Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (851)

Search Parameters:
Keywords = chiral effects

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 5335 KiB  
Article
Study on the Electro-Optical Properties of Polymer-Dispersed Liquid Crystals Doped with Cellulose Nanocrystals
by Jiayan Wang, Yan Qiao, Ziyi Yang, Yue Han, Hui Zhang, Zhiguang Li, Guili Zheng, Yanjun Zhang and Lizhi Zhu
Molecules 2025, 30(15), 3273; https://doi.org/10.3390/molecules30153273 - 5 Aug 2025
Abstract
The present study focuses on the effect of doping KH560-modified cellulose nanocrystals (CNCs) on the electro-optical characteristics of polymer-dispersed liquid crystals (PDLCs). PDLC films were fabricated through the polymerization-initiated phase separation (PIPS) process and doped with CNC nanoparticles at various concentrations. At low [...] Read more.
The present study focuses on the effect of doping KH560-modified cellulose nanocrystals (CNCs) on the electro-optical characteristics of polymer-dispersed liquid crystals (PDLCs). PDLC films were fabricated through the polymerization-initiated phase separation (PIPS) process and doped with CNC nanoparticles at various concentrations. At low concentrations, the CNCs at the interface, by virtue of their unique chiral characteristics, induce an orderly arrangement of liquid crystal molecules. Meanwhile, the interaction between the film’s fiber structure and the liquid crystal droplets brings about an augmentation in the arrangement efficiency. The excellent dispersion of CNCs diminishes the random alignment of liquid crystal molecules and mitigates light scattering. Additionally, it aids in the deflection of the liquid crystal director, facilitating the lubrication of the liquid crystals’ movement. It is remarkable that within the range of relatively lower CNCs doping concentrations, specifically from 0.005 wt% to 0.05 wt%, the PDLC films exhibit lower threshold and saturation voltages, faster response, enhanced viewing angle performance and higher contrast. Full article
(This article belongs to the Section Materials Chemistry)
Show Figures

Figure 1

12 pages, 2346 KiB  
Article
SERS and Chiral Properties of Cinnamic Acid Derivative Langmuir-Blodgett Films Complexed with Dyes
by Xingdi Zhao, Xinyu Li, Pengfei Bian, Qingrui Zhang, Yuqing Qiao, Mingli Wang and Tifeng Jiao
Coatings 2025, 15(8), 890; https://doi.org/10.3390/coatings15080890 (registering DOI) - 1 Aug 2025
Viewed by 135
Abstract
Chiral molecules are crucial in the field of optical devices, molecular recognition, and other novel functional materials due to their unique spatially asymmetric configuration and optical activity. In this study, a chiral molecule, Cholest-3-yl (E)-3-(4-carbamoylphenyl)acrylate (CCA), was combined with dyes containing large conjugated [...] Read more.
Chiral molecules are crucial in the field of optical devices, molecular recognition, and other novel functional materials due to their unique spatially asymmetric configuration and optical activity. In this study, a chiral molecule, Cholest-3-yl (E)-3-(4-carbamoylphenyl)acrylate (CCA), was combined with dyes containing large conjugated structures, tetramethylporphyrin tetrasulfonic acid (TPPS), and Nickel(II) phthalocyanine-tetrasulfonic acid tetrasodium salt (TsNiPc), and composite LB films of CCA/TPPS and CCA/TsNiPc were successfully prepared by using Langmuir-Blodgett (LB) technology. The circular dichroism (CD) test proved that the CCA/TPPS composite film had a strong CD signal at 300–400 nm, and the composite film showed chirality. This significant optical activity provides a new idea and option for the application of LB films in chiral sensors. In the Surface Enhanced Raman Spectroscopy (SERS) test, the CCA/TPPS composite film was sensitive to signal sensing, in which the enhancement factor EF = 2.28 × 105, indicating that a large number of effective signal response regions were formed on the surface of the film, and the relative standard deviation (RSD) = 12.08%, which demonstrated that the film had excellent uniformity and reproducibility. The high sensitivity and low signal fluctuation make the CCA/TPPS composite LB film a promising SERS substrate material. Full article
Show Figures

Figure 1

40 pages, 3589 KiB  
Review
Progress in Stereoselective Haloamination of Olefins
by Guo Zhong, Jiayu Zhou, Bin Cui and Hui Sun
Molecules 2025, 30(15), 3217; https://doi.org/10.3390/molecules30153217 - 31 Jul 2025
Viewed by 192
Abstract
The regio- and stereoselective adjacent bifunctionalization of olefins with amine and halogen groups can be effectively accomplished through catalytic haloamination methods. Stereoselective haloamination has emerged as a pivotal methodology for the introduction of halogen functional groups into chiral amines, demonstrating substantial applications in [...] Read more.
The regio- and stereoselective adjacent bifunctionalization of olefins with amine and halogen groups can be effectively accomplished through catalytic haloamination methods. Stereoselective haloamination has emerged as a pivotal methodology for the introduction of halogen functional groups into chiral amines, demonstrating substantial applications in medicinal chemistry and organic synthesis. Since 1999, significant advancements have been achieved in this field, driven by innovations in catalytic systems and methodologies. The stereoselective haloamination of both functionalized and nonfunctionalized alkenes employing chiral catalysts has emerged as a prominent area of research. This review provides a comprehensive overview of the research progress in stereoselective haloamination reactions from 1999 to 2023. It examines the innovations in catalyst design that have facilitated more efficient and selective transformations. The review also analyzes the optimization of reaction conditions, which has been crucial in improving the overall performance and applicability of these reactions. Furthermore, it explores the diverse range of haloamination reactions that have been developed, emphasizing their potential for the synthesis of complex and valuable chemical structures. Additionally, this review offers insightful perspectives on future research directions in stereoselective haloamination reactions. Full article
Show Figures

Scheme 1

11 pages, 1176 KiB  
Article
Nonreciprocal Transport Driven by Noncoplanar Magnetic Ordering with Meron–Antimeron Spin Textures
by Satoru Hayami
Solids 2025, 6(3), 40; https://doi.org/10.3390/solids6030040 - 29 Jul 2025
Viewed by 221
Abstract
Noncoplanar spin textures give rise not only to unusual magnetic structures but also to emergent electromagnetic responses stemming from scalar spin chirality, such as the topological Hall effect. In this study, we theoretically investigate nonreciprocal transport phenomena induced by noncoplanar magnetic orderings through [...] Read more.
Noncoplanar spin textures give rise not only to unusual magnetic structures but also to emergent electromagnetic responses stemming from scalar spin chirality, such as the topological Hall effect. In this study, we theoretically investigate nonreciprocal transport phenomena induced by noncoplanar magnetic orderings through microscopic model analyses. By focusing on meron–antimeron spin textures that exhibit local scalar spin chirality while maintaining vanishing global chirality, we demonstrate that the electronic band structure becomes asymmetrically modulated, which leads to the emergence of nonreciprocal transport. The present mechanism arises purely from the noncoplanar magnetic texture itself and requires neither net magnetization nor relativistic spin–orbit coupling. We further discuss the potential relevance of our findings to the compound Gd2PdSi3, which has been suggested to host a meron–antimeron crystal phase at low temperatures. Full article
Show Figures

Figure 1

12 pages, 6858 KiB  
Perspective
Cellulose Nanocrystals for Advanced Optics and Electronics: Current Status and Future Directions
by Hyeongbae Jeon, Kyeong Keun Oh and Minkyu Kim
Micromachines 2025, 16(8), 860; https://doi.org/10.3390/mi16080860 - 26 Jul 2025
Viewed by 397
Abstract
Cellulose nanocrystals (CNCs) have attracted growing interest in optics and electronics, extending beyond their traditional applications. They are considered key materials due to their fast computing, sensing adhesion, and emission of circularly polarized luminescence with high dissymmetry factors. This interest arises from their [...] Read more.
Cellulose nanocrystals (CNCs) have attracted growing interest in optics and electronics, extending beyond their traditional applications. They are considered key materials due to their fast computing, sensing adhesion, and emission of circularly polarized luminescence with high dissymmetry factors. This interest arises from their unique chemical structure, which gives rise to structural color, a chiral nematic phase, and high mechanical strength. In this perspective, we first introduce the definition, sources, and fundamental properties of CNCs to explain the basis for their unique and effective use in optics and electronics. Next, we review recent research on the application of CNCs in these fields. We then analyze the current limitations that hinder further advancement. Finally, we offer our own perspective on future directions for the CNC-enabled advanced optics and electronics. Full article
Show Figures

Figure 1

20 pages, 2100 KiB  
Article
Enantioseparation of Proton Pump Inhibitors by HPLC on Polysaccharide-Type Stationary Phases: Enantiomer Elution Order Reversal, Thermodynamic Characterization, and Hysteretic Effect
by Máté Dobó, Gergely Molnár, Ali Mhammad, Gergely Dombi, Arash Mirzahosseini, Zoltán-István Szabó and Gergő Tóth
Int. J. Mol. Sci. 2025, 26(15), 7217; https://doi.org/10.3390/ijms26157217 - 25 Jul 2025
Viewed by 172
Abstract
The separation of three proton pump inhibitors (omeprazole, lansoprazole, and rabeprazole) as exemplified molecules containing chiral sulfoxide groups was investigated in polar organic liquid chromatographic mode on seven different polysaccharide stationary phases (Chiralcel OD and OJ; Chiralpak AD, AS, and IA; Lux Cellulose-2 [...] Read more.
The separation of three proton pump inhibitors (omeprazole, lansoprazole, and rabeprazole) as exemplified molecules containing chiral sulfoxide groups was investigated in polar organic liquid chromatographic mode on seven different polysaccharide stationary phases (Chiralcel OD and OJ; Chiralpak AD, AS, and IA; Lux Cellulose-2 and -4). Different alcohols, such as methanol, ethanol, 1-propanol, 2-propanol, and their combinations, were used as eluents. After method optimization, semi-preparative enantioseparation was successfully applied for the three proton pump inhibitors to collect the individual enantiomers. A detailed investigation was conducted into elution order reversal, thermodynamic parameters, the effect of eluent mixtures, and the hysteresis of retention time and selectivity. Using Chiralpak AS, containing the amylose tris[(S)-α-methylbenzylcarbamate] chiral selector, the separation of the investigated enantiomers was achieved in all four neat eluents, with methanol providing the best results. In many cases, a reversal of the enantiomer elution order was observed. In addition to chiral-selector-dependent reversal, eluent-dependent reversal was also observed. Notably, even replacing methanol with ethanol altered the enantiomer elution order. Both enthalpy- and entropy-controlled enantioseparation were also observed in several cases; however, temperature-dependent elution order reversal was not. The hysteresis of retention and selectivity was further investigated on amylose-type columns in methanol–2-propanol and methanol–ethanol eluent mixtures. The phenomenon was observed on all amylose columns regardless of the eluent mixtures employed. Hystereticity ratios were calculated and used to compare the hysteresis behaviors of different systems. Multivariate statistical analysis revealed that Chiralpak AS exhibited the most distinct enantioselective behavior among the tested columns, likely due to the absence of a direct connection between the carbamate moiety and the aromatic substituent. The present study aided in understanding the mechanisms leading to enantiomer recognition, which is crucial for developing new chiral stationary phases and chiral HPLC method development in general. Full article
(This article belongs to the Section Physical Chemistry and Chemical Physics)
Show Figures

Figure 1

19 pages, 4094 KiB  
Article
Precision Molecular Engineering of Alternating Donor–Acceptor Cycloparaphenylenes: Multidimensional Optoelectronic Response and Chirality Modulation via Polarization-Driven Charge Transfer
by Danmei Zhu, Xinwen Gai, Yi Zou, Ying Jin and Jingang Wang
Molecules 2025, 30(15), 3127; https://doi.org/10.3390/molecules30153127 - 25 Jul 2025
Viewed by 169
Abstract
In this study, three alternating donor–acceptor (D–A) type [12]cycloparaphenylene ([12]CPP) derivatives ([12]CPP 1a, 2a, and 3a) were designed through precise molecular engineering, and their multidimensional photophysical responses and chiroptical properties were systematically investigated. The effects of the alternating D–A architecture on electronic structure, [...] Read more.
In this study, three alternating donor–acceptor (D–A) type [12]cycloparaphenylene ([12]CPP) derivatives ([12]CPP 1a, 2a, and 3a) were designed through precise molecular engineering, and their multidimensional photophysical responses and chiroptical properties were systematically investigated. The effects of the alternating D–A architecture on electronic structure, excited-state dynamics, and optical behavior were elucidated through density functional theory (DFT) and time-dependent DFT (TD-DFT) calculations. The results show that the alternating D–A design significantly reduced the HOMO–LUMO energy gap (e.g., 3.11 eV for [12]CPP 2a), enhanced charge transfer characteristics, and induced pronounced red-shifted absorption. The introduction of an imide-based acceptor ([12]CPP 2a) further strengthened the electron push-pull interaction, exhibiting superior performance in two-photon absorption, while the symmetrically multifunctionalized structure ([12]CPP 3a) predominantly exhibited localized excitation with the highest absorption intensity but lacked charge transfer features. Chiral analysis reveals that the alternating D–A architecture modulated the distribution of chiral signals, with [12]CPP 1a displaying a strong Cotton effect in the low-wavelength region. These findings not only provide a theoretical basis for the molecular design of functionalized CPP derivatives, but also lay a solid theoretical foundation for expanding their application potential in optoelectronic devices and chiral functional materials. Full article
(This article belongs to the Section Computational and Theoretical Chemistry)
Show Figures

Figure 1

15 pages, 3491 KiB  
Article
A Single-Phase Aluminum-Based Chiral Metamaterial with Simultaneous Negative Mass Density and Bulk Modulus
by Fanglei Zhao, Zhenxing Shen, Yong Cheng and Huichuan Zhao
Crystals 2025, 15(8), 679; https://doi.org/10.3390/cryst15080679 - 25 Jul 2025
Viewed by 223
Abstract
We propose a single-phase chiral elastic metamaterial capable of simultaneously exhibiting negative effective mass density and negative bulk modulus in the ultrasonic frequency range. The unit cell consists of a regular hexagonal frame connected to a central circular mass through six obliquely oriented, [...] Read more.
We propose a single-phase chiral elastic metamaterial capable of simultaneously exhibiting negative effective mass density and negative bulk modulus in the ultrasonic frequency range. The unit cell consists of a regular hexagonal frame connected to a central circular mass through six obliquely oriented, slender aluminum beams. The design avoids the manufacturing complexity of multi-phase systems by relying solely on geometric topology and chirality to induce dipolar and rotational resonances. Dispersion analysis and effective parameter retrieval confirm a double-negative frequency region from 30.9 kHz to 34 kHz. Finite element simulations further demonstrate negative refraction behavior when the metamaterial is immersed in water and subjected to 32 kHz and 32.7 kHz incident plane wave. Equifrequency curves (EFCs) analysis shows excellent agreement with simulated refraction angles, validating the material’s double-negative performance. This study provides a robust, manufacturable platform for elastic wave manipulation using a single-phase metallic metamaterial design. Full article
(This article belongs to the Special Issue Research Progress of Crystalline Metamaterials)
Show Figures

Figure 1

14 pages, 4107 KiB  
Article
Thermal Influence on Chirality-Driven Dynamics and Pinning of Transverse Domain Walls in Z-Junction Magnetic Nanowires
by Mohammed Al Bahri, Salim Al-Kamiyani, Mohammed M. Al Hinaai and Nisar Ali
Symmetry 2025, 17(8), 1184; https://doi.org/10.3390/sym17081184 - 24 Jul 2025
Viewed by 223
Abstract
Magnetic nanowires with domain walls (DWs) play a crucial role in the advancement of next-generation memory and spintronic devices. Understanding the thermal effects on domain wall behavior is essential for optimizing performance and stability. This study investigates the thermal chirality-dependent dynamics and pinning [...] Read more.
Magnetic nanowires with domain walls (DWs) play a crucial role in the advancement of next-generation memory and spintronic devices. Understanding the thermal effects on domain wall behavior is essential for optimizing performance and stability. This study investigates the thermal chirality-dependent dynamics and pinning of transverse domain walls (TDWs) in Z-junction nanowires using micromagnetic simulations. The analysis focuses on head-to-head (HHW) and tail-to-tail (TTW) domain walls with up and down chirality under varying thermal conditions. The results indicate that higher temperatures reduce the pinning strength and depinning current density, leading to enhanced domain wall velocity. At 200 K, the HHWdown domain wall depins at a critical current density of 1.2 × 1011 A/m2, while HHWup requires a higher depinning temperature, indicating stronger pinning effects. Similarly, the depinning temperature (Td) increases with Z-junction depth (d), reaching 300 K at d = 50 nm, while increasing Z-junction (λ) weakens pinning, reducing Td to 150 K at λ = 50 nm. Additionally, the influence of Z-junction geometry and magnetic properties, such as saturation magnetization (Ms) and anisotropy constant (Ku), is examined to determine their effects on thermal pinning and depinning. These findings highlight the critical role of chirality and thermal activation in domain wall motion, offering insights into the design of energy-efficient, high-speed nanowire-based memory devices. Full article
Show Figures

Figure 1

23 pages, 9118 KiB  
Article
Scattering Characteristics of a Circularly Polarized Bessel Pincer Light-Sheet Beam Interacting with a Chiral Sphere of Arbitrary Size
by Shu Zhang, Shiguo Chen, Qun Wei, Renxian Li, Bing Wei and Ningning Song
Micromachines 2025, 16(8), 845; https://doi.org/10.3390/mi16080845 - 24 Jul 2025
Viewed by 187
Abstract
The scattering interaction between a circularly polarized Bessel pincer light-sheet beam and a chiral particle is investigated within the framework of generalized Lorenz–Mie theory (GLMT). The incident electric field distribution is rigorously derived via the vector angular spectrum decomposition method (VASDM), with subsequent [...] Read more.
The scattering interaction between a circularly polarized Bessel pincer light-sheet beam and a chiral particle is investigated within the framework of generalized Lorenz–Mie theory (GLMT). The incident electric field distribution is rigorously derived via the vector angular spectrum decomposition method (VASDM), with subsequent determination of the beam-shape coefficients (BSCs) pmnu and qmnu through multipole expansion in the basis of vector spherical wave functions (VSWFs). The expansion coefficients for the scattered field (AmnsBmns) and interior field (AmnBmn) are derived by imposing boundary conditions. Simulations highlight notable variations in the scattering field, near-surface field distribution, and far-field intensity, strongly influenced by the dimensionless size parameter ka, chirality κ, and beam parameters (beam order l and beam scaling parameter α0). These findings provide insights into the role of chirality in modulating scattering asymmetry and localization effects. The results are particularly relevant for applications in optical manipulation and super-resolution imaging in single-molecule microbiology. Full article
Show Figures

Figure 1

14 pages, 2041 KiB  
Article
Carbohydrate-Based Chiral Ligands for the Enantioselective Addition of Diethylzinc to Aldehydes
by F. Javier López-Delgado, Daniele Lo Re, F. Franco and J. A. Tamayo
Pharmaceuticals 2025, 18(8), 1088; https://doi.org/10.3390/ph18081088 - 23 Jul 2025
Viewed by 397
Abstract
Background: Carbohydrate-derived chiral ligands are promising tools in asymmetric catalysis due to their structural diversity, chirality, and availability. However, ligands based on galactose or sorbose have been scarcely explored in the enantioselective addition of dialkylzinc reagents to aldehydes. Methods: A series [...] Read more.
Background: Carbohydrate-derived chiral ligands are promising tools in asymmetric catalysis due to their structural diversity, chirality, and availability. However, ligands based on galactose or sorbose have been scarcely explored in the enantioselective addition of dialkylzinc reagents to aldehydes. Methods: A series of chiral diols and β-amino alcohols was synthesized from methyl D-glucopyranoside, methyl D-galactopyranoside, and D-fructose. These ligands were tested in the titanium tetraisopropoxide-promoted enantioselective addition of diethylzinc to aromatic and aliphatic aldehydes. Results: Several ligands, particularly those with a D-fructopyranose backbone, exhibited excellent catalytic activity, with conversion rates up to 100% and enantioselectivities up to 96% ee. Notably, this study reports for the first time the use of β-amino alcohols derived from fructose and sorbose in this transformation. Conclusions: Carbohydrate-based ligands represent effective, inexpensive, and structurally versatile scaffolds for developing highly enantioselective catalysts, expanding the utility of sugars in asymmetric organometallic reactions. Full article
(This article belongs to the Section Medicinal Chemistry)
Show Figures

Figure 1

25 pages, 44682 KiB  
Article
Data-Driven Solutions and Parameters Discovery of the Chiral Nonlinear Schrödinger Equation via Deep Learning
by Zekang Wu, Lijun Zhang, Xuwen Huo and Chaudry Masood Khalique
Mathematics 2025, 13(15), 2344; https://doi.org/10.3390/math13152344 - 23 Jul 2025
Viewed by 180
Abstract
The chiral nonlinear Schrödinger equation (CNLSE) serves as a simplified model for characterizing edge states in the fractional quantum Hall effect. In this paper, we leverage the generalization and parameter inversion capabilities of physics-informed neural networks (PINNs) to investigate both forward and inverse [...] Read more.
The chiral nonlinear Schrödinger equation (CNLSE) serves as a simplified model for characterizing edge states in the fractional quantum Hall effect. In this paper, we leverage the generalization and parameter inversion capabilities of physics-informed neural networks (PINNs) to investigate both forward and inverse problems of 1D and 2D CNLSEs. Specifically, a hybrid optimization strategy incorporating exponential learning rate decay is proposed to reconstruct data-driven solutions, including bright soliton for the 1D case and bright, dark soliton as well as periodic solutions for the 2D case. Moreover, we conduct a comprehensive discussion on varying parameter configurations derived from the equations and their corresponding solutions to evaluate the adaptability of the PINNs framework. The effects of residual points, network architectures, and weight settings are additionally examined. For the inverse problems, the coefficients of 1D and 2D CNLSEs are successfully identified using soliton solution data, and several factors that can impact the robustness of the proposed model, such as noise interference, time range, and observation moment are explored as well. Numerical experiments highlight the remarkable efficacy of PINNs in solution reconstruction and coefficient identification while revealing that observational noise exerts a more pronounced influence on accuracy compared to boundary perturbations. Our research offers new insights into simulating dynamics and discovering parameters of nonlinear chiral systems with deep learning. Full article
(This article belongs to the Special Issue Applied Mathematics, Computing and Machine Learning)
Show Figures

Figure 1

16 pages, 3610 KiB  
Article
Multiple-Q States in Bilayer Triangular-Lattice Systems with Bond-Dependent Anisotropic Interaction
by Satoru Hayami
Crystals 2025, 15(7), 663; https://doi.org/10.3390/cryst15070663 - 20 Jul 2025
Viewed by 249
Abstract
We investigate magnetic instabilities toward multiple-Q states in centrosymmetric bilayer triangular-lattice systems. By focusing on the interplay between the layer-dependent Dzyaloshinskii–Moriya interaction and layer-independent bond-dependent anisotropic interaction, both of which originate from the relativistic spin-orbit coupling, we construct a low-temperature phase diagram [...] Read more.
We investigate magnetic instabilities toward multiple-Q states in centrosymmetric bilayer triangular-lattice systems. By focusing on the interplay between the layer-dependent Dzyaloshinskii–Moriya interaction and layer-independent bond-dependent anisotropic interaction, both of which originate from the relativistic spin-orbit coupling, we construct a low-temperature phase diagram based on an effective spin model that also includes frustrated isotropic exchange interactions. Employing simulated annealing, we reveal the stabilization of three distinct double-Q phases in the absence of an external magnetic field, each characterized by noncoplanar spin textures with spatially modulated local scalar spin chirality. Under applied magnetic fields, we identify field-induced phase transitions among single-Q, double-Q, and triple-Q states, some of which exhibit a finite net scalar spin chirality indicative of topologically nontrivial order. These findings highlight centrosymmetric systems with sublattice-dependent Dzyaloshinskii–Moriya interactions as promising platforms for realizing a variety of multiple-Q spin textures. Full article
Show Figures

Figure 1

16 pages, 2014 KiB  
Article
CALB Immobilized on Octyl-Agarose—An Efficient Pharmaceutical Biocatalyst for Transesterification in Organic Medium
by Joanna Siódmiak, Jacek Dulęba, Natalia Kocot, Rafał Mastalerz, Gudmundur G. Haraldsson and Tomasz Siódmiak
Int. J. Mol. Sci. 2025, 26(14), 6961; https://doi.org/10.3390/ijms26146961 - 20 Jul 2025
Viewed by 278
Abstract
The growing need for developing safer and more effective methods for obtaining enantiomers of chiral compounds, particularly those with pharmacological activity, highlights the potential of biocatalysis as an appropriate pharmaceutical research direction. However, low catalytic activity and stability of free enzymes are often [...] Read more.
The growing need for developing safer and more effective methods for obtaining enantiomers of chiral compounds, particularly those with pharmacological activity, highlights the potential of biocatalysis as an appropriate pharmaceutical research direction. However, low catalytic activity and stability of free enzymes are often among the substantial limitations to the wide application of biocatalysis. Therefore, to overcome these obstacles, new technological procedures are being designed. In this study, we present optimized protocols for the immobilization of Candida antarctica lipase B (CALB) on an octyl- agarose support, ensuring high enantioselectivity in an organic reaction medium. The immobilization procedures (with drying step), including buffers with different pH values and concentrations, as well as the study of the influence of temperature and immobilization time, were presented. It was found that the optimal conditions were provided by citrate buffer with a pH of 4 and a concentration of 300 mM. The immobilized CALB on the octyl-agarose support exhibited high catalytic activity in the kinetic resolution of (R,S)-1-phenylethanol via enantioselective transesterification with isopropenyl acetate in 1,2-dichloropropane (DCP), as a model reaction for lipase activity monitoring on an analytical scale. HPLC analysis demonstrated that the (R)-1-phenylethyl acetate was obtained in an enantiomeric excess of eep > 99% at a conversion of approximately 40%, and the enantiomeric ratio was E > 200. Thermal and storage stability studies performed on the immobilized CALB octyl-agarose support confirmed its excellent stability. After 7 days of thermal stability testing at 65 °C in a climatic chamber, the (R)-1-phenylethyl acetate was characterized by enantiomeric excess of eep > 99% at a conversion of around 40% (similar values of catalytic parameters to those achieved using a non-stored lipase). The documented high catalytic activity and stability of the developed CALB-octyl-agarose support allow us to consider it as a useful tool for enantioselective transesterification in organic medium. Full article
Show Figures

Figure 1

15 pages, 2717 KiB  
Article
An Evaluation of the Cytotoxicity and Safety Profile of Usnic Acid for a Broad Panel of Human Cancers and Normal Cells with Respect to Its Enantiospecificity
by Gabriela Siedlarczyk, Paweł Paśko and Agnieszka Galanty
Molecules 2025, 30(14), 2964; https://doi.org/10.3390/molecules30142964 - 14 Jul 2025
Viewed by 304
Abstract
Chirality plays a key role in the effectiveness and toxicity of bioactive compounds. Usnic acid (UA), a lichen metabolite, exists as two enantiomers. Despite numerous studies on its biological properties, enantioselective aspects remain poorly recognized. This study assessed the cytotoxicity of UA enantiomers [...] Read more.
Chirality plays a key role in the effectiveness and toxicity of bioactive compounds. Usnic acid (UA), a lichen metabolite, exists as two enantiomers. Despite numerous studies on its biological properties, enantioselective aspects remain poorly recognized. This study assessed the cytotoxicity of UA enantiomers against colon, prostate, thyroid, brain, and breast cancer cell lines, as well as non-cancerous cells. Cell viability was determined by the MTT assay after 24, 48, and 72 h. Colon cancer HCT116 cells were the most sensitive (IC50 ~10 µg/mL, 72 h), with no enantiomeric dominance. In prostate cancer PC3 cells, (+)-UA was more effective. Moderate cytotoxic effect was noted for thyroid cancer cells; however, this was evaluated for the first time. MDA-MB-231 breast cancer cells were strongly affected (IC50 15.8 and 20.2 µg/mL for (+)- and (−)-UA, 72 h), as compared to MCF7 cells. Brain cancer cells were the least affected, as so were normal astrocytes. UA had no effect on normal colon epithelial cells but showed moderate toxicity in prostate, thyroid, and breast cells. To conclude, the overall cytotoxicity of (+)-UA was stronger than its (−)-enantiomer, while the latter compound was more toxic to normal cells. These findings highlight the advantage of (+)-UA, especially in chemopreventive strategies. Full article
Show Figures

Figure 1

Back to TopTop