Progress in Stereoselective Haloamination of Olefins
Abstract
1. Introduction
- (i)
- The electrophilic haloamination mechanism, wherein halonium ions (X+) function as electrophiles to attack alkenes, forming halonium ion intermediates that subsequently undergo nucleophilic addition by amine compounds;
- (ii)
- The radical-mediated mechanism, where halogen radicals (X•) generated through radical initiators or photoredox catalysis initiate radical addition to alkenes;
- (iii)
- The intramolecular reaction mechanism, which proceeds either through a concerted transition state enabling simultaneous formation of C-X and C-N bonds, or via cyclization of substrates containing pre-installed halogen and amine functional groups to construct heterocyclic frameworks.
2. General Haloamination
3. Intramolecular Stereoselective Haloamination
4. Intermolecular Stereoselective Haloamination
4.1. Intermolecular Diastereoselective Haloamination
4.2. Intermolecular Enantioselective Haloamination
4.3. Intermolecular Diastereoselective and Enantioselective Haloamination
5. Chiral Catalyst/Ligand Design: Influence on Stereoselectivity and Green Chemistry Performance
6. Conclusions and Outlook
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Li, G.; Kotti, S.R.S.S.; Timmons, C. Recent Development of Regio- and Stereoselective Aminohalogenation Reaction of Alkenes. Eur. J. Org. Chem. 2007, 2007, 2745–2758. [Google Scholar] [CrossRef]
- Chemler, S.R.; Bovino, M.T. Catalytic Aminohalogenation of Alkenes and Alkynes. ACS Catal. 2013, 3, 1076–1091. [Google Scholar] [CrossRef] [PubMed]
- Kim, W.-G.; Kim, J.-P.; Kim, C.-J.; Lee, K.-H.; Ick-Dong, Y. Benzastatins A, B, C, and D: New free radical scavengers from Streptomyces nitrosporeus 30643 I. Taxonomy, fermentation, isolation, physico-chemical properties and biological activities. J. Antibiot. 1996, 49, 20–25. [Google Scholar] [CrossRef] [PubMed]
- Rahbæk, L.; Christophersen, C. Marine alkaloids. 19. Three new alkaloids, securamines e−g, from the marine bryozoan securiflustra securifrons. J. Nat. Prod. 1997, 60, 175–177. [Google Scholar] [CrossRef]
- Couty, F.; Kletskii, M. Ring expansion of 2-chloromethyl pyrrolidine or azetidine: Compared theoretical investigation. Tetrahedron 2009, 908, 26–30. [Google Scholar] [CrossRef]
- Hayashi, K.; Kujime, E.; Katayama, H.; Sano, S.; Shiro, M.; Nagao, Y. Synthesis and Reaction of 1-Azabicyclo [3.1. 0] hexane. Chem. Pharm. Bull. 2009, 57, 1142–1146. [Google Scholar] [CrossRef]
- Ladenburg, A. Versuche zur Synthese von Tropin und dessen Derivate. Chem. Ber. 1881, 14, 1342–1349. [Google Scholar]
- Merling, G. Ueber Bromsubstitutionsprodukte des Dimethylpiperidins und einige sich von diesen ableitende Verbindungen. Chem. Ber. 1884, 17, 2139–2143. [Google Scholar] [CrossRef]
- Karur, S.; Kotti, S.S.; Xu, X.; Cannon, J.F.; Headley, A.; Li, G. A catalytic reaction of alkynes via multiple-site functionalization. J. Am. Chem. Soc. 2003, 125, 13340–13341. [Google Scholar] [CrossRef]
- Li, G.; Wei, H.-X.; Kim, S.H.; Carducci, M.D. A Novel Electrophilic Diamination Reaction of Alkenes. Angew. Chem. Int. Ed. 2001, 40, 4277–4280. [Google Scholar] [CrossRef]
- Pei, W.; Timmons, C.; Xu, X.; Wei, H.-X.; Li, G. Novel imidazolination reaction of alkenes provides an easy access to new α,β-differentiated 1,2-vicinal diamines. Org. Biomol. Chem. 2003, 1, 2919–2921. [Google Scholar] [CrossRef] [PubMed]
- Wei, H.-X.; Kim, S.H.; Li, G. Electrophilic Diamination of Alkenes by Using FeCl3−PPh3 Complex as the Catalyst. J. Org. Chem. 2002, 67, 4777–4781. [Google Scholar] [CrossRef] [PubMed]
- Chen, D.; Timmons, C.; Wei, H.-X.; Li, G. Direct electrophilic diamination of functionalized alkenes without the use of any metal catalysts. J. Org. Chem. 2003, 68, 5742–5745. [Google Scholar] [CrossRef] [PubMed]
- Knochel, P.; Molander, G.A. Comprehensive Organic Synthesis; Newnes: Oxford, UK, 2014. [Google Scholar]
- Griffith, D.A.; Danishefsky, S.J. Total synthesis of allosamidin: An application of the sulfonamidoglycosylation of glycals. J. Am. Chem. Soc. 1991, 113, 5863–5864. [Google Scholar] [CrossRef]
- Driguez, H.; Vermes, J.-P.; Lessard, J. The chromous chloride promoted addition of N-haloamides to olefins. V. The addition of N-chloroamides to enol ethers: Synthesis of acyloxy and acyl derivatives of α-amino acetals and ketals (aldehydes and ketones) and of 2-amino sugars. Can. J. Chem. Eng. 1978, 56, 119–130. [Google Scholar] [CrossRef]
- Lessard, J.; Driguez, H.; Vermes, J. The chromous chloride promoted addition of N-chlorocarbamates to enol ethers. The synthesis of N-alkoxycarbonyl derivatives of 2-amino sugars and of alpha-amino ketone and aldehyde. Tetrahedron Lett. 1970, 11, 4887–4890. [Google Scholar] [CrossRef]
- Chen, D.; Kim, S.H.; Hodges, B.; Li, G. The cinnamate-based aminohalogenation provides an easy access to anti methyl 3-aryl-N-p-tosyl-and N-o-nosyl-aziridine-2-carboxylates. Arkivoc 2003, 12, 56–63. [Google Scholar] [CrossRef]
- Chen, D.; Timmons, C.; Guo, L.; Xu, X.; Li, G. One-Pot Stereoselective Synthesis of anti 3-Alkyl and 3-Aryl-Np-tosyl-aziridine-2-ketones and 3-Aryl-Np-tosyl-aziridine-2-carboxylates. Synthesis 2004, 2004, 2479–2484. [Google Scholar]
- Han, J.; Li, Y.; Zhi, S.; Pan, Y.; Timmons, C.; Li, G. Palladium-catalyzed aziridination of alkenes using N, N-dichloro-p-toluenesulfonamide as nitrogen source. Tetrahedron Lett. 2006, 47, 7225–7228. [Google Scholar] [CrossRef]
- Chen, D.; Guo, L.; Liu, J.; Kirtane, S.; Cannon, J.F.; Li, G. Functionalization of α, β-unsaturated esters and ketones: A facile and highly stereoselective one-pot approach to N-protected α, β-dehydroamino acid derivatives. Org. Lett. 2005, 7, 921–924. [Google Scholar] [CrossRef]
- Bach, T.; Schlummer, B.; Harms, K. Intramolecular Iron (ii)-catalyzed Nitrogen Transfer Reactions of Unsaturated Alkoxycarbonyl Azides: A Facile and Stereoselective Route to 4, 5-Disubstituted Oxazolidinones. Chem. Eur. J. 2001, 7, 2581–2594. [Google Scholar] [CrossRef] [PubMed]
- Danielec, H.; Klügge, J.; Schlummer, B.; Bach, T. FeCl2-catalyzed intramolecular chloroamination reactions. Synthesis 2006, 2006, 551–556. [Google Scholar]
- Sai, M.; Matsubara, S. Silver-catalyzed intramolecular chloroamination of allenes: Easy access to functionalized 3-pyrroline and pyrrole derivatives. Org. Lett. 2011, 13, 4676–4679. [Google Scholar] [CrossRef]
- Bovino, M.T.; Chemler, S.R. Catalytic enantioselective alkene aminohalogenation/cyclization involving atom transfer. Angew. Chem. Int. Ed. 2012, 51, 3923. [Google Scholar] [CrossRef]
- Li, R.-L.; Liu, G.-Q.; Li, W.; Wang, Y.-M.; Li, L.; Duan, L.; Li, Y.-M. One-pot preparation of 3-chloropiperidine compounds via Cu (II)-promoted intramolecular chloroamination of unfunctionalized olefins. Tetrahedron 2013, 69, 5867–5873. [Google Scholar] [CrossRef]
- Manzoni, M.R.; Zabawa, T.P.; Kasi, D.; Chemler, S.R. Palladium (II)-catalyzed intramolecular aminobromination and aminochlorination of olefins. Organometallics 2004, 23, 5618–5621. [Google Scholar] [CrossRef]
- Wu, T.; Yin, G.; Liu, G. Palladium-catalyzed intramolecular aminofluorination of unactivated alkenes. J. Am. Chem. Soc. 2009, 131, 16354–16355. [Google Scholar] [CrossRef]
- Kotha, S. Opportunities in asymmetric synthesis: An industrial prospect. Tetrahedron 1994, 50, 3639–3662. [Google Scholar] [CrossRef]
- Theilacker, W.; Wessel, H.; Olefinreaktionen, I. Chlorierung in Allyl-Stellung. Justus Lieb. Ann. Chem. 1967, 703, 34–36. [Google Scholar] [CrossRef]
- Ueno, Y.; Takemura, S.; Ando, Y.; Terauchi, H. Reaction of N-Halosulfonamide. I. Reaction of N, N-Dihalobenzenesulfonamide with Cyclohexene.(1). Chem. Pharm. Bull. 1967, 15, 1193–1197. [Google Scholar] [CrossRef]
- Seden, T.; Turner, R. The reactions of styrene and related compounds with NN-dichlorosulphonamides. J. Chem. Soc. C Org. 1968, 876–878. [Google Scholar] [CrossRef]
- Daniher, F.A.; Butler, P.E. Addition of N, N-dichlorosulfonamides to unsaturates. J. Org. Chem. 1968, 33, 4336–4340. [Google Scholar] [CrossRef]
- Raghavan, S.; Reddy, S.R.; Tony, K.; Kumar, C.N.; Nanda, S. Bromosulfonamidation of alkenes using S, S-dimethyl-N-(p-toluenesulfonyl) sulfilimine. Synlett 2001, 2001, 0851–0853. [Google Scholar] [CrossRef]
- Chen, D.; Timmons, C.; Chao, S.; Li, G. Regio-and Stereoselective Copper-Catalyzed Synthesis of Vicinal Haloamino Ketones from α, β-Unsaturated Ketones. Eur. J. Org. Chem. 2004, 2004, 3097–3101. [Google Scholar] [CrossRef]
- Yao, C.-Z.; Tu, X.-Q.; Jiang, H.-J.; Li, Q.; Yu, J. Recent advances in catalytic asymmetric haloamination and haloetherification of alkenes. Tetrahedron Lett. 2023, 126, 154639. [Google Scholar] [CrossRef]
- Qian, Y.; Ji, X.; Zhou, W.; Han, J.; Li, G.; Pan, Y. Aminochlorination reaction with N-chlorophthalimide as a new nitrogen/chlorine source resulting in α-amino derivatives. Tetrahedron 2012, 68, 6198–6203. [Google Scholar] [CrossRef]
- White, R.E.; Kovacic, P. Chemistry of N-haloamines. XXIV. Behavior of N, N-dichloroamides and N, N-dichlorocarbamates toward nucleophiles. J. Am. Chem. Soc. 1975, 97, 1180–1184. [Google Scholar] [CrossRef]
- Engl, S.; Reiser, O. Catalyst-free visible-light-mediated iodoamination of olefins and synthetic applications. Org. Lett. 2021, 23, 5581–5586. [Google Scholar] [CrossRef]
- Azzi, E.; Ghigo, G.; Sarasino, L.; Parisotto, S.; Moro, R.; Renzi, P.; Deagostino, A. Photoinduced chloroamination cyclization cascade with N-chlorosuccinimide: From N-(allenyl) sulfonylamides to 2-(1-chlorovinyl) pyrrolidines. J. Org. Chem. 2022, 88, 6420–6433. [Google Scholar] [CrossRef]
- Zhou, L.; Chen, J.; Tan, C.K.; Yeung, Y.-Y. Enantioselective bromoaminocyclization using amino–thiocarbamate catalysts. J. Am. Chem. Soc. 2011, 133, 9164–9167. [Google Scholar] [CrossRef]
- Chen, J.; Zhou, L.; Yeung, Y.-Y. A highly enantioselective approach towards 2-substituted 3-bromopyrrolidines. Org. Biomol. Chem. 2012, 10, 3808–3811. [Google Scholar] [CrossRef]
- Chen, F.; Tan, C.K.; Yeung, Y.-Y. C 2-Symmetric cyclic selenium-catalyzed enantioselective bromoaminocyclization. J. Am. Chem. Soc. 2013, 135, 1232–1235. [Google Scholar] [CrossRef]
- Bovino, M.T. Copper-Catalyzed Enantioselective Difunctionalization of Alkene Reactions: Aminohalogenation and Carboetherification; State University of New York at Buffalo: Buffalo, NY, USA, 2014. [Google Scholar]
- Mizar, P.; Burrelli, A.; Günther, E.; Soeftje, M.; Farooq, U.; Wirth, T. Organocatalytic stereoselective iodoamination of alkenes. Chem. Eur. J. 2014, 20, 13113–13116. [Google Scholar] [CrossRef] [PubMed]
- Yu, S.N.; Li, Y.L.; Deng, J. Enantioselective Synthesis of 2-Bromomethyl Indolines via BINAP (S)-Catalyzed Bromoaminocyclization of Allyl Aniline. ACS Catal. 2017, 359, 2499–2508. [Google Scholar] [CrossRef]
- Bermudez, J.; Dabbs, S.; Joiner, K.A.; King, F.D. 5-Hydroxytryptamine (5-HT3) receptor antagonists. 2. 1-Indolinecarboxamides. J. Med. Chem. 1990, 33, 1929–1932. [Google Scholar] [CrossRef]
- Adachi, S.; Koike, K.; Takayanagi, I. Pharmacological characteristics of indoline derivatives in muscarinic receptor subtypes. Pharmacology 1996, 53, 250–258. [Google Scholar] [CrossRef]
- Struble, T.J.; Lankswert, H.M.; Pink, M.; Johnston, J.N. Enantioselective organocatalytic amine-isocyanate capture-cyclization: Regioselective alkene iodoamination for the synthesis of chiral cyclic ureas. ACS Catal. 2018, 8, 11926–11931. [Google Scholar] [CrossRef]
- Mennie, K.M.; Banik, S.M.; Reichert, E.C.; Jacobsen, E.N. Catalytic diastereo-and enantioselective fluoroamination of alkenes. J. Am. Chem. Soc. 2018, 140, 4797–4802. [Google Scholar] [CrossRef]
- Wang, H.; Zhong, H.; Xu, X.; Xu, W.; Jiang, X. Catalytic enantioselective bromoaminocyclization and bromocycloetherification. ACS Catal. 2020, 362, 5358–5362. [Google Scholar] [CrossRef]
- Sun, H.; Shang, H.; Cui, B. (Salen) Mn (III)-Catalyzed Enantioselective Intramolecular Haloamination of Alkenes through Chiral Aziridinium Ion Ring-Opening Sequence. ACS Catal. 2022, 12, 7046–7053. [Google Scholar] [CrossRef]
- Wang, Z.; Hou, C.; Chen, P. Asymmetric Palladium-Catalyzed Aminochlorination of Unactivated Alkenes. Org. Lett. 2023, 25, 2685–2690. [Google Scholar] [CrossRef]
- Evans, D.A.; Faul, M.M.; Bilodeau, M.T.; Anderson, B.A.; Barnes, D.M. Bis (oxazoline)-copper complexes as chiral catalysts for the enantioselective aziridination of olefins. J. Am. Chem. Soc. 1993, 115, 5328–5329. [Google Scholar] [CrossRef]
- Jacobsen, E.N.; Marko, I.; Mungall, W.S.; Schroeder, G.; Sharpless, K.B. Asymmetric dihydroxylation via ligand-accelerated catalysis. J. Am. Chem. Soc. 1988, 110, 1968–1970. [Google Scholar] [CrossRef]
- Kolb, H.C.; VanNieuwenhze, M.S.; Sharpless, K.B. Catalytic asymmetric dihydroxylation. Chem. Rev. 1994, 94, 2483–2547. [Google Scholar] [CrossRef]
- Zhang, W.; Loebach, J.L.; Wilson, S.R.; Jacobsen, E.N. Enantioselective epoxidation of unfunctionalized olefins catalyzed by salen manganese complexes. J. Am. Chem. Soc. 1990, 112, 2801–2803. [Google Scholar] [CrossRef]
- Jeong, J.U.; Tao, B.; Sagasser, I.; Henniges, H.; Sharpless, K.B. Bromine-catalyzed aziridination of olefins. A rare example of atom-transfer redox catalysis by a main group element. J. Am. Chem. Soc. 1998, 120, 6844–6845. [Google Scholar] [CrossRef]
- Li, Z.; Conser, K.R.; Jacobsen, E.N. Asymmetric alkene aziridination with readily available chiral diimine-based catalysts. J. Am. Chem. Soc. 1993, 115, 5326–5327. [Google Scholar] [CrossRef]
- Li, G.; Chang, H.T.; Sharpless, K.B. Catalytic asymmetric aminohydroxylation (AA) of olefins. Angew. Chem. Int. Ed. 1996, 35, 451–454. [Google Scholar] [CrossRef]
- Li, G.; Sharpless, K.B. Catalytic asymmetric aminohydroxylation provides a short taxol side-chain synthesis. Acta Chem. Scand. 1996, 50, 649–651. [Google Scholar] [CrossRef]
- Li, G.; Wei, H.-X.; Kim, S.H.; Neighbors, M. Transition metal-catalyzed regioselective and stereoselective aminochlorination of cinnamic esters. Org. Lett. 1999, 1, 395–398. [Google Scholar] [CrossRef]
- Li, G.; Wei, H.-X.; Kim, S.H. Copper-Catalyzed Aminohalogenation Using the 2-NsNCl2/2-NsNHNa Combination as the Nitrogen and Halogen Sources for the Synthesis of a nti-Alkyl 3-Chloro-2-(o-nitrobenzenesulfonamido)-3-arylpropionates. Org. Lett. 2000, 2, 2249–2252. [Google Scholar] [CrossRef] [PubMed]
- Wei, H.-X.; Kim, S.H.; Li, G. The first transition metal–ligand complex-catalyzed regioselective and stereoselective aminohalogenation of cinnamic esters. Tetrahedron 2001, 57, 3869–3873. [Google Scholar] [CrossRef]
- Li, G.; Wei, H.-X.; Kim, S.H. Unexpected copper-catalyzed aminohalogenation reaction of olefins using N-halo-N-metallo-sulfonamide as the nitrogen and halogen sources. Tetrahedron 2001, 57, 8407–8411. [Google Scholar] [CrossRef]
- Thakur, V.V.; Talluri, S.K.; Sudalai, A. Transition metal-catalyzed regio-and stereoselective aminobromination of olefins with TsNH2 and NBS as nitrogen and bromine sources. Org. Lett. 2003, 5, 861–864. [Google Scholar] [CrossRef]
- Xu, X.; Kotti, S.S.; Liu, J.; Cannon, J.F.; Headley, A.D.; Li, G. Ionic liquid media resulted in the first asymmetric aminohalogenation reaction of alkenes. Org. Lett. 2004, 6, 4881–4884. [Google Scholar] [CrossRef]
- Wang, Y.-N.; Kattuboina, A.; Ai, T.; Banerjee, D.; Li, G. Chelation-controlled asymmetric aminohalogenation reaction. Tetrahedron Lett. 2007, 48, 7894–7898. [Google Scholar] [CrossRef]
- Park, S.; Kazlauskas, R.J. Improved preparation and use of room-temperature ionic liquids in lipase-catalyzed enantio-and regioselective acylations. J. Org. Chem. 2001, 66, 8395–8401. [Google Scholar] [CrossRef]
- Wu, J.X.; Beck, B.; Ren, R.X. Catalytic Rosenmund–von Braun reaction in halide-based ionic liquids. Tetrahedron Lett. 2002, 43, 387–389. [Google Scholar] [CrossRef]
- Kabalka, G.W.; Venkataiah, B.; Dong, G. The use of potassium alkynyltrifluoroborates in Mannich reactions. Tetrahedron Lett. 2004, 45, 729–731. [Google Scholar] [CrossRef]
- Kotti, S.S.; Xu, X.; Li, G.; Headley, A.D. Efficient nucleophilic substitution reactions of highly functionalized allyl halides in ionic liquid media. Tetrahedron Lett. 2004, 45, 1427–1431. [Google Scholar] [CrossRef]
- Han, J.L.; Zhi, S.J.; Wang, L.Y.; Pan, Y.; Li, G. CuCl-Catalyzed Regio- and Stereoselective Aminohalogenation of α,β-Unsaturated Nitriles. Eur. J. Org. Chem. 2007, 2007, 1332–1337. [Google Scholar] [CrossRef]
- Wu, X.-L.; Wang, G.-W. Hypervalent iodine-mediated aminobromination of olefins in water. Tetrahedron 2009, 65, 8802–8807. [Google Scholar] [CrossRef]
- Chen, Z.-G.; Wei, J.-F.; Li, R.-T.; Shi, X.-Y.; Zhao, P.-F. Copper powder-catalyzed regio-and stereoselective aminobromination of α, β-unsaturated ketones with TsNH2 and NBS as nitrogen and halogen sources. J. Org. Chem. 2009, 74, 1371–1373. [Google Scholar] [CrossRef]
- Chen, S.; Han, J.; Li, G.; Pan, Y. Highly diastereoselective aminobromination of β-methyl-β-nitrostyrenes with t-butyl N, N-dibromocarbamate/t-butyl carbamate as bromine/nitrogen sources. Tetrahedron Lett. 2013, 54, 2781–2784. [Google Scholar] [CrossRef]
- Rahman, A.U.; Zarshad, N.; Zhou, P.; Yang, W.; Li, G.; Ali, A. Hypervalent iodine (III) catalyzed regio-and diastereoselective aminochlorination of tailored electron deficient olefins via GAP chemistry. Front. Chem. 2020, 8, 523. [Google Scholar] [CrossRef]
- Rahman, A.U.; Zarshad, N.; Khan, I.; Faiz, F.; Li, G.; Ali, A. Regio-and diastereoselective vicinal aminobromination of electron deficient olefins via phosphorus-based gap protocol. Front. Chem. 2021, 9, 742399. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Huang, H.-G.; Li, W.; Liu, W.-B. FeCl2-Mediated Regioselective Aminochlorination and Aminoazidation of Styrenes with Trifluoromethanesulfonyl Azide. Org. Lett. 2021, 23, 5102–5106. [Google Scholar] [CrossRef] [PubMed]
- Guo, L.; Zhao, W.; Gao, Y.; Wu, M.; Chen, S. Regio-and Stereoselective Iodoamination of Ferrocene-Containing Allenylphosphonates: Synthesis of Multifunctional Tetrasubstituted Allylic Amines and Allylic Azides. J. Org. Chem. 2024, 89, 1956–1966. [Google Scholar] [CrossRef] [PubMed]
- Lei, A.; Lu, X.; Liu, G. A novel highly regio-and diastereoselective haloamination of alkenes catalyzed by divalent palladium. Tetrahedron Lett. 2004, 45, 1785–1788. [Google Scholar] [CrossRef]
- Cai, Y.; Liu, X.; Zhou, P.; Feng, X. Asymmetric catalytic halofunctionalization of α, β-unsaturated carbonyl compounds. J. Org. Chem. 2018, 84, 1–13. [Google Scholar] [CrossRef]
- Qi, J.; Fan, G.-T.; Chen, J.; Sun, M.-H.; Dong, Y.-T.; Zhou, L. Catalytic enantioselective bromoamination of allylic alcohols. Chem. Comm. 2014, 50, 13841–13844. [Google Scholar] [CrossRef] [PubMed]
- Lebee, C.; Blanchard, F.; Masson, G. Highly enantioselective intermolecular iodo-and chloroamination of enecarbamates catalyzed by chiral phosphoric acids or calcium phosphate salts. Synlett 2016, 27, 559–563. [Google Scholar] [CrossRef]
- Schäfer, M.; Stünkel, T.; Daniliuc, C.G.; Gilmour, R. Regio-and Enantioselective Intermolecular Aminofluorination of Alkenes via Iodine (I)/Iodine (III) Catalysis. Angew. Chem. Int. Ed. 2022, 61, e202205508. [Google Scholar] [CrossRef]
- Narobe, R.; Murugesan, K.; Schmid, S.; König, B. Decarboxylative Ritter-type amination by cooperative iodine (I/III)─ boron Lewis acid catalysis. ACS Catal. 2021, 12, 809–817. [Google Scholar] [CrossRef]
- Appayee, C.; Brenner-Moyer, S.E. Organocatalytic enantioselective olefin aminofluorination. Org. Lett. 2010, 12, 3356–3359. [Google Scholar] [CrossRef]
- Cai, Y.; Liu, X.; Jiang, J.; Chen, W.; Lin, L.; Feng, X. Catalytic asymmetric chloroamination reaction of α, β-unsaturated γ-keto esters and chalcones. J. Am. Chem. Soc. 2011, 133, 5636–5639. [Google Scholar] [CrossRef]
- Cai, Y.; Liu, X.; Zhou, P.; Kuang, Y.; Lin, L.; Feng, X. Iron-catalyzed asymmetric haloamination reactions. Chem. Comm. 2013, 49, 8054–8056. [Google Scholar] [CrossRef]
- Wang, Z.; Lin, L.; Zhou, P.; Liu, X.; Feng, X. Chiral N, N′-dioxide-Sc (NTf 2) 3 complex-catalyzed asymmetric bromoamination of chalones with N-bromosuccinimide as both bromine and amide source. Chem. Comm. 2017, 53, 3462–3465. [Google Scholar] [CrossRef]
- Wang, Y.N.; Ni, B.; Headley, A.D.; Li, G. Ionic Liquid, 1-n-Butyl-3-methylimidazolium Bis (trifluoromethanesulfonyl) imide, Resulted in the First Catalyst-Free Aminohalogenation of Electron-Deficient Alkenes. ACS Catal. 2007, 349, 319–322. [Google Scholar]
- Lei, N.; Shen, Y.; Li, Y.; Tao, P.; Yang, L.; Su, Z.; Zheng, K. Electrochemical Iodoamination of Indoles Using Unactivated Amines. Org. Lett. 2020, 22, 9184–9189. [Google Scholar] [CrossRef]
- Klöpfer, V.; Roithmeier, L.; Kobras, M.; Kreitmeier, P.; Reiser, O. Catalyst-Free, Scalable, Green-Light-Mediated Iodoamination, and Further Transformation of Olefins Under Continuous Flow Conditions. Org. Process Res. Dev. 2025, 29, 755–759. [Google Scholar] [CrossRef]
Reaction Step | Key Condition | Stereochemical Control Mechanism | Selective Results |
---|---|---|---|
1. Imine-catalyzed conjugated addition | Catalyst: Cat-35 | (1) The chiral center of 12a guides the nucleophilic reagent. (2) The silicon group provides steric hindrance shielding on the Si surface, enhancing the enantioselectivity. | ee content as high as 99% |
Solvent: MTBE (methyl tert-butyl ether) | Non-polar solvents protect Cat-35 from being deactivated by NFSI through silicon removal, thereby maintaining its catalytic activity. | Improves ee and stability of intermediates during reaction process | |
Temperature: rt | Room temperature facilitates the efficient completion of imine formation and amine addition. | Shortens reaction time and reduces side effects | |
2. Cycloammonium-catalyzed fluorination | Catalyst Cat-35 (sustaining action) | (1) Cat-35 reacts with saturated aldehyde to form enamine. The Si face is shielded by the silicon group, and fluorine attacks from the Re face. (2) There is an enhanced synselectivity at low temperature (0 °C). | dr 95:5 (syn/anti) |
Fluorine source: NFSI (N-Fluorobenzenesulfonimide) | The electrophilic fluorinating reagent selectively attacks the Re face of the alkenylamine, generating an α-fluorinated product. | High synselectivity | |
Solvent: MTBE | A low-polarity environment reduces catalyst deactivation and avoids side reactions. | Maintains high dr and ee | |
Temperature: 0 °C | (1) This enables the low-temperature inhibition of side reactions, fixation of enamine conformation, and enhancement of synselectivity. (2) A high temperature (rt) leads to a selective reversal (dr 3:1). | Optimizes synselectivity (95:5) |
Selective Type | Key Influence Factor | Embody | Mechanistic Explanation |
---|---|---|---|
Enantioselectivity (ee) | Chiral ligand: (S)-piperidine acid-derived N,N’-dioxygenated L6-Sc(OTf)3 | ee up to 99% | Chiral ligands control the attack surface of TsNH2 by inducing the direction of formation of the chloroammonium ion intermediate through spatial site resistance and electronic effects. |
Reagent combination: TsNCl2/TsNH2 to generate highly reactive TsNHCl | Increase in ee from 94% to 97% with TsNCl2/TsNH2 | TsNHCl synergizes with chiral catalysts to form chloroammonium ion intermediates in a single configuration to avoid racemization. | |
Temperature: low (0 °C) | Heterocyclic substrates up to 99% ee at 0 °C | The low-temperature inhibition of intermediate racemization provides improved chiral control. | |
Electronic effects: Substrate aromatic ring substituents | Higher ee for electron donor; slightly lower ee for electron absorber | The electron-donating group stabilizes the chloroammonium ion intermediate and reduces racemization; the electron-withdrawing group accelerates the dissociation of the intermediate and reduces selectivity. | |
Diastereoselectivity (dr) | Reaction mechanism: Bridging of ammonium chloride intermediate molecule | dr > 99:1 | The bridging structure forces TsNH2 to attack from the opposite (anti-) side to form a single diastereomer. |
Substrate structure: Steric hindrance at ester group position | Yield of bulky ester group decreased but dr remained unchanged | Steric hindrance affects the spatial matching of the transition state, but the anti-addition pathway remains dominant. | |
Electron effect: Aromatic ring substituent | Higher electron-donating group dr; slightly lower electron-absorbing group dr | The electron-donating groups enhance intermediate stability and reduce side pathways; electron-withdrawing groups may trigger competing reactions. | |
Additive: 4 Å MS | With no 4 Å MS, dr remains unchanged but yield decreases | 4 Å MS inhibits the side reactions by removing water, but does not affect the stereochemistry of the main pathway. |
Influence Factor | Enantioselectivity (ee) | Diastereoselectivity (dr) |
---|---|---|
Chiral catalyst (L3–Fe(acac)3) | Provides chiral environment to direct absolute configuration of product | The stereochemistry of the transition state is controlled by the ligand, achieving high diastereoselectivity (dr > 19:1). |
Halogenating reagent (TsNCl2/TsNH2) | Enantioselective attack of reactive intermediates | The steric and electronic effects of the reagents influence the ratio of diastereomers. |
Reaction temperature (0 °C or 25 °C) | Low temperature reduces side effects and improves ee value | The low temperature suppresses the competitive formation of diastereomers, thereby enhancing the diastereomeric ratio (dr). |
Solvent (CH2Cl2) | Stabilizes intermediates by providing suitable polar environment | The polarity and coordinating ability of the solvent modulate the energy difference between transition states. |
4 Å MS | Avoids water induced catalyst deactivation and maintains high ee values | The 4 Å MS reduces side reactions and maintains high dr. |
Substrate structure | Electronic effects and steric hindrance influence efficiency of chiral induction | The steric hindrance of the substituents determines the ratio of the diastereomers. |
Reaction Condition | Enantioselectivity (ee, %) | Diastereoselectivity (dr, ratio) | Possible Influencing Factors |
---|---|---|---|
Standard conditions (NBS, Sc(NTf2)3) | 90–94% (most > 90%) | 88:12 to 92:8 (most > 90:10) | The efficient control of stereochemistry by a chiral catalyst (L7-Sc(NTf2)3); the dual role of NBS as a bromine and amide source. |
NIS replaces NBS | 73% | 96:4 | The larger size of the iodine atom may reduce the spatial matching of the transition state, but it has less effect on the diastereoselectivity. |
NCS replaces NBS | 69% | 85:15 | The high electronegativity but small size of the chlorine atom may lead to a weakened chiral induction and a slight decrease in diastereoselectivity. |
Base-free conditions | Trace | - | Base absence deactivates the intermediate, preventing reaction. |
With TEA (as base) | 75% | - | TEA facilitates the formation of intermediates, but excessive alkalinity may interfere with chiral control. |
With DIPA (as base) | 33% | - | The strong base (DIPA) disrupts the chiral environment, leading to a significant reduction in enantioselectivity. |
Catalyst/Ligand | Representative Structure/Modification | Reaction System | ee (%) | dr | Green Chemistry Metrics | Green Chemistry Principles |
---|---|---|---|---|---|---|
Photocatalysis [39] | Organic photosensitizer | NIS, visible light, green solvent | - | - | Metal-free, visible-light-driven, biodegradable solvent, room-temperature reaction | HH, DD, EE |
Aminothiocarbamate [41] | Thiourea scaffold, Quinoline moiety | NBS, CH2Cl2, −78 °C | 99% | - | High atom economy, metal-free | II, EE |
C2-Symmetric Selenium-Based Catalyst [43] | Selenium-embedded cyclic structure | NBP, solvent-free | >90% | - | Metal-free and highly active | FF |
Cu(II)–bisoxazoline complexes [44] | Sterically demanding aryl groups (phenyl, tert-Butyl) | Cu(II)-catalyzed manganese dioxide oxidation, CH2Cl2 | >90% | - | Broad substrate scope | GG |
BINAP(S) [46] | Mono-thioBINAP derivative | NBS, toluene/CH2Cl2, −78 °C, 50 h | >90% | - | High stereoselectivity | CC, II |
C2-Symmetric Bisamidine (BAM) [49] | Nitrogen electron modulation, sterically bulky substitution | NIS, metal-free, mild Conditions | >90% | - | Metal-free, high N-selectivity, derivatizable | AA, BB, CC, DD |
Metal-free [50] | Chiral iodoarenes | Fluoroamination, chiral iodoarenes | >90% | - | Metal-free | EE |
(S,S)-Cat-Mn [52] | Chiral N-pyridinium ion intermediates | NaClO/NaBrO, PhCl, pH 11–11.5, 10 °C | 99% | - | Neutral pH, mild temperature | DD, FF |
K3PO4 Catalysis [76] | Maintaining rigid transition state of reaction intermediates | BocNBr2/BocNH2, metal-free | - | 23:1 | Metal-free, mild deprotection | DD, EE |
L3-Sc(OTf)3 [81] | Diisopropylamino-modified Sc(III) complex | NIS/TsNH2, 4 Å MS, light-free | >90% | - | Bio-based catalyst | GG, FF |
Cinchona alkaloid-thiourea [82] | Natural base-derived hydrogen bond donor | N,N-Dibromosulfonamide, CH2Cl2, 20 °C | >90% | - | Low catalyst loading | FF, DD |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhong, G.; Zhou, J.; Cui, B.; Sun, H. Progress in Stereoselective Haloamination of Olefins. Molecules 2025, 30, 3217. https://doi.org/10.3390/molecules30153217
Zhong G, Zhou J, Cui B, Sun H. Progress in Stereoselective Haloamination of Olefins. Molecules. 2025; 30(15):3217. https://doi.org/10.3390/molecules30153217
Chicago/Turabian StyleZhong, Guo, Jiayu Zhou, Bin Cui, and Hui Sun. 2025. "Progress in Stereoselective Haloamination of Olefins" Molecules 30, no. 15: 3217. https://doi.org/10.3390/molecules30153217
APA StyleZhong, G., Zhou, J., Cui, B., & Sun, H. (2025). Progress in Stereoselective Haloamination of Olefins. Molecules, 30(15), 3217. https://doi.org/10.3390/molecules30153217