Eight-Week Resistance Training and Manual Therapy in Young Patients with Severe Hemophilia: A Case Series Evaluating Functional, Imaging, and Immunological Outcomes
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Participants
2.3. Case Presentation
2.3.1. Case 1
2.3.2. Case 2
2.3.3. Case 3
2.3.4. Case 4
2.4. Parameters Measured
2.4.1. Body Composition (InBody 270)
2.4.2. Hemophilia Joint Health Score
2.4.3. Joint Ultrasound (HEAD-US Scoring)
2.4.4. Quality of Life (EQ-5D-5L)
2.4.5. Static Balance (One-Leg Standing Test, OLS)
2.4.6. Ankle Dorsiflexion (Weight-Bearing Lunge Test, WBLT)
2.4.7. Joint Range of Motion (SFTR Method)
2.4.8. Isometric Muscle Strength (Hand-Held Dynamometry)
2.4.9. Blood Sample Collection and Immunological Analyses
2.5. Physiotherapy Intervention
2.5.1. Progressive Resistance Training Program
2.5.2. Manual Therapy Protocol
2.5.3. Safety Monitoring
2.6. Data Analysis
3. Results
3.1. Participant Characteristics and Laboratory Findings
3.2. Hemophilia Joint HealthScore—HJHS
3.3. Quality of Life EQ-5D-5L QOL
3.4. Upper and Lower Limb Isometric Strength
Target Joint Strength
3.5. Range of Motion
3.6. Ankle Dorsiflexion (WBLT)
3.7. Static Balance
3.8. Joint Imaging: HEAD-US and Additional Ultrasound Findings
3.9. Analysis of Chosen Biomarkers
4. Discussion
4.1. Limitations
4.2. Practical Implications
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Strike, K.; Mulder, K.; Michael, R. Exercise for Haemophilia. Cochrane Database Syst. Rev. 2016, 2016, CD011180. [Google Scholar] [CrossRef] [PubMed]
- Lundberg, M.K.E.; Larsson, M.; Östlund, H.; Styf, J. Kinesiophobia among Patients with Musculoskeletal Pain in Primary Healthcare. J. Rehabil. Med. 2006, 38, 37–43. [Google Scholar] [CrossRef] [PubMed]
- Peyvandi, F.; Garagiola, I.; Young, G. The Past and Future of Haemophilia: Diagnosis, Treatments, and Its Complications. Lancet 2016, 388, 187–197. [Google Scholar] [CrossRef] [PubMed]
- Goto, M.; Takedani, H.; Yokota, K.; Haga, N. Strategies to Encourage Physical Activity in Patients with Hemophilia to Improve Quality of Life. J. Blood Med. 2016, 7, 85. [Google Scholar] [CrossRef]
- Cruz-Montecinos, C.; Pérez-Alenda, S.; Casaña, J.; Carrasco, J.J.; Andersen, L.L.; López-Bueno, R.; Nuñez-Cortés, R.; Bonanad, S.; Querol, F.; Calatayud, J. Effectiveness of Progressive Moderate-vigorous Intensity Elastic Resistance Training on Quality of Life and Perceived Functional Abilities in People with Hemophilia: Secondary Analysis of a Randomized Controlled Trial. Eur. J. Haematol. 2023, 110, 253–261. [Google Scholar] [CrossRef]
- Hilberg, T. Programmed Sports Therapy (PST) in People with Haemophilia (PwH) “Sports Therapy Model for Rare Diseases”. Orphanet J. Rare Dis. 2018, 13, 38. [Google Scholar] [CrossRef]
- Wilczyński, B.; Juszczyk, D.; Zorena, K.; Mital, A. Strength Training Program for an Athlete with Hemophilia A and an Inhibitor While Taking a New Prophylactic Drug Treatment: A Case Report. Physiother. Theory Pract. 2022, 39, 2470–2478. [Google Scholar] [CrossRef]
- Baz-Valle, E.; Balsalobre-Fernández, C.; Alix-Fages, C.; Santos-Concejero, J. A Systematic Review of the Effects of Different Resistance Training Volumes on Muscle Hypertrophy. J. Hum. Kinet. 2022, 81, 199–210. [Google Scholar] [CrossRef]
- Scaturro, D.; Benedetti, M.G.; Lomonaco, G.; Tomasello, S.; Farella, M.G.G.; Frizziero, A.; Mauro, G.L. Effectiveness of Rehabilitation on Pain and Function in People Affected by Hemophilia. Medicine 2021, 100, E27863. [Google Scholar] [CrossRef]
- Cuesta-Barriuso, R.; Gómez-Conesa, A.; López-Pina, J.A. Physiotherapy Treatment in Patients with Hemophilia and Chronic Ankle Arthropathy: A Systematic Review. Rehabil. Res. Pract. 2013, 2013, 305249. [Google Scholar] [CrossRef]
- Cuesta-Barriuso, R.; Gómez-Conesa, A.; López-Pina, J.A. Manual and Educational Therapy in the Treatment of Hemophilic Arthropathy of the Elbow: A Randomized Pilot Study. Orphanet J. Rare Dis. 2018, 13, 151. [Google Scholar] [CrossRef]
- Foppen, W.; van der Schaaf, I.C.; Beek, F.J.A.; Mali, W.P.T.M.; Fischer, K. Diagnostic Accuracy of Point-of-Care Ultrasound for Evaluation of Early Blood-Induced Joint Changes: Comparison with MRI. Haemophilia 2018, 24, 971–979. [Google Scholar] [CrossRef]
- Corte-Rodriguez, H.D.L.; Rodriguez-Merchan, E.C.; Alvarez-Roman, M.T.; Martin-Salces, M.N.; Martinolid, C.; Jimenez-Yuste, V. HJHS 2.1 and HEAD-US Assessment in the Hemophilic Joints: How Do Their Findings Compare? Blood Coagul. Fibrinolysis 2020, 31, 387–392. [Google Scholar] [CrossRef] [PubMed]
- Zhu, H.; Meng, Y.; Tong, P.; Zhang, S. Pathological Mechanism of Joint Destruction in Haemophilic Arthropathy. Mol. Biol. Rep. 2021, 48, 969–974. [Google Scholar] [CrossRef] [PubMed]
- Pulles, A.E.; Mastbergen, S.C.; Schutgens, R.E.G.; Lafeber, F.P.J.G.; van Vulpen, L.F.D. Pathophysiology of Hemophilic Arthropathy and Potential Targets for Therapy. Pharmacol. Res. 2017, 115, 192–199. [Google Scholar] [CrossRef]
- Wehmeier, U.F.; Orth, V.; Höppe, V.; Valentino, L.A.; Hilberg, T. Neuroinflammatory Markers in Patients with Haemophilia and Healthy Controls: Where Are the Differences? Haemophilia 2023, 29, 1539–1546. [Google Scholar] [CrossRef]
- Wojdasiewicz, P.; Poniatowski, Ł.A.; Nauman, P.; Mandat, T.; Paradowska-Gorycka, A.; Romanowska-Próchnicka, K.; Szukiewicz, D.; Kotela, A.; Kubaszewski, Ł.; Kotela, I.; et al. Cytokines in the Pathogenesis of Hemophilic Arthropathy. Cytokine Growth Factor Rev. 2018, 39, 71–91. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Pucka, A.Q.; Debats, C.; Reyes, B.A.; Syed, F.; O’Brien, A.R.W.; Mehta, R.; Manchanda, N.; Jacob, S.A.; Hardesty, B.M.; et al. Inflammation and Autoimmunity Are Interrelated in Patients with Sickle Cell Disease at a Steady-State Condition: Implications for Vaso-Occlusive Crisis, Pain, and Sensory Sensitivity. Front. Immunol. 2024, 15, 1288187. [Google Scholar] [CrossRef]
- Erusalimsky, J.D. Erusalimsky JD. The Use of the Soluble Receptor for Advanced Glycation-End Products (SRAGE) as a Potential Biomarker of Disease Risk and Adverse Outcomes. Redox Biol. 2021, 42, 101958. [Google Scholar] [CrossRef]
- Larsen, M.N.; Krustrup, P.; Póvoas, S.C.A.; Castagna, C. Accuracy and Reliability of the InBody 270 Multi-Frequency Body Composition Analyser in 10-12-Year-Old Children. PLoS ONE 2021, 16, e0247362. [Google Scholar] [CrossRef]
- Brief, R.; Czartoryski, P.; Garcia, J.; Manimaleth, R.; Napolitano, P.; Watters, H.; Weber, C.; Alvarez-Beaton, A.; Nieto, A.C.; Patel, A.; et al. Body Composition Assessment: A Comparison of the DXA, InBody 270, and Omron. OPEN ACCESS J. Exerc. Nutr. 2020, 3, 1. [Google Scholar]
- St-Louis, J.; Abad, A.; Funk, S.; Tilak, M.; Classey, S.; Zourikian, N.; McLaughlin, P.; Lobet, S.; Hernandez, G.; Akins, S.; et al. The Hemophilia Joint Health Score Version 2.1 Validation in Adult Patients Study: A Multicenter International Study. Res. Pract. Thromb. Haemost. 2022, 6, e12690. [Google Scholar] [CrossRef] [PubMed]
- Martinoli, C.; Alberighi, O.D.; Di Minno, G.; Graziano, E.; Molinari, A.C.; Pasta, G.; Russo, G.; Santagostino, E.; Tagliaferri, A.; Tagliafico, A.; et al. Development and Definition of a Simplified Scanning Procedure and Scoring Method for Haemophilia Early Arthropathy Detection with Ultrasound (HEAD-US). Thromb. Haemost. 2013, 109, 1170–1179. [Google Scholar] [CrossRef] [PubMed]
- Fischer, K.; Poonnoose, P.; Dunn, A.L.; Babyn, P.; Manco-Johnson, M.J.; David, J.A.; van der Net, J.; Feldman, B.; Berger, K.; Carcao, M.; et al. Choosing Outcome Assessment Tools in Haemophilia Care and Research: A Multidisciplinary Perspective. Haemophilia 2017, 23, 11–24. [Google Scholar] [CrossRef]
- Plut, D.; Kotnik, B.F.; Zupan, I.P.; Kljucevsek, D.; Vidmar, G.; Snoj, Z.; Martinoli, C.; Salapura, V. Diagnostic Accuracy of Haemophilia Early Arthropathy Detection with Ultrasound (HEAD-US): A Comparative Magnetic Resonance Imaging (MRI) Study. Radiol. Oncol. 2019, 53, 178–186. [Google Scholar] [CrossRef]
- Li, C.; Dou, L.; Fu, Q.; Li, S. Mapping the Seattle Angina Questionnaire to EQ-5D-5L in Patients with Coronary Heart Disease. Health Qual. Life Outcomes 2023, 21, 64. [Google Scholar] [CrossRef]
- Dams, J.; Rimane, E.; Steil, R.; Renneberg, B.; Rosner, R.; König, H.H. Reliability, Validity and Responsiveness of the EQ-5D-5L in Assessing and Valuing Health Status in Adolescents and Young Adults with Posttraumatic Stress Disorder: A Randomized Controlled Trail. Psychiatr. Q. 2021, 92, 459–471. [Google Scholar] [CrossRef]
- del Corral, T.; Fabero-Garrido, R.; Plaza-Manzano, G.; Navarro-Santana, M.J.; Fernández-de-las-Peñas, C.; López-de-Uralde-Villanueva, I. Minimal Clinically Important Differences in EQ-5D-5L Index and VAS after a Respiratory Muscle Training Program in Individuals Experiencing Long-Term Post-COVID-19 Symptoms. Biomedicines 2023, 11, 2522. [Google Scholar] [CrossRef]
- Alahmari, K.A.; Kakaraparthi, V.N.; Reddy, R.S.; Silvian, P.; Tedla, J.S.; Rengaramanujam, K.; Ahmad, I. Combined Effects of Strengthening and Proprioceptive Training on Stability, Balance, and Proprioception Among Subjects with Chronic Ankle Instability in Different Age Groups: Evaluation of Clinical Outcome Measures. Indian J. Orthop. 2021, 55, 199–208. [Google Scholar] [CrossRef]
- Zasadzka, E.; Wieczorowska-Tobis, K. Test Stania Na Jednej Nodze Jako Narzędzie Do Oceny Równowagi Osób Starszych One Leg Standing Test as a Tool for the Assessment of the Balance in Elderly Individuals. Geriatria 2012, 6, 244–248. [Google Scholar]
- Powden, C.J.; Hoch, J.M.; Hoch, M.C. Reliability and Minimal Detectable Change of the Weight-Bearing Lunge Test: A Systematic Review. Man. Ther. 2015, 20, 524–532. [Google Scholar] [CrossRef]
- Chisholm, M.D.; Birmingham, T.B.; Brown, J.; MacDermid, J.; Chesworth, B.M. Reliability and Validity of a Weight-Bearing Measure of Ankle Dorsiflexion Range of Motion. Physiother. Can. 2012, 64, 347–355. [Google Scholar] [CrossRef]
- Szczechowicz, J. Pomiary Kątowe Zakresu Ruchu, Zapisy Pomiarów, Metoda SFTR; Akademia Wychowania Fizycznego im. Bronisława Czecha: Kraków, Poland, 2004; ISBN 838912176X. [Google Scholar]
- Eliasziw, M.; Young, S.L.; Woodbury, M.G.; Fryday-Field, K. Statistical Methodology for the Concurrent Assessment of Interrater and Intrarater Reliability: Using Goniometric Measurements as an Fxample. Phys Ther. 1994, 74, 777–788. [Google Scholar] [CrossRef] [PubMed]
- Vaz, G.F.; Freire, F.F.; Gonçalves, H.M.; de Aviz, M.A.B.; Martins, W.R.; Durigan, J.L.Q. Intra- and Inter-Rater Reliability, Agreement, and Minimal Detectable Change of the Handheld Dynamometer in Individuals with Symptomatic Hip Osteoarthritis. PLoS ONE 2023, 18, e0278086. [Google Scholar] [CrossRef]
- Jayaseelan, D.J.; Cole, K.R.; Courtney, C.A. Hand-Held Dynamometer to Measure Pressure Pain Thresholds: A Double-Blinded Reliability and Validity Study. Musculoskelet. Sci. Pract. 2021, 51, 102268. [Google Scholar] [CrossRef]
- Mentiplay, B.F.; Perraton, L.G.; Bower, K.J.; Adair, B.; Pua, Y.H.; Williams, G.P.; McGaw, R.; Clark, R.A. Assessment of Lower Limb Muscle Strength and Power Using Hand-Held and Fixed Dynamometry: A Reliability and Validity Study. PLoS ONE 2015, 10, e0140822. [Google Scholar] [CrossRef]
- Cuesta-Barriuso, R.; Trelles-Martínez, R.O. Manual Therapy in the Treatment of Patients with Hemophilia B and Inhibitor. BMC Musculoskelet. Disord. 2018, 19, 26. [Google Scholar] [CrossRef]
- Refalo, M.C.; Helms, E.R.; Trexler, E.T.; Hamilton, D.L.; Fyfe, J.J. Influence of Resistance Training Proximity-to-Failure on Skeletal Muscle Hypertrophy: A Systematic Review with Meta-Analysis. Sport. Med. 2023, 53, 649–665. [Google Scholar] [CrossRef] [PubMed]
- Guha, A.; Rai, A.; Nandy, A.; Mondal, T.; Pandit, N.; Guha, S.; Gupta, D.; Mondal, R. Joint Scores in Hemophilic Arthropathy in Children: Developing Country Perspectives. Eur. J. Rheumatol. 2020, 7, 26–30. [Google Scholar] [CrossRef] [PubMed]
- Scaturro, D.; Vitagliani, F.; Tomasello, S.; Mangano, M.S.; Signa, G.; Mauro, G.L. Postural Assessment Systems in the Prevention of Haemophilic Arthropathy: A Narrative Review. J. Funct. Morphol. Kinesiol. 2022, 7, 68. [Google Scholar] [CrossRef]
- Berntorp, E.; Fischer, K.; Hart, D.P.; Mancuso, M.E.; Stephensen, D.; Shapiro, A.D.; Blanchette, V. Haemophilia. Nat. Rev. Dis. Prim. 2021, 7, 45. [Google Scholar] [CrossRef] [PubMed]
- Schäfer, G.S.; Valderramas, S.; Gomes, A.R.; Budib, M.B.; Wolff, L.P.; Ramos, A.A.T. Physical Exercise, Pain and Musculoskeletal Function in Patients with Haemophilia: A Systematic Review. Haemophilia 2016, 22, e119–e129. [Google Scholar] [CrossRef] [PubMed]
| Exercise Name | Short Description | Sets | Repetitions | Tempo | Rest Time | Intensity/Progression |
|---|---|---|---|---|---|---|
| Good morning with resistance band | This exercise strengthens the posterior chain, including the hamstrings, glutes, and lower back. It is a safe alternative to the barbell version. | 3 | 20/15/12/8 | 3010 | 60 s | individually tailored intensity and progression (Supplementary Materials) |
| One-arm row with resistance band | This exercise strengthens the back muscles, particularly the latissimus dorsi and biceps strength and improving posture. | |||||
| Dumbbell bench press | An exercise that develops the chest, triceps, and shoulder muscles. It helps build upper body strength and endurance. | |||||
| Squats | A fundamental exercise that strengthens the lower body, including the quadriceps, glutes, and hamstrings. | |||||
| Single-leg stance with lateral raises | An exercise that enhances balance, stabilization, and strengthens the shoulders and legs | |||||
| Forward lunges | This exercise strengthens the leg and glute muscles while improving stability and mobility | |||||
| Overhead press with resistance band | An exercise that strengthens the shoulders and arms, enhancing upper body endurance |
| Parameter | Case 1 | Case 2 | Case 3 | Case 4 | ||||
|---|---|---|---|---|---|---|---|---|
| Age (years) | 17 | 16 | 11 | 15 | ||||
| Diagnosis | Hemophilia A (severe) | Hemophilia A (severe, with inhibitor) | Hemophilia B (severe) | Hemophilia A (severe) | ||||
| Prophylaxis | Factor VIII 2000 IU, 3×/week | Emicizumab (Hemlibra) | Factor IX (Benefix) 2750 IU, 3×/week | Factor VIII (Novoeight) 2500 IU, every 48 h | ||||
| Target joint | right ankle | left ankle | right ankle | right ankle | ||||
| Weight (kg) | 57.4 | 79.1 | 50.9 | 76.6 | ||||
| Height (m) | 1.67 | 1.75 | 1.49 | 1.69 | ||||
| BMI (kg/m2) | 20.6 | 25.8 | 22.9 | 26.8 | ||||
| Lean mass (kg) | 29.3 | 30.2 | 18 | 31.4 | ||||
| Body fat (%) | 9.5 | 32.4 | 33.7 | 27.3 | ||||
| Parameters pre and post intervention | Case 1 (Pre) | Case 1 (Post) | Case 2 (Pre) | Case 2 (Post) | Case 3 (Pre) | Case 3 (Post) | Case 4 (Pre) | Case 4 (Post) |
| Hemoglobin [g/dL] | 14.6 | 14.9 | 15.5 | 16.1 | 11.7 | 11.9 | 14.3 | 13.8 |
| Hematocrit [%] | 42.6 | 44.5 | 45.4 | 47.6 | 36.1 | 35.1 | 44.2 | 42.3 |
| MCV [fL] | 83.5 | 84.8 | 84.2 | 85.3 | 81.9 | 80.7 | 78.2 | 80.4 |
| MCH [pg] | 28.6 | 28.4 | 28.8 | 28.9 | 26.5 | 26.9 | 25.3 | 26.2 |
| MCHC [g/dL] | 34.3 | 33.5 | 34.1 | 33.8 | 32.4 | 33.3 | 32.4 | 32.6 |
| Leukocytes [×109/L] | 2.21 | 1.42 | 2.80 | 3.21 | 3.47 | 4.35 | 6.16 | 5.26 |
| Lymphocytes [%] | 42.6 | 40.5 | 37.9 | 34.6 | 31 | 30.8 | 20.8 | 16.7 |
| Neutrophils [%] | 45 | 51.1 | 49.9 | 52.2 | 55.9 | 55.9 | 70.9 | 73.7 |
| Monocytes [%] | 9.4 | 8.9 | 8.2 | 8.6 | 8.9 | 8.6 | 6 | 7.3 |
| Reticulocytes [%] | 1 | 1 | 1.5 | 1.8 | 1.1 | 1.5 | 1.2 | 1.1 |
| CRP [mg/L] | 0.4 | 0.5 | 0.7 | 0.8 | 5 | 4 | 0.41 | 0.41 |
| Creatinine [mg/dL] | 0.87 | 0.92 | 0.89 | 0.84 | 0.47 | 0.52 | 0.76 | 0.91 |
| Urea [mg/dL] | 14 | 15 | 10 | 7 | 15 | 13 | 9 | 8 |
| ALT [U/L] | 15 | 13 | 36 | 34 | 20 | 24 | 13 | 15 |
| AST [U/L] | 22 | 24 | 34 | 35 | 28 | 31 | 17 | 21 |
| Bilirubin Total [mg/dL] | 1 | 0.83 | 1.1 | 0.94 | 0.60 | 0.46 | 1 | 0.49 |
| Albumin [g/L] | 49 | 55 | 44 | 48 | 45 | 46 | 46 | 49 |
| TSH [uU/mL] | 0.6 | 1.3 | 0.7 | 1.2 | 0.925 | 1.140 | 1 | 1.151 |
| Parathormone [pg/mL] | 10.3 | 13.5 | 19.7 | 20.7 | 12.7 | 14.2 | 21.6 | 20.4 |
| Vitamin D (25-OH) [ng/mL] | 25.8 | 28.7 | 25.5 | 25.8 | 26.8 | 29.4 | 25.8 | 26.8 |
| Vitamin B12 [pg/mL] | 437 | 486 | 477 | 522 | 522 | 553 | 312 | 320 |
| Folic Acid [ng/mL] | 4.8 | 5.1 | 4.9 | 6.3 | 6.3 | 6.7 | 12.2 | 11.7 |
| Ferritin [ng/mL] | 51.57 | 51.74 | 54.25 | 60.51 | 60.57 | 60.14 | 18.9 | 18.49 |
| Calcium Total [mg/dL] | 9.9 | 9 | 9.8 | 9.9 | 9.2 | 9.5 | 9.7 | 9.8 |
| Uric Acid [mg/dL] | 6.7 | 6.9 | 5.7 | 6.2 | 3.2 | 3.5 | 6 | 6.2 |
| Participants | HJHS (Total Score) | % Change | Elbow | Knee | Ankle | ||||
|---|---|---|---|---|---|---|---|---|---|
| Left | Right | Left | Right | Right | Left | ||||
| Case 1 | Pre | 14.00 | −35.7 | 0 | 0 | 1 | 2 | 6 | 4 |
| Post | 9.00 | 0 | 0 | 2 | 3 | 2 | 2 | ||
| Case 2 | Pre | 13.00 | −61.5 | 0 | 1 | 4 | 1 | 1 | 5 |
| Post | 5.00 | 0 | 0 | 2 | 0 | 1 | 2 | ||
| Case 3 | Pre | 16.00 | −56.2 | 3 | 3 | 1 | 1 | 3 | 4 |
| Post | 7.00 | 0 | 0 | 0 | 3 | 1 | 2 | ||
| Case 4 | Pre | 15.00 | −40.0 | 2 | 2 | 3 | 2 | 2 | 5 |
| Post | 9.00 | 1 | 0 | 0 | 1 | 2 | 3 | ||
| Participants | EQ VAS | % Change | EQ-5D-5L | Mobility | Self-Care | Usual Activities | Pain/Discomfort | Anxiety/Depression | |
|---|---|---|---|---|---|---|---|---|---|
| Case 1 | Pre | 90 | 2.22 | 11121 | 1 | 1 | 1 | 2 | 1 |
| Post | 92 | 11121 | 1 | 1 | 1 | 2 | 1 | ||
| Case 2 | Pre | 80 | 12.5 | 21221 | 2 | 1 | 2 | 2 | 1 |
| Post | 90 | 11111 | 1 | 1 | 1 | 1 | 1 | ||
| Case 3 | Pre | 89 | 2.25 | 11311 | 1 | 1 | 3 | 1 | 1 |
| Post | 91 | 11111 | 1 | 1 | 1 | 1 | 1 | ||
| Case 4 | Pre | 80 | 15.0 | 11311 | 1 | 1 | 3 | 1 | 1 |
| Post | 92 | 11212 | 1 | 1 | 2 | 1 | 2 | ||
| Patient | Joint with Most Limited ROM | ISOM Norms | Pre | Post |
|---|---|---|---|---|
| Case 1 | left ankle | 20-0-45 | 23-0-25 | 23-0-30 |
| Target Joint | right ankle | 20-0-45 | 20-0-25 | 26-0-37 |
| Case 2 | right ankle | 20-0-45 | 17-0-44 | 19-0-45 |
| Target Joint | left ankle | 20-0-45 | 10-0-45 | 15-0-45 |
| Case 3 | left elbow | 0-0-150 | 5-0-140 | 0-0-140 |
| Target Joint | right ankle | 20-0-45 | 16-0-35 | 16-0-40 |
| Case 4 | left elbow | 0-0-150 | 5-0-130 | 0-0-145 |
| Target Joint | right ankle | 20-0-45 | 20-0-25 | 20-0-40 |
| Biomarker | Normal Range | Reference Ranges Are Derived from Previously Collected Healthy Pediatric Samples from UCK (n = 8) | Case | Pre-Intervention | Post-Intervention | Change (%) | Interpretation |
|---|---|---|---|---|---|---|---|
| IL-18 | 100–300 pg/mL | 174.52 | 1 | 125.14 | 109.16 | ↓ 12.77% | Within normal; modest decrease |
| 2 | 199.56 | 105.61 | ↓ 47.08% | Within normal; significant decrease | |||
| 3 | 631.45 | 245.34 | ↓ 61.15% | Elevated → normal; strong improvement | |||
| 4 | 410.18 | 294.91 | ↓ 28.11% | Elevated → borderline high | |||
| ß-NGF | 10–50 pg/mL | 45.50 | 1 | 52.14 | 56.41 | ↑ 8.19% | Slightly high → further increase |
| 2 | 36.25 | 44.12 | ↑ 21.71% | Within normal; healthy increase | |||
| 3 | 15.12 | 29.65 | ↑ 96.10% | Within normal; strong beneficial increase | |||
| 4 | 24.78 | 32.45 | ↑ 30.98% | Within normal; notable increase | |||
| sICAM-1 | 150–400 ng/mL | 144.65 | 1 | 254.52 | 175.12 | ↓ 31.20% | Within normal; healthy decrease |
| 2 | 163.45 | 158.21 | ↓ 3.21% | Within normal; stable | |||
| 3 | 741.95 | 302.32 | ↓ 59.36% | Elevated → normal; strong improvement | |||
| 4 | 532.22 | 421.56 | ↓ 20.79% | Elevated → borderline high | |||
| sRAGE | 800–1400 pg/mL | 1362.25 | 1 | 1321 | 1458 | ↑ 10.37% | Normal → slightly high; potentially beneficial |
| 2 | 897 | 968 | ↑ 7.92% | Normal; healthy increase | |||
| 3 | 687 | 641 | ↓ 6.70% | Below normal; slight drop | |||
| 4 | 1235 | 1413 | ↑ 14.41% | Normal → slightly high | |||
| CCL2 | 100–150 pg/mL | 105.45 | 1 | 174.15 | 179.12 | ↑ 2.85% | Elevated → further elevation |
| 2 | 149.16 | 161.23 | ↑ 8.09% | High end of normal → elevated | |||
| 3 | 304.55 | 164.28 | ↓ 46.11% | Very elevated → moderate high | |||
| 4 | 182.12 | 198.43 | ↑ 8.95% | Elevated → further elevation |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guzmann, K.; Wilczyński, B.; Jaskulak, M.; Radoń-Proskura, J.; Szarmach, A.; Mital, A.; Zorena, K. Eight-Week Resistance Training and Manual Therapy in Young Patients with Severe Hemophilia: A Case Series Evaluating Functional, Imaging, and Immunological Outcomes. J. Clin. Med. 2025, 14, 8419. https://doi.org/10.3390/jcm14238419
Guzmann K, Wilczyński B, Jaskulak M, Radoń-Proskura J, Szarmach A, Mital A, Zorena K. Eight-Week Resistance Training and Manual Therapy in Young Patients with Severe Hemophilia: A Case Series Evaluating Functional, Imaging, and Immunological Outcomes. Journal of Clinical Medicine. 2025; 14(23):8419. https://doi.org/10.3390/jcm14238419
Chicago/Turabian StyleGuzmann, Krystian, Bartosz Wilczyński, Marta Jaskulak, Julia Radoń-Proskura, Arkadiusz Szarmach, Andrzej Mital, and Katarzyna Zorena. 2025. "Eight-Week Resistance Training and Manual Therapy in Young Patients with Severe Hemophilia: A Case Series Evaluating Functional, Imaging, and Immunological Outcomes" Journal of Clinical Medicine 14, no. 23: 8419. https://doi.org/10.3390/jcm14238419
APA StyleGuzmann, K., Wilczyński, B., Jaskulak, M., Radoń-Proskura, J., Szarmach, A., Mital, A., & Zorena, K. (2025). Eight-Week Resistance Training and Manual Therapy in Young Patients with Severe Hemophilia: A Case Series Evaluating Functional, Imaging, and Immunological Outcomes. Journal of Clinical Medicine, 14(23), 8419. https://doi.org/10.3390/jcm14238419

