Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,076)

Search Parameters:
Keywords = citrate

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 397 KiB  
Article
Combination of Continuous Use of Oral Clomiphene Citrate with Injectable Gonadotropins for Ovarian Stimulation: A Single-Center Study
by Adamantia Kontogeorgi, Gkalia Tsangkalova, Panagiota Ambatzi, Ioannis Boutas, Eleftherios Meridis, Ioannis Gryparis, Dimitrios Kalaitzis, Angeliki Fenga, Melpomeni Peppa, Sophia Kalantaridou, Antonios Makrigiannakis and Minas Paschopoulos
Life 2025, 15(8), 1235; https://doi.org/10.3390/life15081235 - 4 Aug 2025
Abstract
Objective: This retrospective observational study evaluated the efficacy and safety of an ovarian stimulation protocol for embryo banking that involves continuous administration of clomiphene citrate (CC) in combination with gonadotropins, without the use of GnRH antagonists. Methods: Conducted at the Serum [...] Read more.
Objective: This retrospective observational study evaluated the efficacy and safety of an ovarian stimulation protocol for embryo banking that involves continuous administration of clomiphene citrate (CC) in combination with gonadotropins, without the use of GnRH antagonists. Methods: Conducted at the Serum IVF Clinic in Athens, Greece, the study included 250 women aged 25–45 who underwent IVF for embryo banking. The protocol involved administering 150 mg of CC daily from day 2 of the menstrual cycle until the day before hCG trigger, alongside 150 IU/day of Meriofert. Outcomes assessed included oocyte yield, fertilization rates, incidence of ovarian hyperstimulation syndrome (OHSS), and hormonal correlations. Comparative and regression analyses explored differences between age groups and predictors of success. Results: The protocol demonstrated a favorable safety profile with no cases of OHSS and yielded a mean of 10.25 oocytes per patient. Group analysis showed significantly more oocytes retrieved in women under 40 (mean: 12.5) versus those over 40 (mean: 8.43), while fertilization rates were paradoxically higher in the older cohort (59.16% vs. 30.68%, p < 0.0001). Regression models revealed basal FSH to be a significant inverse predictor of oocyte yield, but it was positively associated with fertilization rate. Continuous CC use effectively suppressed premature LH surges without compromising oocyte or embryo quality, allowing flexible and cost-effective stimulation with minimal monitoring. Conclusions: Continuous administration of clomiphene citrate in combination with gonadotropins presents a promising, antagonist-free ovarian stimulation protocol for embryo banking. The approach is economically efficient, reduces monitoring requirements, and maintains safety and effectiveness and is particularly notable in women over 40. Further studies are warranted to validate these findings and refine protocol mechanisms. Full article
(This article belongs to the Section Reproductive and Developmental Biology)
Show Figures

Figure 1

14 pages, 2597 KiB  
Article
Chemical and Isotopic Investigation of Abiotic Oxidation of Lactate Substrate in the Presence of Varied Electron Acceptors and Under Circumneutral Anaerobic Conditions
by Tsigabu A. Gebrehiwet and R. V. Krishnamurthy
Water 2025, 17(15), 2308; https://doi.org/10.3390/w17152308 - 3 Aug 2025
Viewed by 48
Abstract
Abiotic processes have ramifications in wastewater treatment, in situ degradation of organic matter, and cycling of nutrients in wetland ecosystems. Experiments were conducted to investigate abiotic oxidation of organic compounds (lactate) as a function of electron acceptors (ferric citrate and hydrous ferric oxide [...] Read more.
Abiotic processes have ramifications in wastewater treatment, in situ degradation of organic matter, and cycling of nutrients in wetland ecosystems. Experiments were conducted to investigate abiotic oxidation of organic compounds (lactate) as a function of electron acceptors (ferric citrate and hydrous ferric oxide (HFO), media composition, and pH under anaerobic conditions, using sodium bicarbonate as the buffering agent. Dissolved inorganic carbon (DIC) was used as a proxy for the oxidation of substrates. HFO media generated more DIC compared to ferric citrate containing media. Light and pH had major roles in the oxidation of lactate in the presence of ferric iron. Under dark conditions in the presence or absence of Fe(III), the DIC produced was low in all pH conditions. Inhibition of DIC production was also observed upon photo exposure when Fe (III) was absent. Isotopically, the system showed initial mixing between the bicarbonate and the carbon dioxide produced from oxidation later being dominated by carbon isotope value of lactate used. These redox conditions align with previous studies suggesting cleavage of organic compounds by hydroxyl radicals. The slower redox processes observed here, compared to previous studies, could be due to the scavenging effect of chloride ion on the hydroxyl radical. Full article
Show Figures

Figure 1

42 pages, 1287 KiB  
Review
A Comprehensive Review of the Latest Approaches to Managing Hypercholesterolemia: A Comparative Analysis of Conventional and Novel Treatments: Part II
by Narcisa Jianu, Ema-Teodora Nițu, Cristina Merlan, Adina Nour, Simona Buda, Maria Suciu, Silvia Ana Luca, Laura Sbârcea, Minodora Andor and Valentina Buda
Pharmaceuticals 2025, 18(8), 1150; https://doi.org/10.3390/ph18081150 - 1 Aug 2025
Viewed by 417
Abstract
Cardiovascular disease (CVD) remains the leading cause of mortality worldwide, with hypercholesterolemia identified as a major, but modifiable risk factor. This review serves as the second part of a comprehensive analysis of dyslipidemia management. The first installment laid the groundwork by detailing the [...] Read more.
Cardiovascular disease (CVD) remains the leading cause of mortality worldwide, with hypercholesterolemia identified as a major, but modifiable risk factor. This review serves as the second part of a comprehensive analysis of dyslipidemia management. The first installment laid the groundwork by detailing the key pathophysiological mechanisms of lipid metabolism, the development of atherosclerosis, major complications of hyperlipidemia, and the importance of cardiovascular risk assessment in therapeutic decision-making. It also examined non-pharmacological interventions and conventional therapies, with a detailed focus on statins and ezetimibe. Building upon that foundation, the present article focuses exclusively on emerging pharmacological therapies designed to overcome limitations of standard treatment. It explores the mechanisms, clinical applications, safety profiles, and pharmacogenetic aspects of novel agents such as proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibitors (alirocumab, evolocumab), small interfering RNA (siRNA) therapy (inclisiran), adenosine triphosphate–citrate lyase (ACL) inhibitor (bempedoic acid), microsomal triglyceride transfer protein (MTP) inhibitor (lomitapide), and angiopoietin-like protein 3 (ANGPTL3) inhibitor (evinacumab). These agents offer targeted strategies for patients with high residual cardiovascular risk, familial hypercholesterolemia (FH), or statin intolerance. By integrating the latest advances in precision medicine, this review underscores the expanding therapeutic landscape in dyslipidemia management and the evolving potential for individualized care. Full article
(This article belongs to the Special Issue Pharmacotherapy of Dyslipidemias, 2nd Edition)
Show Figures

Figure 1

13 pages, 994 KiB  
Article
Evaluation of the Metabolomics Profile in Charcot–Marie–Tooth (CMT) Patients: Novel Potential Biomarkers
by Federica Murgia, Martina Cadeddu, Jessica Frau, Giancarlo Coghe, Lorefice Lorena, Alessandro Vannelli, Maria Rita Murru, Martina Spada, Antonio Noto, Luigi Atzori and Eleonora Cocco
Metabolites 2025, 15(8), 520; https://doi.org/10.3390/metabo15080520 - 1 Aug 2025
Viewed by 164
Abstract
Background: Charcot–Marie–Tooth (CMT) is a group of inherited diseases impairing the peripheral nervous system. CMT originates from genetic variants that affect proteins fundamental for the myelination of peripheral nerves and survival. Moreover, environmental and humoral factors can impact disease development and evolution. Currently, [...] Read more.
Background: Charcot–Marie–Tooth (CMT) is a group of inherited diseases impairing the peripheral nervous system. CMT originates from genetic variants that affect proteins fundamental for the myelination of peripheral nerves and survival. Moreover, environmental and humoral factors can impact disease development and evolution. Currently, no therapy is available. Metabolomics is an emerging field of biomedical research that enables the development of novel biomarkers for neurodegenerative diseases by targeting metabolic pathways or metabolites. This study aimed to evaluate the metabolomics profile of CMT disease by comparing patients with healthy individuals. Methods: A total of 22 CMT patients (CMT) were included in this study and were demographically matched with 26 healthy individuals (C). Serum samples were analyzed through Nuclear Magnetic Resonance spectroscopy, and multivariate and univariate statistical analyses were subsequently applied. Results: A supervised model showed a clear separation (R2X = 0.3; R2Y = 0.7; Q2 = 0.4; p-value = 0.0004) between the two classes of subjects, and nine metabolites were found to be significantly different (2-hydroxybutyrate, 3-hydroxybutyrate, 3-methyl-2-oxovalerate, choline, citrate, glutamate, isoleucine, lysine, and methyl succinate). The combined ROC curve showed an AUC of 0.94 (CI: 0.9–1). Additional altered metabolic pathways were also identified within the disease context. Conclusion: This study represents a promising starting point, demonstrating the efficacy of metabolomics in evaluating CMT patients and identifying novel potential disease biomarkers. Full article
(This article belongs to the Section Endocrinology and Clinical Metabolic Research)
Show Figures

Figure 1

16 pages, 2729 KiB  
Article
Effect of Enterobacter bugandensis R-18 on Maize Growth Promotion Under Salt Stress
by Xingguo Tian, Qianru Liu, Jingjing Song, Xiu Zhang, Guoping Yang, Min Li, Huan Qu, Ahejiang Tastanbek and Yarong Tan
Microorganisms 2025, 13(8), 1796; https://doi.org/10.3390/microorganisms13081796 - 31 Jul 2025
Viewed by 230
Abstract
Soil salinization poses a significant constraint to agricultural productivity. However, certain plant growth-promoting bacteria (PGPB) can mitigate salinity stress and enhance crop performance. In this study, a bacterial isolate, R-18, isolated from saline-alkali soil in Ningxia, China, was identified as Enterobacter bugandensis based [...] Read more.
Soil salinization poses a significant constraint to agricultural productivity. However, certain plant growth-promoting bacteria (PGPB) can mitigate salinity stress and enhance crop performance. In this study, a bacterial isolate, R-18, isolated from saline-alkali soil in Ningxia, China, was identified as Enterobacter bugandensis based on 16S rRNA gene sequencing. The isolate was characterized for its morphological, biochemical, and plant growth-promoting traits and was evaluated for its potential to alleviate NaCl-induced stress in maize (Zea mays L.) under hydroponic conditions. Isolate R-18 exhibited halotolerance, surviving at NaCl concentrations ranging from 2.0% to 10.0%, and alkaliphilic adaptation, growing at pH 8.0–11.0. Biochemical assays confirmed it as a Gram-negative bacterium, displaying positive reactions in the Voges–Proskauer (V–P) tests, catalase activity, citrate utilization, fluorescent pigment production, starch hydrolysis, gelatin liquefaction, and ammonia production, while testing negative for the methyl red and cellulose hydrolysis. Notably, isolate R-18 demonstrated multiple plant growth-promoting attributes, including nitrogen fixation, phosphate and potassium solubilization, ACC deaminase activity, and indole-3-acetic acid (IAA) biosynthesis. Under 100 mM NaCl stress, inoculation with isolate R-18 significantly enhanced maize growth, increasing plant height, stem dry weight, root fresh weight, and root dry weight by 20.64%, 47.06%, 34.52%, and 31.25%, respectively. Furthermore, isolate R-18 improved ion homeostasis by elevating the K+/Na+ ratio in maize tissues. Physiological analyses revealed increased chlorophyll and proline content, alongside reduced malondialdehyde (MDA) levels, indicating mitigated oxidative damage. Antioxidant enzyme activity was modulated, with decreased superoxide dismutase (SOD) and peroxidase (POD) activities but increased catalase (CAT) activity. These findings demonstrated that Enterobacter bugandensis R-18 effectively alleviated NaCl-induced growth inhibition in maize by enhancing osmotic adjustment, reducing oxidative stress, and improving ion balance. Full article
(This article belongs to the Section Plant Microbe Interactions)
Show Figures

Figure 1

21 pages, 2028 KiB  
Article
Graphene Oxide-Supported QuEChERS Extraction Coupled with LC-MS/MS for Trace-Level Analysis of Wastewater Pharmaceuticals
by Weronika Rogowska and Piotr Kaczyński
Appl. Sci. 2025, 15(15), 8441; https://doi.org/10.3390/app15158441 - 30 Jul 2025
Viewed by 270
Abstract
Detecting pharmaceuticals in environmental matrices, particularly in wastewater, is crucial due to their potential environmental occurrence and unpredictable ecological and health-related consequences. These substances, often present in trace amounts, require highly sensitive and selective analytical methods for effective monitoring. A modified version of [...] Read more.
Detecting pharmaceuticals in environmental matrices, particularly in wastewater, is crucial due to their potential environmental occurrence and unpredictable ecological and health-related consequences. These substances, often present in trace amounts, require highly sensitive and selective analytical methods for effective monitoring. A modified version of the QuEChERS (Quick, Easy, Cheap, Effective, Rugged, and Safe) method was evaluated to evaluate 18 pharmaceuticals and 2 metabolites in wastewater samples using liquid chromatography with tandem mass spectrometry (LC-MS/MS). The method’s performance was assessed using linearity, recovery, precision, limits of quantification (LOQ) and detection (LOD), and the matrix effect (ME). The final method was based on acetonitrile, Na2EDTA, citrate buffer, and graphene oxide (GO). Finally, the calibration curves prepared in acetonitrile and the matrix extract showed a correlation coefficient of 0.99. Most of the compounds had LOQ values lower than 0.5 μg⋅mL−1. Recoveries were achieved in the 70–98% range, with RSD lower than 13%. GO allowed the elimination of the ME, which occurred in the range of −11% to 15%. The results indicate that a low-cost and straightforward method is suitable for routinely monitoring pharmaceuticals in wastewater, which is crucial for minimizing the impact of pollutants on aquatic ecosystems. Full article
(This article belongs to the Section Green Sustainable Science and Technology)
Show Figures

Figure 1

17 pages, 1308 KiB  
Article
Dual-Functional AgNPs/Magnetic Coal Fly Ash Composite for Wastewater Disinfection and Azo Dye Removal
by Lei Gong, Jiaxin Li, Rui Jin, Menghao Li, Jiajie Peng and Jie Zhu
Molecules 2025, 30(15), 3155; https://doi.org/10.3390/molecules30153155 - 28 Jul 2025
Viewed by 258
Abstract
In this study, we report the development of a novel magnetized coal fly ash-supported nano-silver composite (AgNPs/MCFA) for dual-functional applications in wastewater treatment: the efficient degradation of methyl orange (MO) dye and broad-spectrum antibacterial activity. The composite was synthesized via a facile impregnation–reduction–sintering [...] Read more.
In this study, we report the development of a novel magnetized coal fly ash-supported nano-silver composite (AgNPs/MCFA) for dual-functional applications in wastewater treatment: the efficient degradation of methyl orange (MO) dye and broad-spectrum antibacterial activity. The composite was synthesized via a facile impregnation–reduction–sintering route, utilizing sodium citrate as both a reducing and stabilizing agent. The AgNPs/MCFA composite was systematically characterized through multiple analytical techniques, including Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), and vibrating sample magnetometry (VSM). The results confirmed the uniform dispersion of AgNPs (average size: 13.97 nm) on the MCFA matrix, where the formation of chemical bonds (Ag-O-Si) contributed to the enhanced stability of the material. Under optimized conditions (0.5 g·L−1 AgNO3, 250 °C sintering temperature, and 2 h sintering time), AgNPs/MCFA exhibited an exceptional catalytic performance, achieving 99.89% MO degradation within 15 min (pseudo-first-order rate constant ka = 0.3133 min−1) in the presence of NaBH4. The composite also demonstrated potent antibacterial efficacy against Escherichia coli (MIC = 0.5 mg·mL−1) and Staphylococcus aureus (MIC = 2 mg·mL−1), attributed to membrane disruption, intracellular content leakage, and reactive oxygen species generation. Remarkably, AgNPs/MCFA retained >90% catalytic and antibacterial efficiency after five reuse cycles, enabled by its magnetic recoverability. By repurposing industrial waste (coal fly ash) as a low-cost carrier, this work provides a sustainable strategy to mitigate nanoparticle aggregation and environmental risks while enhancing multifunctional performance in water remediation. Full article
Show Figures

Graphical abstract

21 pages, 2004 KiB  
Review
Interplay of Oxidative Stress, Autophagy, and Rubicon in Ovarian Follicle Dynamics: Orchestrating Ovarian Aging
by Kiyotaka Yamada, Masami Ito, Haruka Nunomura, Takashi Nishigori, Atsushi Furuta, Mihoko Yoshida, Akemi Yamaki, Kanto Shozu, Ippei Yasuda, Sayaka Tsuda, Tomoko Shima and Akitoshi Nakashima
Antioxidants 2025, 14(8), 919; https://doi.org/10.3390/antiox14080919 - 27 Jul 2025
Viewed by 464
Abstract
Organ functions generally decline with age, but the ovary is a prototypical organ that undergoes functional loss over time. Autophagy plays a crucial role in maintaining organ homeostasis, and age-related upregulation of the autophagy inhibitor protein, Rubicon, has been linked to cellular and [...] Read more.
Organ functions generally decline with age, but the ovary is a prototypical organ that undergoes functional loss over time. Autophagy plays a crucial role in maintaining organ homeostasis, and age-related upregulation of the autophagy inhibitor protein, Rubicon, has been linked to cellular and tissue dysfunction. This review describes how granulosa cell autophagy supports follicular growth and oocyte selection and maturation by regulating cellular energy metabolism and protein quality control. We then introduce the role of selective autophagy, including mitophagy or lipophagy, in steroidogenesis and cellular remodeling during luteinization. In aged ovaries, Rubicon accumulation suppresses autophagic flux, leading to diminished oxidative-stress resilience and enhanced DNA damage. Moreover, impaired autophagy drives the accumulation of ATP citrate lyase, which correlates with poor oocyte quality and reduced ovarian reserve. Following fertilization, oocytes further upregulate autophagy to provide the energy required for blastocyst transition. Conversely, in infertility-related disorders, such as premature ovarian insufficiency, endometriosis, and polycystic ovary syndrome, either deficient or excessive autophagy contributes to disease pathogenesis. Both autophagy inhibitors (e.g., Rubicon) and activators (e.g., Beclin1) could be emerging as promising biomarkers for assessing ovarian autophagy status. Therapeutically, Rubicon inhibition by trehalose in aged ovaries and autophagy suppression by agents such as hydroxychloroquine in polycystic ovary syndrome and endometriosis hold potential. Establishing robust methods to evaluate ovarian autophagy will be essential for translating these insights into targeted treatments. Full article
Show Figures

Figure 1

26 pages, 3023 KiB  
Article
Multi-Parameter Analysis of Photosynthetic and Molecular Responses in Chlorella vulgaris Exposed to Silver Nanoparticles and Ions
by Bruno Komazec, Sandra Vitko, Biljana Balen, Mario Cindrić, Renata Biba and Petra Peharec Štefanić
Toxics 2025, 13(8), 627; https://doi.org/10.3390/toxics13080627 - 26 Jul 2025
Viewed by 481
Abstract
Due to widespread use of silver nanoparticles (AgNPs), the assessment of their potential harm to microalgal photosynthesis is crucial, as microalgae, together with cyanobacteria, contribute to approximately 50% of global oxygen production. This study investigated photosynthetic pigments, photosynthetic rate, chlorophyll a fluorescence, and [...] Read more.
Due to widespread use of silver nanoparticles (AgNPs), the assessment of their potential harm to microalgal photosynthesis is crucial, as microalgae, together with cyanobacteria, contribute to approximately 50% of global oxygen production. This study investigated photosynthetic pigments, photosynthetic rate, chlorophyll a fluorescence, and the expression of photosynthesis-related genes and proteins in green alga Chlorella vulgaris after 72 h exposure to citrate- and cetyltrimethylammonium bromide (CTAB)-stabilized AgNPs, as well as silver ions (AgNO3), at concentrations allowing 75% cell survival (EC25). All treatments impaired photosynthetic performance. The most pronounced decreases in chlorophyll fluorescence parameters and photosynthetic rate, alongside elevated energy dissipation, were observed after exposure to AgNP-CTAB and AgNO3. AgNP-citrate had milder effects and induced compensatory responses, reflected in an increased performance index and upregulation of photosynthesis-related proteins. AgNP-CTAB induced the strongest downregulation of gene and protein expression, likely due to its higher EC25 concentration and cationic surface promoting interaction with photosynthetic structures. Although AgNO3 caused fewer molecular changes, it significantly disrupted photosynthetic function, suggesting a direct effect of Ag+ ions on photosynthesis-related proteins. Overall, the results highlight the role of AgNPs’ surface coatings and dosage in determining their phytotoxicity, with photosystem disruption and oxidative stress emerging as key mechanisms of action. Full article
(This article belongs to the Special Issue Toxic Pollutants and Ecological Risk in Aquatic Environments)
Show Figures

Graphical abstract

22 pages, 2565 KiB  
Article
Efficacy and Safety of 5-Aminolevulinic Acid Hydrochloride Combined with Sodium Ferrous Citrate in Pediatric Patients with Leigh Syndrome and Central Nervous System Disorders: An Initial Exploratory Trial with a Double-Blind Placebo-Controlled Period, Followed by an Open-Label Period and a Subsequent Long-Term Administration Study
by Yuichi Abe, Toshimitsu Hamasaki, Jun Natsume, Yukiko Mogami, Kei Murayama, Hideaki Shiraishi, Yuki Abe, Satoko Kumada, Ryuta Tanaka, Kenji Ihara, Takafumi Sakakibara, Yasushi Okazaki, Hitoshi Nakagawa, Kiwamu Takahashi, Mitsugu Yamauchi, Motowo Nakajima and Akira Ohtake
Life 2025, 15(8), 1168; https://doi.org/10.3390/life15081168 - 23 Jul 2025
Viewed by 377
Abstract
An explorative study was conducted to evaluate the efficacy and safety of 5-aminolevulinic acid hydrochloride combined with sodium ferrous citrate (SPP-004) in 10 pediatric patients with Leigh syndrome (LS) aged 3–24 months in 10 institutions between December 2014 and July 2019. The patients [...] Read more.
An explorative study was conducted to evaluate the efficacy and safety of 5-aminolevulinic acid hydrochloride combined with sodium ferrous citrate (SPP-004) in 10 pediatric patients with Leigh syndrome (LS) aged 3–24 months in 10 institutions between December 2014 and July 2019. The patients were randomized and allocated to the SPP-004 or placebo group for a 12-week double-blind period, followed by a 12-week open-label period with SPP-004 and then a long-term study of up to 180 weeks. The efficacy and safety were evaluated using the Newcastle Pediatric Mitochondrial Disease Scale (NPMDS) and adverse events (AEs), respectively. No significant differences were found between groups in NPMDS scores, but prolonged SPP-004 treatment stabilized or improved scores. During the initial double-blind phase, the serum lactate levels increased in the placebo group but not in the SPP-004 group. Over the period of prolonged treatment with SPP-004, the average serum lactate level gradually decreased to a normal level. One patient died due to heart failure, presumably due to an underlying disease. Overall, 7 out of 10 patients received SPP-004 without developing severe AEs until the termination of the long-term study. Given the severe symptoms and poor prognosis of pediatric LS, NPMDS scores were indicative of stabilization in pediatric LS patients treated with SPP-004. Full article
(This article belongs to the Section Pharmaceutical Science)
Show Figures

Figure 1

11 pages, 202 KiB  
Brief Report
CalOPT: A Specialty Pharmacy–Dietitian Quality Improvement Initiative for Calcium Optimization in Patients with Osteoporosis Risk
by Jennifer Cerulli, Alisha Roberts, Ellie Wilson and Scott Guisinger
Pharmacy 2025, 13(4), 100; https://doi.org/10.3390/pharmacy13040100 - 23 Jul 2025
Viewed by 225
Abstract
A total of 38% of Americans do not meet the Recommended Dietary Allowance (RDA) for calcium including those at risk for osteoporosis. To increase the percentage of patients at risk for osteoporosis who achieve goal calcium RDA intake, a collaborative specialty pharmacy-registered dietitian-nutritionist [...] Read more.
A total of 38% of Americans do not meet the Recommended Dietary Allowance (RDA) for calcium including those at risk for osteoporosis. To increase the percentage of patients at risk for osteoporosis who achieve goal calcium RDA intake, a collaborative specialty pharmacy-registered dietitian-nutritionist (RDN) quality improvement program was developed. Patients aged 18 to 90 years old receiving osteoporosis therapy (denosumab, teriparatide, zoledronic acid) or medications that increase bone loss (elagolix, oral prednisone) were provided with a structured assessment and educational intervention. Daily calcium intake included patient self-reported dietary intake plus supplement use. Written and verbal education on increasing dietary intake based on patient preferences was provided with 5 calcium-rich food-source store coupons. Recommendations for supplement selection (citrate vs. carbonate) and/or medication-related problem resolution were provided. Follow-up occurred at 3–6 months. Fifty patients enrolled [94% female, mean age 66.6 years (SD 15.3)] were taking denosumab (36), teriparatide (1), zoledronic acid (1), elagolix (7) and prednisone (5). The mean baseline daily dietary calcium intake was 500 mg (SD 247) with none achieving goal intake with diet alone. Average calcium supplement use in 22 (44%) patients was 686 mg daily (SD 284). At baseline, 17 (34%) met goal daily calcium intake compared to 30 (60%) at post intervention follow-up (p = 0.009). Over half of the store coupons were redeemed. A specialty pharmacy-RDN customized intervention program provides a model for aiding patients to modify calcium intake. Full article
(This article belongs to the Section Pharmacy Practice and Practice-Based Research)
22 pages, 4596 KiB  
Article
Gut Microbiota Dysbiosis Remodels the Lysine Acetylome of the Mouse Cecum in Early Life
by Yubing Zeng, Jinying Shen, Xuejia He, Fan Liu, Yi Wang, Yi Wang, Yanan Qiao, Pei Pei and Shan Wang
Biology 2025, 14(8), 917; https://doi.org/10.3390/biology14080917 - 23 Jul 2025
Viewed by 273
Abstract
The interaction between epigenetic mechanisms and the gut microbiome is potentially crucial for the development and maintenance of intestinal health. Lysine acetylation, an important post-translational modification, plays a complex and critical role in the epigenetic regulation of the host by the gut microbiota. [...] Read more.
The interaction between epigenetic mechanisms and the gut microbiome is potentially crucial for the development and maintenance of intestinal health. Lysine acetylation, an important post-translational modification, plays a complex and critical role in the epigenetic regulation of the host by the gut microbiota. However, there are currently no reports on how gut microbiota dysbiosis affects host physiology in early life through global lysine acetylation. In this study, we constructed a mouse model of gut microbiota dysbiosis using antibiotic cocktail therapy (ABX). Using liquid chromatography-tandem mass spectrometry (LC-MS/MS) in the cecum, we analyzed the cecal lysine acetylome and proteome. As a result, we profiled the lysine acetylation landscape of the cecum and identified a total of 16,579 acetylation sites from 5218 proteins. Differentially acetylated proteins (DAPs) are involved in various metabolic pathways, including the citrate cycle (TCA cycle), butanoate metabolism, pyruvate metabolism, glycolysis/gluconeogenesis, and fatty acid biosynthesis. Moreover, both glycolysis and gluconeogenesis are significantly enriched in acetylation and protein modifications. This study aimed to provide valuable insights into the epigenetic molecular mechanisms associated with host protein acetylation as influenced by early-life gut microbiota disturbances. It reveals potential therapeutic targets for metabolic disorders linked to gut microbiota dysbiosis, thereby establishing a theoretical foundation for the clinical prevention and treatment of diseases arising from such dysbiosis. Full article
Show Figures

Figure 1

20 pages, 1316 KiB  
Article
The Effect of Osmotic Dehydration Conditions on the Magnesium Content in Beetroot (Beta vulgaris L.)
by Bartosz Kulczyński, Joanna Suliburska, Anna Gramza-Michałowska, Andrzej Sidor, Przemysław Łukasz Kowalczewski and Anna Brzozowska
Molecules 2025, 30(14), 3051; https://doi.org/10.3390/molecules30143051 - 21 Jul 2025
Viewed by 211
Abstract
Osmotic dehydration is a process involving a two-way mass transfer, during which water and substances dissolved in it are removed from the product and, at the same time, substances dissolved in a hypertonic solution penetrate into the tissues. This process has a significant [...] Read more.
Osmotic dehydration is a process involving a two-way mass transfer, during which water and substances dissolved in it are removed from the product and, at the same time, substances dissolved in a hypertonic solution penetrate into the tissues. This process has a significant effect on, among other things, the nutritional and sensory parameters, as well as the texture and shelf life of the dehydrated product. This study analyzed the effect of osmotic dehydration of beet on magnesium content following the addition of various chemical forms of magnesium (magnesium oxide, magnesium citrate, magnesium chloride) to a hypertonic solution. Magnesium was added in concentrations of 2.5 or 5.0% relative to the mass of the solution. The following compounds were used to prepare hypertonic solutions (25 and 50%): inulin, xylitol, erythritol, and sucrose. The control sample was water. A significant increase in magnesium content in the dehydrated material was confirmed. This effect was determined by many factors, among which the most important were the chemical form of magnesium, the type of osmotically active substance, magnesium concentration, and process time. The highest magnesium content was found in samples dehydrated in a 50% inulin solution with a 5.0% addition of magnesium chloride under the following conditions: 120 min/30 °C. It was also demonstrated that osmotically dehydrated samples exhibited approximately 3–5 times lower antioxidant activity in DPPH, ABTS, and ORAC tests. Full article
Show Figures

Figure 1

16 pages, 1049 KiB  
Article
Limited Short-Term Impact of Annual Cover Crops on Soil Carbon and Soil Enzyme Activity in Subtropical Tree Crop Systems
by Abraham J. Gibson, Lee J. Kearney, Karina Griffin, Michael T. Rose and Terry J. Rose
Agronomy 2025, 15(7), 1750; https://doi.org/10.3390/agronomy15071750 - 21 Jul 2025
Viewed by 272
Abstract
In wet subtropical environments, perennial groundcovers are common in horticultural plantations to protect the soil from erosion. However, there has been little investigation into whether seeding annual cover crops into the perennial groundcovers provides additional soil services including carbon and nutrient cycling in [...] Read more.
In wet subtropical environments, perennial groundcovers are common in horticultural plantations to protect the soil from erosion. However, there has been little investigation into whether seeding annual cover crops into the perennial groundcovers provides additional soil services including carbon and nutrient cycling in these systems. To investigate this, farmer participatory field trials were conducted in commercial avocado, macadamia, and coffee plantations in the wet Australian subtropics. Cover crops were direct-seeded into existing inter-row groundcovers in winter (cool season cover crops), and into the same plots the following summer (warm season cover crops). Inter-row biomass was quantified at the end of winter and summer in the control (no cover crop) and cover crops treatments. Soil carbon and nutrient cycling parameters including hot water extractable carbon, water soluble carbon, autoclavable citrate-extractable protein and soil enzyme activities were quantified every two months from early spring (September) 2021 to late autumn (May) 2022. Seeded cover crops produced 500 to 800 kg ha−1 more total inter-row biomass over winter at the avocado coffee sites, and 3000 kg ha−1 biomass in summer at the coffee site. However, they had no effect on biomass production in either season at the macadamia site. Soil functional parameters changed with season (i.e., time of sampling), with few significant effects of cover crop treatments on soil function parameters across the three sits. Growing a highly productive annual summer cover crop at the coffee site led to suppression and death of perennial groundcovers, exposing bare soil in the inter-row by 3 weeks after termination of the summer cover crop. Annual cover crops seeded into existing perennial groundcovers in tree crop systems had few significant impacts on soil biological function over the 12-month period, and their integration needs careful management to avoid investment losses and exacerbating the risk of soil erosion on sloping lands in the wet subtropics. Full article
(This article belongs to the Section Farming Sustainability)
Show Figures

Figure 1

16 pages, 2014 KiB  
Article
CALB Immobilized on Octyl-Agarose—An Efficient Pharmaceutical Biocatalyst for Transesterification in Organic Medium
by Joanna Siódmiak, Jacek Dulęba, Natalia Kocot, Rafał Mastalerz, Gudmundur G. Haraldsson and Tomasz Siódmiak
Int. J. Mol. Sci. 2025, 26(14), 6961; https://doi.org/10.3390/ijms26146961 - 20 Jul 2025
Viewed by 278
Abstract
The growing need for developing safer and more effective methods for obtaining enantiomers of chiral compounds, particularly those with pharmacological activity, highlights the potential of biocatalysis as an appropriate pharmaceutical research direction. However, low catalytic activity and stability of free enzymes are often [...] Read more.
The growing need for developing safer and more effective methods for obtaining enantiomers of chiral compounds, particularly those with pharmacological activity, highlights the potential of biocatalysis as an appropriate pharmaceutical research direction. However, low catalytic activity and stability of free enzymes are often among the substantial limitations to the wide application of biocatalysis. Therefore, to overcome these obstacles, new technological procedures are being designed. In this study, we present optimized protocols for the immobilization of Candida antarctica lipase B (CALB) on an octyl- agarose support, ensuring high enantioselectivity in an organic reaction medium. The immobilization procedures (with drying step), including buffers with different pH values and concentrations, as well as the study of the influence of temperature and immobilization time, were presented. It was found that the optimal conditions were provided by citrate buffer with a pH of 4 and a concentration of 300 mM. The immobilized CALB on the octyl-agarose support exhibited high catalytic activity in the kinetic resolution of (R,S)-1-phenylethanol via enantioselective transesterification with isopropenyl acetate in 1,2-dichloropropane (DCP), as a model reaction for lipase activity monitoring on an analytical scale. HPLC analysis demonstrated that the (R)-1-phenylethyl acetate was obtained in an enantiomeric excess of eep > 99% at a conversion of approximately 40%, and the enantiomeric ratio was E > 200. Thermal and storage stability studies performed on the immobilized CALB octyl-agarose support confirmed its excellent stability. After 7 days of thermal stability testing at 65 °C in a climatic chamber, the (R)-1-phenylethyl acetate was characterized by enantiomeric excess of eep > 99% at a conversion of around 40% (similar values of catalytic parameters to those achieved using a non-stored lipase). The documented high catalytic activity and stability of the developed CALB-octyl-agarose support allow us to consider it as a useful tool for enantioselective transesterification in organic medium. Full article
Show Figures

Figure 1

Back to TopTop