Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (47)

Search Parameters:
Keywords = clay particle migration

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 5394 KB  
Article
Study on Time-Varying Mechanism of Reservoir Properties During Long-Term Water Flooding
by Xiaoping An, Yufen Zhu, Xiqun Tan, Jingyi Bi and Chengqian Tan
Energies 2025, 18(24), 6488; https://doi.org/10.3390/en18246488 - 11 Dec 2025
Viewed by 325
Abstract
Long-term water flooding is a primary development method for oilfields, yet the heterogeneous evolution mechanism of reservoir properties during prolonged water injection remains poorly understood—particularly in the medium-high water cut stage, where the impact of pore-throat network changes on seepage capacity remains controversial. [...] Read more.
Long-term water flooding is a primary development method for oilfields, yet the heterogeneous evolution mechanism of reservoir properties during prolonged water injection remains poorly understood—particularly in the medium-high water cut stage, where the impact of pore-throat network changes on seepage capacity remains controversial. Its reservoir property evolution is highly representative of and provides a valuable reference for similar oilfields. Focusing on the 16-year developed WU Oilfield (long-term water flooding, middle-high water cut stage), its reservoir property evolution exhibits typical reference value for similar oilfields. To reveal the time-varying laws and microscopic mechanism of reservoir properties during long-term water flooding, this study systematically investigated the changes in porosity, permeability, pore throat characteristics, clay content, and oil recovery of high-permeability and low-permeability cores under different injected water volumes (up to 500 pore volumes) through laboratory core displacement experiments. The experimental results showed that with increasing injected water volume, the permeability of high-permeability cores increased by 27.3%, with an overall 21.6% porosity increase in both high and low-permeability cores, and the oil recovery rate of high-permeability cores increased to 15%. In contrast, the permeability of low-permeability cores decreased by 22.2%, with porosity showing a synchronous overall increasing trend, and the oil recovery rate decreased by 10%. Microscopic analysis revealed an overall 7.34% decrease in clay content, and this property difference mainly resulted from the polarization of pore throat network connectivity: large pores in high-permeability cores further expanded due to clay migration and particle transport, while small pores in low-permeability cores gradually became occluded due to clay plugging and authigenic mineral precipitation. This study clarifies the evolution mechanism of reservoir heterogeneity during long-term water flooding and provides a theoretical basis for optimizing water flooding development plans and improving oil and gas recovery. Full article
(This article belongs to the Special Issue New Advances in Oil, Gas and Geothermal Reservoirs—3rd Edition)
Show Figures

Figure 1

21 pages, 2876 KB  
Article
Coupled Water–Nitrogen Transport and Multivariate Prediction Models for Muddy Water Film Hole Irrigation
by Feilong Jie and Youliang Peng
Appl. Sci. 2025, 15(23), 12765; https://doi.org/10.3390/app152312765 - 2 Dec 2025
Viewed by 391
Abstract
Against the backdrop of global water scarcity, utilizing sediment-laden river water for agricultural irrigation is a critical strategy for ensuring food security. However, the associated water and nitrogen transport processes are influenced by the coupled effects of multiple factors, and the governing mechanisms [...] Read more.
Against the backdrop of global water scarcity, utilizing sediment-laden river water for agricultural irrigation is a critical strategy for ensuring food security. However, the associated water and nitrogen transport processes are influenced by the coupled effects of multiple factors, and the governing mechanisms are not yet fully understood. To investigate the coupled effects of muddy water sediment concentration (ρ), physical clay content (d0.01), applied nitrogen concentration (N), and pressure head (H) on infiltration characteristics during film hole irrigation, this study conducted an indoor soil-box experiment using an orthogonal design to analyze soil water and nitrogen transport dynamics. Results indicated that sediment properties were the dominant factors governing infiltration, with their relative influence on cumulative infiltration following the order ρ > d0.01 > H > N. ρ and d0.01 strongly inhibited infiltration; for instance, an increase in ρ from 3% to 9% reduced the initial infiltration rate by as much as 49.3%. Conversely, H and N exhibited a slight promoting effect. High muddy water sediment concentration and physical clay content significantly restricted water and nitrogen transport, causing substantial amounts of ammonium nitrogen (NH4+-N) to be retained within the surface soil layer adjacent to the irrigation hole. Paradoxically, the same factors that reduced infiltration (ρ and d0.01) led to a significant increase in the average change in volumetric water content (Δθ) within the wetted soil volume. Based on these findings, multivariate power function models were developed to predict key parameters. The models demonstrated high predictive accuracy, with coefficients of determination (R2) of 0.9715 for cumulative infiltration, 0.94 for wetting front migration, and 0.9758 for Δθ, and validation errors were within acceptable limits. In conclusion, the film hole irrigation process is predominantly governed by physical clogging from sediment particles, a mechanism that decisively controls the spatial distribution of water and nitrogen. Furthermore, the slight enhancement of infiltration by nitrogen fertilizer suggests a potential physicochemical mechanism, possibly involving ion-induced flocculation of clay particles. The models developed in this study provide a quantitative basis for precision fertigation management in China’s Yellow River irrigation district and other regions with similar conditions. Full article
Show Figures

Figure 1

20 pages, 10921 KB  
Article
Digital Core Analysis on Water Sensitivity Mechanism and Pore Structure Evolution of Low-Clay Tight Conglomerate
by Dunqing Liu, Keji Chen and Erhan Shi
Appl. Sci. 2025, 15(22), 12136; https://doi.org/10.3390/app152212136 - 15 Nov 2025
Viewed by 418
Abstract
This study investigates the mechanisms behind strong water sensitivity in some low-clay-mineral-content tight conglomerate reservoirs in China’s Mahu Sag. Using core-scale water sensitivity tests, mineral analysis, in situ micro-CT scanning, and digital core techniques, we analyzed how water sensitivity alters pore structures across [...] Read more.
This study investigates the mechanisms behind strong water sensitivity in some low-clay-mineral-content tight conglomerate reservoirs in China’s Mahu Sag. Using core-scale water sensitivity tests, mineral analysis, in situ micro-CT scanning, and digital core techniques, we analyzed how water sensitivity alters pore structures across cores of varying permeability. Key findings include the following: (1) Water sensitivity damage increases as initial gas permeability decreases. (2) Despite low clay content, significant water sensitivity arises from the combined effect of water and velocity sensitivity, driven mainly by illite and kaolinite concentrated in gravel-edge fractures and key flow channels. (3) Water sensitivity causes non-uniform pore structure changes—some macropores and throats enlarge locally, reflecting heterogeneity. (4) Structural responses differ by permeability: medium–low permeability cores suffer from clay mineral swelling and particle migration, whereas high-permeability cores resist overall damage and may even have main flow paths enhanced by flushing. (5) Water sensitivity mainly degrades smaller pores but can improve larger ones, with the critical pore-size threshold between macro- and micro-pores inversely related to permeability. This work clarifies the pore-scale mechanisms of water sensitivity in some low-clay-mineral-content tight conglomerates, and can provide guidance for the optimization of water types injected into similar conglomerate reservoirs. Full article
(This article belongs to the Special Issue New Insights into Digital Rock Physics)
Show Figures

Figure 1

24 pages, 5017 KB  
Review
Clay Particle Migration and Associated Permeability Damage in Natural Gas Hydrate-Bearing Clayey-Silty Sediments: A Review
by Zhuangzhuang Wang, Zhao Cui, Liang Kong and Zhimin Zhang
J. Mar. Sci. Eng. 2025, 13(11), 2054; https://doi.org/10.3390/jmse13112054 - 27 Oct 2025
Viewed by 741
Abstract
Natural gas hydrate (NGH) is a highly promising alternative energy source for the future, which is widely distributed in marine clayey-silty sediments. Permeability is the key factor determining the efficiency of NGH exploitation. However, clay particles can migrate and clog the pores, leading [...] Read more.
Natural gas hydrate (NGH) is a highly promising alternative energy source for the future, which is widely distributed in marine clayey-silty sediments. Permeability is the key factor determining the efficiency of NGH exploitation. However, clay particles can migrate and clog the pores, leading to a decrease in reservoir permeability during the development of NGH. This review summarizes the permeability damage law during the NGH production from clayey-silty sediments, with a focus on the influence of clay particle migration. For the scientific problem of clay particle migration, the governing equation of clay particle migration was first clarified through force balance analysis. Then, the influencing factors and laws of clay particle migration were systematically summarized from two aspects: internal factors such as clay type, content, particle size, reservoir heterogeneity, and external conditions such as salinity, flow rate, temperature, pH, and stress field. The detachment, migration, aggregation and clogging characteristics of clay particles in porous media were observed and outlined based on microscopic visualization technology. Thirdly, the numerical simulation methods of particle migration were summarized, and the permeability damage laws and its influence mechanism were analyzed. Finally, the limitations on clay particle migration and permeability damage in the current research were discussed, and corresponding suggestions were given to promote the efficient development of NGH. Full article
(This article belongs to the Special Issue Advances in Marine Gas Hydrates)
Show Figures

Figure 1

23 pages, 5872 KB  
Article
Room-Temperature Self-Healing Polyurethanes Containing Halloysite Clay with Enhanced Mechanical Properties
by Eva Dauder-Bosch and José Miguel Martín-Martínez
Polymers 2025, 17(20), 2807; https://doi.org/10.3390/polym17202807 - 21 Oct 2025
Viewed by 683
Abstract
Room-temperature self-healing polyurethanes (PUs) generally show limited mechanical properties. In order to improve the mechanical properties of PUs without sacrificing their self-healing ability, in this study, different amounts of halloysite clay filler were added. Thus, intrinsically self-healing PUs were synthesized using polycarbonate diol [...] Read more.
Room-temperature self-healing polyurethanes (PUs) generally show limited mechanical properties. In order to improve the mechanical properties of PUs without sacrificing their self-healing ability, in this study, different amounts of halloysite clay filler were added. Thus, intrinsically self-healing PUs were synthesized using polycarbonate diol polyol, aliphatic diisocyanate, 1,4-butanediol, and different amounts (0.5–10 wt.%) of thermally treated halloysite. During synthesis, the halloysite clay was added to the polyol. The structural, thermal, viscoelastic, and mechanical properties of the resulting halloysite-filled PUs were evaluated. All halloysite-filled PUs retained their room-temperature self-healing capability while exhibiting improved mechanical strength. The PU with 0.5 wt.% halloysite (E0.5) showed the most balanced performance, with well-dispersed halloysite nanotubes intercalated within the soft segments, enhancing chain mobility and soft segment ordering. Higher halloysite loadings (1–3 wt.%) led to increased mechanical properties but also some round clay particle agglomeration and surface migration, leading to limited halloysite–polyurethane interactions. The addition of more than 3 wt.% halloysite did not result in further improvements in mechanical properties. The findings of this study provide new insight into the filler–polymer interaction mechanism and establish a foundation for the design of multifunctional PUs with both autonomous self-repair and enhanced mechanical performance. Full article
(This article belongs to the Section Smart and Functional Polymers)
Show Figures

Graphical abstract

34 pages, 15906 KB  
Article
Investigation of the Relationship Between Reservoir Sensitivity and Injectivity Impedance in Low-Permeability Reservoirs
by Baolei Liu, Youqi Wang, Hongmin Yu, Xiang Li and Lingfeng Zhao
Processes 2025, 13(10), 3283; https://doi.org/10.3390/pr13103283 - 14 Oct 2025
Viewed by 601
Abstract
In low-permeability reservoirs, studying reservoir sensitivity is crucial for optimizing water flooding, as it identifies detrimental mineral-fluid interactions that can cause formation damage and reduce injection efficiency. However, existing diagnostic methods for sensitivity-induced damage rely on post-facto pressure monitoring and lack a quantitative [...] Read more.
In low-permeability reservoirs, studying reservoir sensitivity is crucial for optimizing water flooding, as it identifies detrimental mineral-fluid interactions that can cause formation damage and reduce injection efficiency. However, existing diagnostic methods for sensitivity-induced damage rely on post-facto pressure monitoring and lack a quantitative relationship between sensitivity factors and water injectivity impairment. Furthermore, correlating microscale interactions with macroscopic injectivity parameters remains challenging, causing current models to inadequately represent actual injection behavior. This study combines microscopic techniques (e.g., SEM, XRD, NMR) with macroscopic core flooding experiments under various sensitivity-inducing conditions to analyze the influence of reservoir mineral composition on flow capacity, evaluate formation sensitivity, and assess the dynamic impact on water injectivity. The quantitative relationship between clay minerals and injectivity impairment in low-permeability reservoirs is also investigated. The results indicate that flow capacity is predominantly governed by the type and content of sensitive minerals. In water-sensitive reservoirs, water injection induces clay swelling and migration, leading to flow path reconfiguration and water-blocking effects. In salt-sensitive formations, high-salinity water promotes salt precipitation within pore throats, reducing permeability. In velocity-sensitive formations, fine particle migration causes flow resistance to initially increase slightly and then gradually decline with continued injection. Acidizing generally enhances pore connectivity but induces pore-throat plugging in chlorite-rich reservoirs. Alkaline fluids can exacerbate heterogeneity and generate precipitates, though appropriate concentrations may improve connectivity. Under low effective stress, rock dilation increases porosity and permeability, while elevated stress causes compaction, increasing flow impedance. Full article
(This article belongs to the Special Issue Advanced Strategies in Enhanced Oil Recovery: Theory and Technology)
Show Figures

Figure 1

15 pages, 6518 KB  
Article
Research on Damage Characteristics of Clean Fracturing Fluid in Deep Coal Seam
by Jinqiao Wu, Anbang Liu, Fengsan Zhang, Yiting Liu, Le Yan, Yenan Jie and Chen Wang
Processes 2025, 13(9), 2669; https://doi.org/10.3390/pr13092669 - 22 Aug 2025
Cited by 2 | Viewed by 782
Abstract
This study focuses on investigating the damage characteristics and mechanisms of Slickwo clean fracturing fluid to the reservoir by using the deep coal seam in the Yan’an gas field as the research subject. During the experiment, fracturing fluids with varying A content were [...] Read more.
This study focuses on investigating the damage characteristics and mechanisms of Slickwo clean fracturing fluid to the reservoir by using the deep coal seam in the Yan’an gas field as the research subject. During the experiment, fracturing fluids with varying A content were employed to displace coal and rock cores. The impact of these fluids on the permeability and pore structure of coal and rock was analyzed using a combination of nuclear magnetic resonance and high-pressure mercury injection technology. The findings indicate that the permeability damage rates of cores Y-1 and Y-2 post-displacement are 48.4% and 53.6% correspondingly, with the damage worsening as the agent A content increases. NMR data reveals that the fracturing fluid exhibits the highest retention in small pores, followed by medium-sized pores, and the least in large pores. The rise in agent A content enhanced the retention degree in individual pore throats and overall, increasing from 62.24% to 68.74%. The escalation in agent A content results in higher macromolecular residues, causing seepage channel blockages and enhancing the adsorption properties between fracturing fluid and coal rock. This phenomenon leads to inadequate backflow, primarily in smaller apertures. Simultaneously, the interaction between the gel breaker and clay minerals triggers particle migration, blockage, and expansion, consequently diminishing the permeability of coal and rock and inducing specific damages. Full article
(This article belongs to the Section Chemical Processes and Systems)
Show Figures

Graphical abstract

23 pages, 6480 KB  
Article
Mechanism Analysis and Evaluation of Formation Physical Property Damage in CO2 Flooding in Tight Sandstone Reservoirs of Ordos Basin, China
by Qinghua Shang, Yuxia Wang, Dengfeng Wei and Longlong Chen
Processes 2025, 13(7), 2320; https://doi.org/10.3390/pr13072320 - 21 Jul 2025
Cited by 1 | Viewed by 1069
Abstract
Capturing CO2 emitted by coal chemical enterprises and injecting it into oil reservoirs not only effectively improves the recovery rate and development efficiency of tight oil reservoirs in the Ordos Basin but also addresses the carbon emission problem constraining the development of [...] Read more.
Capturing CO2 emitted by coal chemical enterprises and injecting it into oil reservoirs not only effectively improves the recovery rate and development efficiency of tight oil reservoirs in the Ordos Basin but also addresses the carbon emission problem constraining the development of the region. Since initiating field experiments in 2012, the Ordos Basin has become a significant base for CCUS (Carbon capture, Utilization, and Storage) technology application and demonstration in China. However, over the years, projects have primarily focused on enhancing the recovery rate of CO2 flooding, while issues such as potential reservoir damage and its extent have received insufficient attention. This oversight hinder the long-term development and promotion of CO2 flooding technology in the region. Experimental results were comprehensively analyzed using techniques including nuclear magnetic resonance (NMR), X-ray diffraction (XRD), scanning electron microscopy (SEM), inductively coupled plasma (ICP), and ion chromography (IG). The findings indicate that under current reservoir temperature and pressure conditions, significant asphaltene deposition and calcium carbonate precipitation do not occur during CO2 flooding. The reservoir’s characteristics-high feldspar content, low carbon mineral content, and low clay mineral content determine that the primary mechanism affecting physical properties under CO2 flooding in the Chang 4 + 5 tight sandstone reservoir is not, as traditional understand, carbon mineral dissolution or primary clay mineral expansion and migration. Instead, feldspar corrosion and secondary particles migration are the fundamental reasons for the changes in reservoir properties. As permeability increases, micro pore blockage decreases, and the damaging effect of CO2 flooding on reservoir permeability diminishes. Permeability and micro pore structure are therefore significant factors determining the damage degree of CO2 flooding inflicts on tight reservoirs. In addition, temperature and pressure have a significant impact on the extent of reservoir damage caused by CO2 flooding in the study region. At a given reservoir temperature, increasing CO2 injection pressure can mitigate reservoir damage. It is recommended to avoid conducting CO2 flooding projects in reservoirs with severe pressure attenuation, low permeability, and narrow pore throats as much as possible to prevent serious damage to the reservoir. At the same time, the production pressure difference should be reasonably controlled during the production process to reduce the risk and degree of calcium carbonate precipitation near oil production wells. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

16 pages, 2478 KB  
Article
Moisture Absorption and Its Effects on the Mechanical Properties of Biopolymers Reinforced by Curauá Fiber and Montmorillonite Clay: A Transient Experimental Evaluation
by Gustavo H. A. Barbalho, José J. S. Nascimento, Lucineide B. Silva, João M. P. Q. Delgado, Anderson F. Vilela, Joseane F. Pereira, Ivonete B. Santos, Márcia R. Luiz, Larissa S. S. Pinheiro, Andressa G. S. Silva, Roberto M. Faria, Francisco S. Chaves and Antonio G. B. Lima
J. Compos. Sci. 2025, 9(5), 248; https://doi.org/10.3390/jcs9050248 - 16 May 2025
Cited by 2 | Viewed by 2602
Abstract
Biocomposites are defined as eco-friendly materials from an environmental point of view. Because of the importance of this class of materials, their study is important, especially in moist and heated conditions. In this sense, this work aims to evaluate the transient behavior of [...] Read more.
Biocomposites are defined as eco-friendly materials from an environmental point of view. Because of the importance of this class of materials, their study is important, especially in moist and heated conditions. In this sense, this work aims to evaluate the transient behavior of moisture absorption and mechanical performance of biocomposites composed of a matrix of high-density biopolyethylene (originated from ethanol produced from sugarcane) filled with curauá vegetable fiber and organophilic montmorillonite clay. For this purpose, dry biocomposites filled with organophilic montmorillonite clay and curauá fiber (1, 3, and 5 wt.%) were prepared using a hand lay-up technique and subjected to moisture absorption and mechanical (flexural and impact tests) characterizations at different times. The experiments were carried out at water bath temperatures of 30 °C and 70 °C. The results have proven the strong influence of chemical composition and temperature on the moisture absorption behavior of biocomposites across time. For a higher percentage of reinforcement on the polymeric matrix, a higher moisture migration rate was verified, reaching a higher hygroscopic equilibrium condition at 16.9% for 5 wt.% of curauá fiber and 10.25% for 5 wt.% of montmorillonite clay particles. In contrast, the mechanical properties of all of the biocomposites were strongly reduced with an increasing moisture content, especially at higher fiber content and water bath temperature conditions. The innovative aspects of this research are related to the study of a new material and its transient mechanical behavior in dry and wet conditions. Full article
Show Figures

Figure 1

13 pages, 1505 KB  
Article
The Salinity Difference and Clay Mineral Types Affect the Distribution of Microplastics in the Seabed: New Evidence from the Western North Yellow Sea
by Mengting Li, Kun Yan, Jiufen Liu, Qingzheng Yuan, Shuyu Wu, Kuanle Bao and Hongsong Wang
Water 2025, 17(10), 1492; https://doi.org/10.3390/w17101492 - 15 May 2025
Viewed by 1052
Abstract
Salinity and clay mineral types have been shown to influence the migration and settlement efficiency of microplastics (MPs) under restrictive experimental conditions. However, current research is limited to deep trenches or laboratory conditions, and studies in the semi-enclosed sea area of the continental [...] Read more.
Salinity and clay mineral types have been shown to influence the migration and settlement efficiency of microplastics (MPs) under restrictive experimental conditions. However, current research is limited to deep trenches or laboratory conditions, and studies in the semi-enclosed sea area of the continental shelf are still lacking. We investigated the effects of bottom seawater salinity and clay mineral types on MPs distribution in surface sediments using the western part of the North Yellow Sea as an example, where current conditions are complex and salinity changes rapidly over short distances. Under detection conditions with a minimum detection limit of 10 μm, the abundance range of MPs in the investigated sea area reached 24–1134 items/(g dry weight). The distribution of MPs was in good agreement with the isohaline of the bottom seawater, and MPs tended to converge in the high salinity area. However, there is an exceptional case in which the temperature and salinity difference caused by the cold water mass can create a frontal flow that blocks the transport of terrigenous materials to the middle of the cold water mass. This phenomenon causes MPs to settle at the edge of the cold water mass. A significant positive correlation exists between montmorillonite with expansive properties and fragment MPs and MPs with particle size > 100 μm, which have a larger surface area (p < 0.05). The negative charges on the surface of MPs and clay minerals are neutralized, promoting the heterogeneous aggregation between clay minerals and MPs and accelerating the sedimentation process of MPs in the ocean. This is another important reason for the accumulation of MPs in the high-salinity region. This study provides a basis for pollution prevention and control of MPs in the shallow sea, supplying new insights into the effects of bottom seawater salinity and clay mineral type on the distribution of MPs. Full article
(This article belongs to the Section Oceans and Coastal Zones)
Show Figures

Figure 1

18 pages, 10748 KB  
Article
The Mechanism of Reservoir Damage by Water Injection in Ultra-Low-Permeability Reservoirs and Optimization of Water Quality Index
by Yong Tang, Tong Mu, Jiazheng Qin, Rong Peng, Mengyun Liu and Yixiang Xie
Energies 2025, 18(6), 1455; https://doi.org/10.3390/en18061455 - 16 Mar 2025
Cited by 3 | Viewed by 1473
Abstract
Injecting liquid into the formation has an impact on the microstructure of the reservoir and formation fluids, and negative effects often lead to the failure of oil well stimulation measures to achieve the expected results. It is crucial to clarify the reasons for [...] Read more.
Injecting liquid into the formation has an impact on the microstructure of the reservoir and formation fluids, and negative effects often lead to the failure of oil well stimulation measures to achieve the expected results. It is crucial to clarify the reasons for the decrease in the injection capability of low-permeability reservoirs in China and the mechanisms of the impact of on-site injection water quality. This study first conducted injection experiments with different water qualities. To study the micro factors that cause damage, clay mineral X-ray diffraction (XRD) analysis, high-pressure mercury injection experiments before and after damage, nuclear magnetic resonance (NMR) during the damage process, scanning electron microscopy (SEM) after damage, and energy dispersive spectroscopy elemental spectrum analysis (EDS) of incompatible sediment were carried out on the experimental core. In injection experiments with different water qualities, the permeability decreased by up to 65.35% when the injection volume reached 60 PV. The main causes of the decrease in injection capability are poor reservoir porosity and permeability and formation particle blockage. The particles mainly come from suspended particles, emulsified oil, migration of formation particles, and sediment formed by the injected water. This paper also proposes a reference for water quality index optimization in similar reservoirs. The new water quality index reduced permeability damage by at least 3.22%. Full article
(This article belongs to the Section L: Energy Sources)
Show Figures

Figure 1

16 pages, 10765 KB  
Article
Investigating the Impact of Polymers on Clay Flocculation and Residual Oil Behaviour Using a 2.5D Model
by Xianda Sun, Yuchen Wang, Qiansong Guo, Zhaozhuo Ouyang, Chengwu Xu, Yangdong Cao, Tao Liu and Wenjun Ma
Polymers 2024, 16(24), 3494; https://doi.org/10.3390/polym16243494 - 14 Dec 2024
Viewed by 1140
Abstract
In the process of oilfield development, the surfactant–polymer (SP) composite system has shown significant effects in enhancing oil recovery (EOR) due to its excellent interfacial activity and viscoelastic properties. However, with the continuous increase in the volume of composite flooding injection, a decline [...] Read more.
In the process of oilfield development, the surfactant–polymer (SP) composite system has shown significant effects in enhancing oil recovery (EOR) due to its excellent interfacial activity and viscoelastic properties. However, with the continuous increase in the volume of composite flooding injection, a decline in injection–production capacity (I/P capacity) has been observed. Through the observation of frozen core slices, it was found that during the secondary composite flooding (SCF) process, a large amount of residual oil in the form of intergranular adsorption remained in the core pores. This phenomenon suggests that the displacement efficiency of the composite flooding may be affected. Research has shown that polymers undergo flocculation reactions with clay minerals (such as kaolinite, Kln) in the reservoir, leading to the formation of high-viscosity mixtures of migrating particles and crude oil (CO). These high-viscosity mixtures accumulate in local pores, making it difficult to further displace them, which causes oil trapping and negatively affects the overall displacement efficiency of secondary composite flooding (SCF). To explore this mechanism, this study used a microscopic visualization displacement model (MVDM) and microscopy techniques to observe the migration of particles during secondary composite flooding. By using kaolinite water suspension (Kln-WS) to simulate migrating particles in the reservoir, the displacement effects of the composite flooding system on the kaolinite water suspension, crude oil, and their mixtures were observed. Experimental results showed that the polymer, acting as a flocculant, promoted the flocculation of kaolinite during the displacement process, thereby increasing the viscosity of crude oil and affecting the displacement efficiency of secondary composite flooding. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Figure 1

17 pages, 4812 KB  
Article
Experimental Evaluation of Blockage Resistance and Position Caused by Microparticle Migration in Water Injection Wells
by Jifei Yu, Huan Chen, Yanfeng Cao, Min Wen, Xiaopeng Zhai, Xiaotong Zhang, Tongchuan Hao, Jianlin Peng and Weitao Zhu
Processes 2024, 12(10), 2275; https://doi.org/10.3390/pr12102275 - 17 Oct 2024
Cited by 2 | Viewed by 1309
Abstract
Offshore oil field loose sandstone reservoirs have high permeability. However, during the water injection process, water injection blockage occurs, causing an increase in injection pressure, making it impossible to continue injecting water on site. Current research mainly focuses on the factors causing water [...] Read more.
Offshore oil field loose sandstone reservoirs have high permeability. However, during the water injection process, water injection blockage occurs, causing an increase in injection pressure, making it impossible to continue injecting water on site. Current research mainly focuses on the factors causing water injection blockage, with less attention given to the blockage locations and the pressure increase caused by water injection. There is a lack of research on the change in the law of injection capacity. This paper establishes a simulation experiment for water injection blockage that can accommodate both homogeneous and heterogeneous cores. The experimental core is 1 m long and capable of simulating the blockage conditions in the near-well zone during water injection, thereby analyzing the core blockage position and blockage pressure. The study clarifies the influence of water quality indicators, heterogeneity, and core length on the blockage patterns in reservoirs during water injection. The research findings are as follows: I. The reservoir blockage samples were characterized using scanning electron microscopy (SEM), casting thin sections, and X-ray diffraction (XRD) analysis. The results indicate that the main factors causing blockage are clay, silt, and fine particulate suspensions, with the fine particles mainly consisting of hydrated silicates and alkali metal oxides. The primary cause of blockage in loose sandstone is identified as the mechanism of migration and accumulation of clay, fine rock particles, and suspended matter in the injected water. II. By monitoring pressure and permeability changes in the core flooding experiments, the impact of reservoir heterogeneity on water injection capacity was evaluated. The evaluation results show that the blockage locations and lengths in heterogeneous cores are twice those in homogeneous cores. III. For heterogeneous reservoirs, if the initial permeability at the inlet is lower than in other segments of the core, significant blockage resistance occurs, with the final resistance being 1.27 times that of homogeneous cores. If the initial permeability at the inlet is higher than in other parts, the final blockage resistance is close to that of homogeneous cores. This study provides theoretical support for the analysis of blockage locations and pressures in loose sandstone water injection and offers technical support for the design of unplugging ranges and pressures after blockage in heterogeneous formations. At the same time, it provides a theoretical basis for selecting the direction of acidizing after blockage occurs in loose sandstone. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

14 pages, 2765 KB  
Article
Evaluation of Reservoir Damage by Hydrothermal Fluid from Clay Metamorphism, Particle Migration, and Heavy-Component Deposition in Offshore Heavy Oilfields
by Zuhao Zheng, Lu Zhang, Hongchao Yin, Dong Liu, Wei He, Leilei Shui, Ning Wang, Hao Chen, Shenglai Yang and Yiqi Zhang
Processes 2024, 12(9), 1959; https://doi.org/10.3390/pr12091959 - 12 Sep 2024
Viewed by 1109
Abstract
Marine heavy-oil reserves are enormous, and thermal recovery technology is one of the most effective ways to utilize them. However, steam as a high-energy external fluid will affect the geological characteristics of the reservoir. In this paper, the sensitivity of the reservoir was [...] Read more.
Marine heavy-oil reserves are enormous, and thermal recovery technology is one of the most effective ways to utilize them. However, steam as a high-energy external fluid will affect the geological characteristics of the reservoir. In this paper, the sensitivity of the reservoir was analyzed in terms of the high-temperature metamorphic characteristics of clay minerals and the coupling damage of particle migration and heavy component deposition. Firstly, long-core cyclic steam stimulation experiments were conducted using supersaturated steam, saturated steam, and superheated steam to quantify the differences in oil recovery capabilities. Subsequently, the variation characteristics of clay components in the core under different steam temperatures were analyzed by X-ray diffraction spectroscopy. Finally, the influence of particle migration and heavy-component deposition on reservoir permeability was clarified through displacement experiments. The results show that the recovery of superheated steam is more than 12% higher than that of supersaturated steam, and the throughput cycle is effectively shortened. In the laboratory, only the clay metamorphism due to superheated steam was more effective, and the metamorphism was mainly concentrated in kaolinite and monazite. Particle migration causes little damage to the reservoir, but the formation of particle migration coupled with heavy-component deposition can lead to more than 30% of the reservoir becoming damaged. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

15 pages, 3055 KB  
Article
Effect of Muddy Water Characteristics on Infiltration Laws and Stratum Compactum Soil Particle Composition under Film Hole Irrigation
by Youliang Peng, Liangjun Fei, Renming Xue, Fangyuan Shen, Runqiao Zhen and Qian Wang
Agriculture 2024, 14(8), 1377; https://doi.org/10.3390/agriculture14081377 - 16 Aug 2024
Cited by 4 | Viewed by 1672
Abstract
To investigate the impact of sediment on water infiltration and soil structure under muddy water irrigation conditions, indoor muddy water film hole infiltration experiments were conducted. Four different muddy water sediment concentrations (3%, 6%, 9%, 12%) and four typical sediment particle size distributions [...] Read more.
To investigate the impact of sediment on water infiltration and soil structure under muddy water irrigation conditions, indoor muddy water film hole infiltration experiments were conducted. Four different muddy water sediment concentrations (3%, 6%, 9%, 12%) and four typical sediment particle size distributions (which were quantified by the physical clay content with a particle size of less than 0.01 mm, d0.01: 9.13%, 16.46%, 27.34%, 44.02%) were employed to examine how muddy water properties affect infiltration law and the stratum compactum soil particle composition under film hole irrigation. The results showed that as the muddy water sediment concentration and physical clay content increased, the wetting front migration distance, cumulative infiltration amount, and soil water content gradually decreased simultaneously. The Kostiakov infiltration model effectively captured the changes in soil water infiltration during muddy water film hole irrigation, exhibiting a strong fit with a high coefficient of determination (R2 > 0.9). With higher muddy water sediment concentration, the deposition layer thickness increases within the same infiltration time. Conversely, higher physical clay content leads to a decrease in deposition layer thickness. The characteristics of the muddy water have a significant impact on the particle composition of the soil in the stratum compactum caused by film hole irrigation. The deposition layer has a lower relative content of fine soil particles compared to muddy water, but this content increases with higher muddy water sediment concentration and physical clay content. In the stranded layer soil, fine particles have a higher relative content than the original soil. Fine particle content increases notably with higher muddy water sediment concentration and physical clay content. The stranded layer soil particles exhibit a higher fractal dimension than the original soil, and as the infiltrated soil layer depth increases, the soil fractal dimension decreases until it matches the original soil. The fractal dimension increased with the increase in muddy water sediment concentration and physical clay content in muddy water irrigation conditions under the same soil layer depth. This research findings could serve as a theoretical foundation for understanding soil water movement under muddy water irrigation conditions. Full article
(This article belongs to the Section Agricultural Soils)
Show Figures

Figure 1

Back to TopTop