature | 0.035 | 0.119 | 0.017 | 0.768 | |||
Soil water content | −644.112 | 42.067 | −0.888 | 0.000 ** |
Soil Sample | Ice Content (%) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
−15 °C | −10 °C | −7.5 °C | −5 °C | −3 °C | −2 °C | −1.5 °C | −1 °C | −0.5 °C | 0 °C | 5 °C | |
12% | 9.42 | 9.09 | 8.81 | 8.31 | 7.45 | 6.25 | 5.02 | 4.11 | 2.68 | 1.56 | 0.00 |
10% | 7.14 | 6.73 | 6.38 | 5.86 | 5.05 | 4.38 | 3.93 | 3.45 | 2.28 | 0.65 | 0.00 |
8% | 5.02 | 4.55 | 4.21 | 3.55 | 2.65 | 2.05 | 1.69 | 1.08 | 0.60 | 0.38 | 0.00 |
6% | 2.03 | 1.52 | 1.15 | 0.70 | 0.32 | 0.19 | 0.14 | 0.12 | 0.11 | 0.08 | 0.00 |
4% | 0.85 | 0.62 | 0.45 | 0.25 | 0.16 | 0.10 | 0.08 | 0.06 | 0.05 | 0.04 | 0.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, X.; Li, Q.; Yu, S.; Feng, P.; Zhang, M.; Chen, W.; Yang, G. Pullout Behaviour and Influencing Mechanisms of Desert Plant Roots in Clayey Sand During Thawing. Plants 2025, 14, 2876. https://doi.org/10.3390/plants14182876
Yang X, Li Q, Yu S, Feng P, Zhang M, Chen W, Yang G. Pullout Behaviour and Influencing Mechanisms of Desert Plant Roots in Clayey Sand During Thawing. Plants. 2025; 14(18):2876. https://doi.org/10.3390/plants14182876
Chicago/Turabian StyleYang, Xiaofei, Qinglin Li, Shuailong Yu, Pengrui Feng, Meixue Zhang, Wenjuan Chen, and Guang Yang. 2025. "Pullout Behaviour and Influencing Mechanisms of Desert Plant Roots in Clayey Sand During Thawing" Plants 14, no. 18: 2876. https://doi.org/10.3390/plants14182876
APA StyleYang, X., Li, Q., Yu, S., Feng, P., Zhang, M., Chen, W., & Yang, G. (2025). Pullout Behaviour and Influencing Mechanisms of Desert Plant Roots in Clayey Sand During Thawing. Plants, 14(18), 2876. https://doi.org/10.3390/plants14182876