Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (164)

Search Parameters:
Keywords = chemokine (C-C motif) ligand 2

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 254 KB  
Article
Are Peripartum Changes in CCL2 Associated with Maternal Metabolic Status?
by Aleksandra Obuchowska-Standyło, Żaneta Kimber-Trojnar, Katarzyna Trojnar, Monika Czuba and Bożena Leszczyńska-Gorzelak
Curr. Issues Mol. Biol. 2026, 48(2), 143; https://doi.org/10.3390/cimb48020143 - 28 Jan 2026
Viewed by 97
Abstract
C-C motif chemokine ligand 2 (CCL2) may reflect subtle metabolic–inflammatory changes in pregnancy. This study evaluated CCL2 concentrations and their peripartum changes in women with uncomplicated term pregnancies, focusing on associations with maternal metabolic status. Serum CCL2 was measured before delivery and 48 [...] Read more.
C-C motif chemokine ligand 2 (CCL2) may reflect subtle metabolic–inflammatory changes in pregnancy. This study evaluated CCL2 concentrations and their peripartum changes in women with uncomplicated term pregnancies, focusing on associations with maternal metabolic status. Serum CCL2 was measured before delivery and 48 h postpartum; urinary CCL2 was assessed postpartum. Peripartum serum change (ΔCCL2) was calculated. BMI was recorded pre-pregnancy (or early pregnancy), at delivery, and 48 h postpartum; total BMI change (ΔBMI) was derived. Participants were stratified into two groups (ΔBMI > 1 kg/m2 vs. ≤1 kg/m2). Peripartum serum CCL2 changes differed significantly between ΔBMI groups. In the total cohort, CCL2 correlated with HbA1c and selected body composition indices, including fat tissue index, lean tissue index, and body cell mass. In women with ΔBMI > 1 kg/m2, additional associations were found with BMI, peripartum BMI change, HbA1c, ferritin, creatinine, and total body water. Among women with ΔBMI ≤ 1 kg/m2, significant relationships were observed with uric acid and triglycerides. Peripartum CCL2 dynamics appear to reflect maternal metabolic status, even in metabolically “normal” pregnancies, but these findings are exploratory and should be interpreted cautiously. CCL2 is a promising marker of subtle metabolic alterations in late pregnancy and the early postpartum period, but further validation is required before clinical application. Full article
(This article belongs to the Special Issue Feature Papers in Molecular Medicine 2025)
Show Figures

Graphical abstract

17 pages, 515 KB  
Article
Serum CCL18 May Reflect Multiorgan Involvement with Poor Outcome in Systemic Sclerosis
by Kristóf Filipánits, Gabriella Nagy, Dávid Kurszán Jász, Tünde Minier, Diána Simon, Szabina Erdő-Bonyár, Tímea Berki and Gábor Kumánovics
Biomolecules 2026, 16(1), 136; https://doi.org/10.3390/biom16010136 - 13 Jan 2026
Viewed by 221
Abstract
Background: Serum C–C motif chemokine ligand 18 (seCCL18) in systemic sclerosis (SSc) has been primarily associated with progressive interstitial lung disease (SSc-ILD) and mortality. However, its relationship with non-pulmonary organ involvement, disease activity, and long-term outcome has not been comprehensively evaluated. We therefore [...] Read more.
Background: Serum C–C motif chemokine ligand 18 (seCCL18) in systemic sclerosis (SSc) has been primarily associated with progressive interstitial lung disease (SSc-ILD) and mortality. However, its relationship with non-pulmonary organ involvement, disease activity, and long-term outcome has not been comprehensively evaluated. We therefore examined the clinical relevance of seCCL18 in a single-center SSc cohort. Methods: A total of 151 patients with SSc (83 diffuse cutaneous (dcSSc), 68 limited cutaneous SSc (lcSSc); median (IQR) disease duration: 9 (4;16) years) and 47 age- and sex-matched healthy controls (HCs) were enrolled. Serum CCL18 concentrations were measured by enzyme-linked immunosorbent assay. Elevated seCCL18 was defined as >130 ng/mL (mean + 2 SD of the healthy control group). Organ involvement and disease activity (EUSTAR Activity Index, EUSTAR-AI) were assessed at baseline, while survival was analysed longitudinally. Results: Patients with SSc had significantly higher seCCL18 levels than HCs (mean ± SD: 99.9 ± 43.2 vs. 75.0 ± 27.5 ng/mL, p < 0.01). Elevated seCCL18 was associated with SSc-ILD (81.1% vs. 60.5%, p = 0.022), reduced forced vital capacity (FVC < 70%: 16.2% vs. 3.5%, p = 0.006), and reduced diffusing capacity for carbon monoxide (DLCO < 70%: 80.6% vs. 54.4%, p = 0.005). Higher seCCL18 levels were observed in patients with myocardial disease (104.8 ± 41.8 vs. 83.8 ± 44.2 ng/mL, p = 0.008), left ventricular diastolic dysfunction (107.1 ± 40.5 vs. 84.5 ± 45.0 ng/mL, p < 0.001), and oesophageal involvement (110.7 ± 38.3 vs. 93.3 ± 43.1 ng/mL, p = 0.009). SeCCL18 levels above the cut-off were more frequently associated with tendon friction rubs (51.4% vs. 27.4%, p = 0.007), active disease (EUSTAR-AI ≥ 2.5: 73% vs. 44%, p = 0.002), and elevated inflammatory markers (CRP > 5 mg/L: 51.4% vs. 19.3%, p < 0.001; ESR > 28 mm/h: 37.8% vs. 18.4%, p = 0.015). During a median follow-up of 87 months, 22 patients (15%) died. Elevated baseline seCCL18 predicted poorer survival in univariate analysis (log-rank p = 0.013) and remained an independent predictor of mortality in multivariable Cox regression (HR 1.789; 95% CI 1.133–2.824; p = 0.013), together with declining DLCO and reduced six-minute walk test performance. Conclusions: Elevated seCCL18 may identify patients with systemic sclerosis who exhibit a more severe multisystem phenotype, including cardiopulmonary, gastrointestinal, and musculoskeletal involvement, increased inflammatory activity, and reduced long-term survival. These findings suggest that seCCL18 may have some clinical utility as a prognostic biomarker reflecting widespread disease involvement beyond the lungs, even in patients with long-standing disease; however, the lack of an established cut-off value requires further validation in prospective, multicentre studies. Full article
(This article belongs to the Special Issue Biomarkers in Musculoskeletal and Orthopedic Disorders)
Show Figures

Figure 1

17 pages, 842 KB  
Review
Glial Activation, Neuroinflammation, and Loss of Neuroprotection in Chronic Pain: Cellular Mechanisms and Emerging Therapeutic Strategies
by Alyssa McKenzie, Rachel Dombrower, Nitchanan Theeraphapphong, Sophia McKenzie and Munther A. Hijazin
Biomedicines 2026, 14(1), 58; https://doi.org/10.3390/biomedicines14010058 - 26 Dec 2025
Viewed by 788
Abstract
Chronic pain is increasingly regarded as a condition of glia–neuronal dysregulation driven by persistent neuroinflammatory signaling. Following injury to nerves or tissues, glial cells, including astrocytes or satellite glial cells, undergo changes in their phenotype, thereby amplifying painful stimuli mediated by cytokines, chemokines, [...] Read more.
Chronic pain is increasingly regarded as a condition of glia–neuronal dysregulation driven by persistent neuroinflammatory signaling. Following injury to nerves or tissues, glial cells, including astrocytes or satellite glial cells, undergo changes in their phenotype, thereby amplifying painful stimuli mediated by cytokines, chemokines, or ATP signaling. In response to injuries, activated microglia release several mediators such as BDNF, IL-1β, or TNF-α, thereby disrupting chloride homeostasis and inducing disinhibition in the dorsal horn, and sustaining maladaptive neuroimmune activity. Dysfunction of astrocytes, characterized by impaired glutamate clearance via excitatory amino acid transporter 2 and elevated C-X-C motif chemokine ligand 1 (CXCL1) and ATP release, drives neuronal sensitization, loss of neuroprotective metabolic support, and persistence of pain. In peripheral ganglia, connexin–43–mediated satellite glial cell coupling leads to hyperexcitability, resulting in neuropathic and orofacial pain and contributing to peripheral neuroinflammation. Presently, there is no unified framework for glial cell types, and the molecular mechanisms underlying microglial, astrocyte, and satellite glial cell contributions to the transition to chronic pain from acute pain are not completely elucidated. This review synthesizes current evidence on cellular and molecular mechanisms linking glial reactivity to pain chronification through sustained neuroinflammatory remodeling and impaired neuroprotection. It evaluates therapeutic strategies, including purinergic receptor P2X4 and toll-like receptor 4 antagonists, to metabolic reprogramming, exosome therapy, and neuromodulation, aimed at restoring homeostatic glial function and re-establishing neuroprotective glia–neuron interactions. A deeper understanding of the temporal and spatial dynamics of glial activation may enable personalized, non-opioid interventions that not only achieve durable analgesia but also prevent progressive neuroinflammatory damage and support long-term functional recovery. Full article
(This article belongs to the Special Issue Neuroinflammation and Neuroprotection)
Show Figures

Figure 1

29 pages, 3722 KB  
Review
Glial Cells in the Early Stages of Neurodegeneration: Pathogenesis and Therapeutic Targets
by Eugenia Ahremenko, Alexander Andreev, Danila Apushkin and Eduard Korkotian
Int. J. Mol. Sci. 2025, 26(24), 11995; https://doi.org/10.3390/ijms262411995 - 12 Dec 2025
Viewed by 1358
Abstract
Astrocytes and microglia constitute nearly half of all central nervous system cells and are indispensable for its proper function. Both exhibit striking morphological and functional heterogeneity, adopting either neuroprotective (A2, M2) or proinflammatory (A1, M1) phenotypes in response to cytokines, pathogen-associated molecular patterns [...] Read more.
Astrocytes and microglia constitute nearly half of all central nervous system cells and are indispensable for its proper function. Both exhibit striking morphological and functional heterogeneity, adopting either neuroprotective (A2, M2) or proinflammatory (A1, M1) phenotypes in response to cytokines, pathogen-associated molecular patterns (PAMPs)/damage-associated molecular patterns (DAMPs), toll-like receptor 4 (TLR4) activation, and NOD-like receptor family pyrin domain containing 3 (NLRP3) inflammasome signaling. Crucially, many of these phenotypic transitions arise during the earliest stages of neurodegeneration, when glial dysfunction precedes overt neuronal loss and may act as a primary driver of disease onset. This review critically examines glial-centered hypotheses of neurodegeneration, with emphasis on their roles in early disease phases: (i) microglial polarization from an M2 neuroprotective state to an M1 proinflammatory state; (ii) NLRP3 inflammasome assembly via P2X purinergic receptor 7 (P2X7R)-mediated K+ efflux; (iii) a self-amplifying astrocyte–microglia–neuron inflammatory feedback loop; (iv) impaired microglial phagocytosis and extracellular-vesicle–mediated propagation of β-amyloid (Aβ) and tau; (v) astrocytic scar formation driven by aquaporin-4 (AQP4), matrix metalloproteinase-9 (MMP-9), glial fibrillary acidic protein (GFAP)/vimentin, connexins, and janus kinase/signal transducer and activator of transcription 3 (JAK/STAT3) signaling; (vi) cellular reprogramming of astrocytes and NG2 glia into functional neurons; and (vii) mitochondrial dysfunction in glia, including Dynamin-related protein 1/Mitochondrial fission protein 1 (Drp1/Fis1) fission imbalance and dysregulation of the sirtuin 1/peroxisome proliferator-activated receptor gamma coactivator 1-alpha (Sirt1/PGC-1α) axis. Promising therapeutic strategies target pattern-recognition receptors (TLR4, NLRP3/caspase-1), cytokine modulators (interleukin-4 (IL-4), interleukin-10 (IL-10)), signaling cascades (JAK2–STAT, nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), phosphoinositide 3-kinase–protein kinase B (PI3K–AKT), adenosine monophosphate-activated protein kinase (AMPK)), microglial receptors (triggering receptor expressed on myeloid cells 2 (TREM2)/spleen tyrosine kinase (SYK)/ DNAX-activating protein 10 (DAP10), siglec-3 (CD33), chemokine C-X3-C motif ligand 1/ CX3C motif chemokine receptor 1 (CX3CL1/CX3CR1), Cluster of Differentiation 200/ Cluster of Differentiation 200 receptor 1 (CD200/CD200R), P2X7R), and mitochondrial biogenesis pathways, with a focus on normalizing glial phenotypes rather than simply suppressing pathology. Interventions that restore neuroglial homeostasis at the earliest stages of disease may hold the greatest potential to delay or prevent progression. Given the complexity of glial phenotypes and molecular isoform diversity, a comprehensive, multitargeted approach is essential for mitigating Alzheimer’s disease and related neurodegenerative disorders. This review not only synthesizes pathogenesis but also highlights therapeutic opportunities, offering what we believe to be the first concise overview of the principal hypotheses implicating glial cells in neurodegeneration. Rather than focusing on isolated mechanisms, our goal is a holistic perspective—integrating diverse glial processes to enable comparison across interconnected pathological conditions. Full article
(This article belongs to the Special Issue Early Molecular Markers of Neurodegeneration)
Show Figures

Graphical abstract

21 pages, 292 KB  
Article
Eight-Week Resistance Training and Manual Therapy in Young Patients with Severe Hemophilia: A Case Series Evaluating Functional, Imaging, and Immunological Outcomes
by Krystian Guzmann, Bartosz Wilczyński, Marta Jaskulak, Julia Radoń-Proskura, Arkadiusz Szarmach, Andrzej Mital and Katarzyna Zorena
J. Clin. Med. 2025, 14(23), 8419; https://doi.org/10.3390/jcm14238419 - 27 Nov 2025
Viewed by 665
Abstract
Background: Hemophilia A and B are hereditary bleeding disorders that result in recurrent joint and muscle hemorrhages, leading to hemophilic arthropathy, muscle atrophy, and disability. Recent evidence suggests that physiotherapeutic interventions, including resistance training and manual therapy, may mitigate these effects, although [...] Read more.
Background: Hemophilia A and B are hereditary bleeding disorders that result in recurrent joint and muscle hemorrhages, leading to hemophilic arthropathy, muscle atrophy, and disability. Recent evidence suggests that physiotherapeutic interventions, including resistance training and manual therapy, may mitigate these effects, although comprehensive studies remain limited. This case series aimed to describe the outcomes of an eight-week physiotherapy program combining progressive resistance training and manual therapy in four adolescent boys (aged 11–17 years) with severe hemophilia. Methods: The program targeted joint function, muscle strength, ultrasound findings, and pain, with additional exploratory evaluation of neuroinflammatory and endothelial biomarkers: interleukin-18 (IL-18), C-C motif chemokine ligand 2 (CCL2), soluble intercellular adhesion molecule-1 (ssICAM-1), β-nerve growth factor (β-NGF), and soluble receptor for advanced glycation end-products (sRAGE). Results: After the intervention, Hemophilia Joint Health Score (HJHS) total scores decreased by 35–62%, indicating functional improvement, while muscle strength increased across most joints. No progression of arthropathy was observed on ultrasound (HEAD-US). IL-18 and ssICAM-1 levels decreased on average by 42% and 29%, respectively, whereas β-NGF and sRAGE increased by 39% and 11%, suggesting potential anti-inflammatory and neuroprotective responses. Conclusions: These descriptive findings indicate that individualized physiotherapy may serve as a supportive component of hemophilia care, while biomarker monitoring provides exploratory insight into treatment-related physiological responses. Full article
(This article belongs to the Special Issue Hemophilia: Current Trends and Future Directions)
20 pages, 4468 KB  
Brief Report
Modified Hematopoietic Stem Cell-Derived Dendritic Cell Therapy Retained Tumor-Inhibitory Function and Led to Regression of Primary and Metastatic Pancreatic Tumors in Humanized Mouse Models
by Jose D. Gonzalez, Saleemulla Mahammad, Senay Beraki, Ariel Rodriguez-Frandsen, Neha Sheik, Elango Kathirvel, Francois Binette, David Weinstein, Anahid Jewett and Lu Chen
Vaccines 2025, 13(11), 1131; https://doi.org/10.3390/vaccines13111131 - 2 Nov 2025
Viewed by 1717
Abstract
Background/Objectives: Dendritic cell (DC)-based immunotherapies offer a promising strategy for cancer treatment but are limited by inefficient activation of cytotoxic T cells and, in turn, the host immune system. This report demonstrated that CD34+ hematopoietic stem cell (HSC)-derived allogeneic DCs engineered [...] Read more.
Background/Objectives: Dendritic cell (DC)-based immunotherapies offer a promising strategy for cancer treatment but are limited by inefficient activation of cytotoxic T cells and, in turn, the host immune system. This report demonstrated that CD34+ hematopoietic stem cell (HSC)-derived allogeneic DCs engineered by an optimized lentiviral vector (LVV) expressing CD93, CD40-ligand (CD40L), and Chemokine (C-X-C motif) ligand-13 (CXCL13) significantly enhanced the host immune system, activated tumor-specific cytotoxic T cells, and led to complete regression of both primary and metastatic pancreatic tumors in humanized mouse models. This LVV shows comparable pre-clinical efficacy compared to the first-generation vector, in addition to being compliant for clinical use, which allows further pre-clinical development towards the human trials. Methods: This 2nd generation (Gen) LVV incorporates codon-optimized transgenes (CD40L, CD93, and CXCL13) with rearranged sequence to enhance expression, driven by a strong EF1α promoter. CD34+ HSCs were transduced with this modified 2nd Gen LVV and differentiated to Engineered DCs. Therapeutic efficacy of the DC therapy with the modified vector was tested on humanized mouse models of pancreatic tumors. This was accomplished by establishing an early-stage disease model (using MIA PaCa-2 (MP2)-tumors) and late-stage metastatic disease model of the pancreatic tumors to mimic the clinical setting using luciferase-expressing MP2-(Luc)-pancreatic tumor-bearing humanized mice. Results: The modified lentiviral construct had 6-fold greater expression of CD40L, 2% less toxicity, 4.5-fold greater CD40L, and 2.2-fold greater CXCL13 secretion than its predecessor. In vitro, Engineered DCs induced robust T cell proliferation in up to 20% of T cells, up to 4-fold greater interferon-gamma (IFN-γ) secretion than controls, and showcased antigen-specific cytotoxicity by CD8+ T cells. In vivo, two intradermal doses of the 2nd Gen DCs led to complete regression of primary pancreatic tumors and metastases. Treated mice exhibited prolonged survival, indicating the induction of durable anti-tumor immunity. Conclusions: Vector optimization retained the efficacy of DC-based therapy, achieving curative responses in pancreatic tumor models. These findings support the clinical development of this 2nd Gen DC immunotherapy for pancreatic and potentially other tumors. Full article
Show Figures

Figure 1

26 pages, 15174 KB  
Article
Analysis of MSX1, RYK, NFκB p65, and CCL4 Proteins and MSX2, RYK, and PTX3 Genes in Human Cleft Lip Tissue
by Mārtiņš Vaivads, Alise Elizabete Rone and Māra Pilmane
Int. J. Mol. Sci. 2025, 26(21), 10599; https://doi.org/10.3390/ijms262110599 - 30 Oct 2025
Viewed by 747
Abstract
Human cleft lip morphopathogenesis is a complicated process involving multiple genes and proteins. Certain factors like muscle segment homeobox 1 (MSX1) and 2 (MSX2) as well as receptor-like tyrosine kinase (RYK) are important during lip embryogenesis, while others like nuclear factor kappa-B protein [...] Read more.
Human cleft lip morphopathogenesis is a complicated process involving multiple genes and proteins. Certain factors like muscle segment homeobox 1 (MSX1) and 2 (MSX2) as well as receptor-like tyrosine kinase (RYK) are important during lip embryogenesis, while others like nuclear factor kappa-B protein 65 (NFκB p65), C-C motif chemokine ligand 4 (CCL4), and pentraxin 3 (PTX3) regulate local inflammation and immunomodulation. The exact role of these factors in human cleft morphopathogenesis remains uncertain and limits the opportunity to improve cleft treatment and possible prophylaxis. Immunohistochemistry (IHC) for MSX1, RYK, NFκB p65, and CCL4 proteins and chromogenic in situ hybridization (CISH) for MSX2, RYK, and PTX3 genes were used to analyze postnatal human cleft lip tissue (15 patients) and control tissue (6 patients). The semiquantitative counting method was used to assess factor/gene-signal-containing cells. Statistical analysis was performed. IHC findings showed decreased MSX1, NFκB p65, and CCL4 proteins in cleft lip connective tissue and endothelium, while RYK protein was decreased only in cleft connective tissue. CISH showed increases in MSX2 and RYK gene-signal-containing cells in cleft lip tissue while PTX3 did not differ from controls. Multiple statistically significant correlations were calculated. The findings are discussed in detail to determine their significance in cleft lip morphopathogenesis. Full article
Show Figures

Figure 1

17 pages, 586 KB  
Review
Corticosteroid Usage in Modeling Gulf War Illness in Pre-Clinical Models: A Systematic Review
by Lily Tehrani, Chetana Movva, Joshua Frank, Stephanie Nagy, Riya Davar, Bhumika Balani, Nancy G. Klimas and Lubov Nathanson
Int. J. Mol. Sci. 2025, 26(21), 10269; https://doi.org/10.3390/ijms262110269 - 22 Oct 2025
Viewed by 633
Abstract
Gulf War Illness (GWI) is a neuroinflammation- and immune-dysfunction-related chronic disease. Corticosteroids, a class of steroid hormones with potent anti-inflammatory and immunosuppressive properties, have been studied for their role in GWI pathophysiology. Eight corticosteroid effect studies were evaluated in this systematic review. Preclinical [...] Read more.
Gulf War Illness (GWI) is a neuroinflammation- and immune-dysfunction-related chronic disease. Corticosteroids, a class of steroid hormones with potent anti-inflammatory and immunosuppressive properties, have been studied for their role in GWI pathophysiology. Eight corticosteroid effect studies were evaluated in this systematic review. Preclinical models showed exacerbation of neuroinflammation, oxidative stress, and epigenetic changes with exposure to CORT in addition to Gulf War neurotoxicants, which induced pro-inflammatory cytokine expression (Tumor Necrosis Factor Alpha (TNF-α), Interleukin-6 (IL-6), C-C motif chemokine ligand 2 (CCL2)). Such findings suggest that corticosteroids can exacerbate symptoms of GWI and need further clinical research to clarify their role in neuroinflammatory processes. Full article
(This article belongs to the Special Issue Steroids in Human Disease and Health)
Show Figures

Figure 1

11 pages, 2172 KB  
Communication
Integrated Meta-Analysis of Scalp Transcriptomics and Serum Proteomics Defines Alopecia Areata Subtypes and Core Disease Pathways
by Li Xi, Elena Peeva, Yuji Yamaguchi, Zhan Ye, Craig L. Hyde and Emma Guttman-Yassky
Int. J. Mol. Sci. 2025, 26(19), 9662; https://doi.org/10.3390/ijms26199662 - 3 Oct 2025
Viewed by 1677
Abstract
Alopecia areata (AA) is a chronic autoimmune disorder characterized by non-scarring hair loss, with subtypes ranging from patchy alopecia (AAP) to alopecia totalis and universalis (AT/AU). The aim of this research is to investigate molecular features across AA severity by performing an integrated [...] Read more.
Alopecia areata (AA) is a chronic autoimmune disorder characterized by non-scarring hair loss, with subtypes ranging from patchy alopecia (AAP) to alopecia totalis and universalis (AT/AU). The aim of this research is to investigate molecular features across AA severity by performing an integrated analysis of scalp transcriptomic datasets (GSE148346, GSE68801, GSE45512, GSE111061) and matched serum proteomic data from GSE148346. Differential expression analysis indicated that, relative to normal scalp, non-lesional AA tissue shows early immune activation—including Type 1 (C-X-C motif chemokine ligand 9 (CXCL9), CXCL10, CD8a molecule (CD8A), C-C motif chemokine ligand 5 (CCL5)) and Type 2 (CCL13, CCL18) signatures—together with reduced expression of hair-follicle structural genes (keratin 32(KRT32)–35, homeobox C13 (HOXC13)) (FDR < 0.05, |fold change| > 1.5). Lesional AAP and AT/AU scalp showed stronger pro-inflammatory upregulation and greater loss of keratins and keratin-associated proteins (KRT81, KRT83, desmoglein 4 (DSG4), KRTAP12/15) compared with non-lesional scalp (FDR < 0.05, |fold change| > 1.5). Ferroptosis-associated genes (cAMP responsive element binding protein 5 (CREB5), solute carrier family 40 member 1 (SLC40A1), (lipocalin 2) LCN2, SLC7A11) and IRS (inner root sheath) differentiation genes (KRT25, KRT27, KRT28, KRT71–KRT75, KRT81, KRT83, KRT85–86, trichohyalin (TCHH)) were consistently repressed across subtypes, with the strongest reductions in AT/AU lesions versus AAP lesions, suggesting that oxidative-stress pathways and follicular structural integrity may contribute to subtype-specific pathology. Pathway analysis of lesional versus non-lesional scalp highlighted enrichment of IFN-α/γ, cytotoxic, and IL-15 signaling. Serum proteomic profiling, contrasting AA vs. healthy controls, corroborated scalp findings, revealing parallel alterations in immune-related proteins (CXCL9–CXCL10, CD163, interleukin-16 (IL16)) and structural markers (angiopoietin 1 (ANGPT1), decorin (DCN), chitinase-3-like protein 1 (CHI3L1)) across AA subtypes. Together, these data offer an integrated view of immune, oxidative, and structural changes in AA and found ferroptosis-related and IRS genes, along with immune signatures, as potential molecular indicators to support future studies on disease subtypes and therapeutic strategies. Full article
(This article belongs to the Section Molecular Immunology)
Show Figures

Figure 1

18 pages, 8074 KB  
Article
Auranofin Ameliorates Gouty Inflammation by Suppressing NLRP3 Activation and Neutrophil Migration via the IL-33/ST2–CXCL1 Axis
by Hyeyeon Yoo, Ahyoung Choi, Minjun Kim, Yongseok Gye, Hyeonju Jo, Seung-Ki Kwok, Youngjae Park and Jennifer Jooha Lee
Cells 2025, 14(19), 1541; https://doi.org/10.3390/cells14191541 - 2 Oct 2025
Cited by 2 | Viewed by 1448
Abstract
Gout is a form of sterile inflammatory arthritis in which monosodium urate (MSU) crystals deposit and provoke a neutrophil-predominant response, primarily driven by activation of the NACHT, leucine-rich repeat, and pyrin domain-containing protein 3 (NLRP3) inflammasome. Here, we show that auranofin, a Food [...] Read more.
Gout is a form of sterile inflammatory arthritis in which monosodium urate (MSU) crystals deposit and provoke a neutrophil-predominant response, primarily driven by activation of the NACHT, leucine-rich repeat, and pyrin domain-containing protein 3 (NLRP3) inflammasome. Here, we show that auranofin, a Food and Drug Administration (FDA)-approved anti-rheumatic agent, exerts anti-inflammatory effects in both in vitro and in vivo models of gout. Auranofin inhibited NLRP3 inflammasome activation in human THP-1 cells and murine macrophages, leading to reduced cleavage of caspase-1, interleukin-1β (IL-1β), and interleukin-18 (IL-18). In MSU crystal-induced mouse models, auranofin treatment reduced paw swelling, serum cytokine levels, and tissue inflammation. Notably, auranofin suppressed neutrophil migration and decreased expression of C-X-C motif chemokine ligand 1 (CXCL1) in inflamed foot tissue and air-pouch exudates. Mechanistically, auranofin disrupted the interleukin-33 (IL-33)/suppression of tumorigenicity 2 (ST2) axis, a key signaling pathway promoting neutrophil recruitment. Overexpression of IL-33 abolished the anti-inflammatory effects of auranofin, highlighting the central role of IL-33 in gout pathogenesis. Together, our findings suggest that auranofin alleviates MSU-induced inflammation by concurrently inhibiting NLRP3 inflammasome activation and IL-33-mediated neutrophil recruitment, supporting its potential as a dual-action therapeutic candidate for gout. Full article
(This article belongs to the Section Cellular Immunology)
Show Figures

Graphical abstract

27 pages, 5513 KB  
Article
Brucella-Induced Impairment of Decidualization and Its Impact on Trophoblast Function and Inflammatory Profile
by Lucía Zavattieri, Rosario Macchi, Andrea Mercedes Canellada, Matías Arturo Pibuel, Daniela Poodts, Mariana Cristina Ferrero and Pablo Cesar Baldi
Int. J. Mol. Sci. 2025, 26(17), 8189; https://doi.org/10.3390/ijms26178189 - 23 Aug 2025
Viewed by 1019
Abstract
Brucella infection is associated with an increased risk of adverse obstetric outcomes in humans and animals. Decidualization, a process involving structural and functional changes in endometrial stromal cells, is essential for proper trophoblast implantation and placental development. Trophoblasts’ migration and their ability to [...] Read more.
Brucella infection is associated with an increased risk of adverse obstetric outcomes in humans and animals. Decidualization, a process involving structural and functional changes in endometrial stromal cells, is essential for proper trophoblast implantation and placental development. Trophoblasts’ migration and their ability to invade the decidua and to undergo tubulogenesis, critical for proper implantation and placental development, are normally promoted by decidual cells. We evaluated whether Brucella infection of human endometrial stromal cells (T-HESC cell line) affects their ability to decidualize and to promote trophoblast functions. Infection of T-HESC cells with either B. abortus, B. suis, or B. melitensis resulted in deficient decidualization (as revealed by reduced prolactin levels) and an increased production of proinflammatory chemokines (C-X-C motif chemokine ligand 8 -CXCL8- and C-C motif chemokine ligand 2 -CCL2-) as compared to uninfected cells subjected to decidualization stimuli. In addition, conditioned media (CM) from infected decidualized T-HESC induced an inflammatory response (CXCL8, CCL2 and interleukin-6 -IL-6) in human trophoblasts (Swan-71 cell line) but reduced their ability to produce progesterone. Trophoblasts preincubated with this CM also had reduced migration, invasion, and tubulogenesis capacities, and this impairment was mediated, at least in part, by CXCL8 and CCL2. Moreover, infection of decidual stromal cells impaired the adhesion and spreading of blastocyst-like spheroids formed by Swan-71 cells. Brucella infection also affected the chemotactic capacity of decidual stromal cells for trophoblasts. Overall, these results suggest that Brucella infection of endometrial stromal cells impairs key processes required for successful implantation and placental development. Full article
Show Figures

Graphical abstract

16 pages, 1647 KB  
Article
APOBEC1-Dependent RNA Eiting of TNF Signaling Orchestrates Ileal Villus Morphogenesis in Pigs: Integrative Transcriptomic and Editomic Insights
by Wangchang Li, Wenxin Chen, Yancan Wang, Qianqian Wang, Huansheng Yang, Qiye Wang and Bin Wang
Animals 2025, 15(16), 2419; https://doi.org/10.3390/ani15162419 - 18 Aug 2025
Viewed by 814
Abstract
The ileum serves as the primary site for nutrient digestion and absorption in the intestine, with villus height representing a critical indicator of intestinal absorptive capacity. To investigate the regulatory mechanisms underlying ileal villus development, we conducted a feeding trial using crossbred pigs [...] Read more.
The ileum serves as the primary site for nutrient digestion and absorption in the intestine, with villus height representing a critical indicator of intestinal absorptive capacity. To investigate the regulatory mechanisms underlying ileal villus development, we conducted a feeding trial using crossbred pigs (Duroc × Landrace × Yorkshire) with an initial body weight of 27.74 ± 0.28 kg, stratifying them into high-villus and low-villus groups based on ileal villus height (n = 4). The results revealed 849 differentially RNA-edited genes (REGs) between the two groups, including 472 hyper-edited genes in the low-villus group and 377 in the high-villus group. Functional enrichment analysis showed that these REGs were significantly enriched in inflammation-related pathways, particularly the TNF signaling pathway and IL-17 signaling pathway, with TNF pathway genes exhibiting notably higher editing levels in the high-villus group. Additionally, 46 differentially expressed genes (DEGs) were identified, comprising 22 upregulated in the low-villus group and 24 in the high-villus group, which were similarly enriched in TNF and IL-17 signaling pathways. Integrated quadrant analysis of the RNA editing and transcriptomic profiles demonstrated that pro-inflammatory genes CXCL10 (C-X-C motif chemokine 10), CCL2 (C-C motif chemokine ligand 2), CREB3L2 (CAMP-responsive element-binding protein 3-like 2), and PIK3R1 (Phosphoinositide-3-kinase regulatory subunit 1) were highly expressed in the low-villus group but exhibited significantly lower RNA editing levels compared to the high-villus group. Furthermore, the expression of the inflammation-suppressive RNA editing enzyme APOBEC1 (apolipoprotein B mRNA editing enzyme catalytic subunit 1) showed correlation with villus height (R = 0.81, p < 0.05). Collectively, our findings indicate that RNA editing dynamics influence the variation in ileal villus height within inflammation-associated pathways, particularly the TNF signaling pathway. Enhanced RNA editing of this pathway may mitigate intestinal inflammation and promote healthy ileal villus developments. Full article
(This article belongs to the Section Pigs)
Show Figures

Figure 1

21 pages, 3451 KB  
Article
Transcriptional Repression of CCL2 by KCa3.1 K+ Channel Activation and LRRC8A Anion Channel Inhibition in THP-1-Differentiated M2 Macrophages
by Miki Matsui, Junko Kajikuri, Hiroaki Kito, Yohei Yamaguchi and Susumu Ohya
Int. J. Mol. Sci. 2025, 26(15), 7624; https://doi.org/10.3390/ijms26157624 - 6 Aug 2025
Cited by 1 | Viewed by 1263
Abstract
We investigated the role of the intermediate-conductance, Ca2+-activated K+ channel KCa3.1 and volume-regulatory anion channel LRRC8A in regulating C-C motif chemokine ligand 2 (CCL2) expression in THP-1-differentiated M2 macrophages (M2-MACs), which serve as a useful [...] Read more.
We investigated the role of the intermediate-conductance, Ca2+-activated K+ channel KCa3.1 and volume-regulatory anion channel LRRC8A in regulating C-C motif chemokine ligand 2 (CCL2) expression in THP-1-differentiated M2 macrophages (M2-MACs), which serve as a useful model for studying tumor-associated macrophages (TAMs). CCL2 is a potent chemoattractant involved in the recruitment of immunosuppressive cells and its expression is regulated through intracellular signaling pathways such as ERK, JNK, and Nrf2 in various types of cells including macrophages. The transcriptional expression of CCL2 was suppressed in M2-MACs following treatment with a KCa3.1 activator or an LRRC8A inhibitor via distinct signaling pathways: ERK–CREB2 and JNK–c-Jun pathways for KCa3.1, and the NOX2–Nrf2–CEBPB pathway for LRRC8A. Under in vitro conditions mimicking the elevated extracellular K+ concentration ([K+]e) characteristic of the tumor microenvironment (TME), CCL2 expression was markedly upregulated, and this increase was reversed by treatment with them in M2-MACs. Additionally, the WNK1–AMPK pathway was, at least in part, involved in the high [K+]e-induced upregulation of CCL2. Collectively, modulating KCa3.1 and LRRC8A activities offers a promising strategy to suppress CCL2 secretion in TAMs, potentially limiting the CCL2-induced infiltration of immunosuppressive cells (TAMs, Tregs, and MDSCs) in the TME. Full article
(This article belongs to the Special Issue Regulation of Ion Channels and Transporters)
Show Figures

Figure 1

15 pages, 1484 KB  
Article
High-Risk PNPLA3 rs738409 Genotype Is Associated with Higher Concentrations of CCL2 in Liver Transplant Candidates with Alcoholic End-Stage Liver Disease
by Ivan Budimir Bekan, Dino Šisl, Alan Šućur, Ana Bainrauch, Valerija Bralić Lang, Pavao Planinić, Nataša Kovačić, Danka Grčević, Anna Mrzljak and Tomislav Kelava
Medicina 2025, 61(7), 1293; https://doi.org/10.3390/medicina61071293 - 18 Jul 2025
Viewed by 1170
Abstract
Background and Objectives: Patients with GG rs738409 patatin-like phospholipase domain-containing protein 3 (PNPLA3) genotype (148M variant) have greater risk to develop end-stage liver disease and its associated clinical complications, including hepatocellular carcinoma (HCC). We aimed to analyze the association between the PNPLA3 [...] Read more.
Background and Objectives: Patients with GG rs738409 patatin-like phospholipase domain-containing protein 3 (PNPLA3) genotype (148M variant) have greater risk to develop end-stage liver disease and its associated clinical complications, including hepatocellular carcinoma (HCC). We aimed to analyze the association between the PNPLA3 genotype and augmented inflammatory response in transplant candidates with end-stage alcoholic liver disease (ALD). Materials and Methods: Concentrations of 13 cytokines were measured in 106 end-stage ALD patients without HCC (40 with CC, 40 with CG, and 26 with GG genotype), 35 end-stage ALD patients with HCC, and 19 control patients by cytometric bead array. Results: We found significantly higher concentrations of IL-1, IFN-α, IFN-γ, TNF-α, IL-6, CXCL8, IL-10, IL-12, IL-32, and IL-33 in patients with ALD compared to controls, while the concentration of CCL2 was significantly lower. No differences were observed in the concentration of IL-17 and IL-18. ALD patients with and without HCC had similar cytokine concentrations (p > 0.05 for all comparisons). End-stage ALD patients without HCC of the GG genotype had significantly higher CCL2 concentrations (212.6 [135.9–264.9] pg/mL) compared to end-stage ALD patients without HCC carrying the CC/CG genotypes (141.3 [104.1–201.6] pg/mL, p = 0.002, Mann–Whitney). No significant differences across the genotypes were found for the remaining measured cytokines (p > 0.05). GG carriers also had significantly higher levels of AST and ALT, and lower platelet counts. Conclusions: End-stage ALD patients without HCC who carry the PNPLA3 GG genotype have relatively higher CCL2 levels compared to those with the CC or CG genotypes. Relatively elevated CCL2 concentrations in GG patients might contribute to their increased risk of developing clinical complications compared to CC/CG patients. Full article
(This article belongs to the Special Issue Advances in Pathogenesis and Treatment of Chronic Liver Disease)
Show Figures

Figure 1

27 pages, 6312 KB  
Article
Transcriptomic Redox Dysregulation in a Rat Model of Metabolic Syndrome-Associated Kidney Injury
by Chien-Lin Lu, Yi-Yun Wang, Yih-Jeng Tsai, Hsuan-Ting Chen, Ming-Chieh Ma and Wen-Bin Wu
Antioxidants 2025, 14(6), 746; https://doi.org/10.3390/antiox14060746 - 17 Jun 2025
Viewed by 1059
Abstract
Metabolic syndrome (MetS), characterized by obesity, insulin resistance, and dyslipidemia, is a major risk factor for renal injury. Oxidative stress (OxS) plays a pivotal role in its progression; however, the underlying molecular mechanisms are not fully understood. In this study, we established a [...] Read more.
Metabolic syndrome (MetS), characterized by obesity, insulin resistance, and dyslipidemia, is a major risk factor for renal injury. Oxidative stress (OxS) plays a pivotal role in its progression; however, the underlying molecular mechanisms are not fully understood. In this study, we established a rat model of MetS using a high-fat diet combined with a single-dose streptozotocin injection in male Wistar rats. MetS rats exhibited systemic OxS, evidenced by elevated circulating levels of free oxygen radicals and decreased antioxidant defense capacity, as well as hypertension, renal lipid peroxidation, glomerular hyperfiltration, and renal tubular injury. Transcriptomic profiling of renal tissue revealed significant downregulation of six OxS-related genes: C-C motif chemokine ligand 5 (CCL5), glutamate-cysteine ligase catalytic subunit, glutathione peroxidase 6, recombination activating gene 2, NAD(P)H: quinone oxidoreductase 1, and selenoprotein P-1. Among these downregulated genes, CCL5 was further confirmed to be repressed at both mRNA and protein levels across intrarenal and systemic compartments. Given its documented functions in immune signaling and redox homeostasis, CCL5 downregulation may contribute to enhanced oxidative damage in MetS-associated renal injury. These findings highlight the role of redox gene dysregulation in the pathogenesis of MetS-related kidney disease and support the potential of CCL5 as a biomarker for oxidative renal injury. Full article
(This article belongs to the Special Issue Oxidative Stress in Metabolic Syndrome and Cardiovascular Diseases)
Show Figures

Figure 1

Back to TopTop