Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (718)

Search Parameters:
Keywords = chemical foam

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 3994 KiB  
Article
Analysis of Foaming Properties, Foam Stability, and Basic Physicochemical and Application Parameters of Bio-Based Car Shampoos
by Bartosz Woźniak, Agata Wawrzyńczak and Izabela Nowak
Coatings 2025, 15(8), 907; https://doi.org/10.3390/coatings15080907 (registering DOI) - 2 Aug 2025
Viewed by 286
Abstract
Environmental protection has become one of the key challenges of our time. This has led to an increase in pro-environmental activities in the field of cosmetics and household chemicals, where manufacturers are increasingly trying to meet the expectations of consumers who are aware [...] Read more.
Environmental protection has become one of the key challenges of our time. This has led to an increase in pro-environmental activities in the field of cosmetics and household chemicals, where manufacturers are increasingly trying to meet the expectations of consumers who are aware of the potential risks associated with the production of cosmetics and household chemistry products. This is one of the most important challenges of today’s industry, given that some of the raw materials still commonly used, such as surfactants, may be toxic to aquatic organisms. Many companies are choosing to use natural raw materials that have satisfactory performance properties but are also environmentally friendly. In addition, modern products are also characterized by reduced consumption of water, resources, and energy in production processes. These measures reduce the carbon footprint and reduce the amount of plastic packaging required. In the present study, seven formulations of environmentally friendly car shampoo concentrates were developed, based entirely on mixtures of bio-based surfactants. The developed formulations were tested for application on the car body surface, allowing the selection of the two best products. For these selected formulations, an in-depth physicochemical analysis was carried out, including pH, density, and viscosity measurements. Comparison of the results with commercial products available on the market was also performed. Additionally, using the multiple light scattering method, the foamability and foam stability were determined for the car shampoos developed. The results obtained indicate the very high application potential of the products under study, which combine high performance and environmental concerns. Full article
(This article belongs to the Section Environmental Aspects in Colloid and Interface Science)
Show Figures

Graphical abstract

15 pages, 1758 KiB  
Article
Optimized Si-H Content and Multivariate Engineering of PMHS Antifoamers for Superior Foam Suppression in High-Viscosity Systems
by Soyeon Kim, Changchun Liu, Junyao Huang, Xiang Feng, Hong Sun, Xiaoli Zhan, Mingkui Shi, Hongzhen Bai and Guping Tang
Coatings 2025, 15(8), 894; https://doi.org/10.3390/coatings15080894 (registering DOI) - 1 Aug 2025
Viewed by 218
Abstract
A modular strategy for the molecular design of silicone-based antifoaming agents was developed by precisely controlling the architecture of poly (methylhydrosiloxane) (PMHS). Sixteen PMHS variants were synthesized by systematically varying the siloxane chain length (L1–L4), backbone composition (D3T1 vs. D [...] Read more.
A modular strategy for the molecular design of silicone-based antifoaming agents was developed by precisely controlling the architecture of poly (methylhydrosiloxane) (PMHS). Sixteen PMHS variants were synthesized by systematically varying the siloxane chain length (L1–L4), backbone composition (D3T1 vs. D30T1), and terminal group chemistry (H- vs. M-type). These structural modifications resulted in a broad range of Si-H functionalities, which were quantitatively analyzed and correlated with defoaming performance. The PMHS matrices were integrated with high-viscosity PDMS, a nonionic surfactant, and covalently grafted fumed silica—which was chemically matched to each PMHS backbone—to construct formulation-specific defoaming systems with enhanced interfacial compatibility and colloidal stability. Comprehensive physicochemical characterization via FT-IR, 1H NMR, GPC, TGA, and surface tension analysis revealed a nonmonotonic relationship between Si-H content and defoaming efficiency. Formulations containing 0.1–0.3 wt% Si-H achieved peak performance, with suppression efficiencies up to 96.6% and surface tensions as low as 18.9 mN/m. Deviations from this optimal range impaired performance due to interfacial over-reactivity or reduced mobility. Furthermore, thermal stability and molecular weight distribution were found to be governed by repeat unit architecture and terminal group selection. Compared with conventional EO/PO-modified commercial defoamers, the PMHS-based systems exhibited markedly improved suppression durability and formulation stability in high-viscosity environments. These results establish a predictive structure–property framework for tailoring antifoaming agents and highlight PMHS-based formulations as advanced foam suppressors with improved functionality. This study provides actionable design criteria for high-performance silicone materials with strong potential for application in thermally and mechanically demanding environments such as coating, bioprocessing, and polymer manufacturing. Full article
(This article belongs to the Section Functional Polymer Coatings and Films)
Show Figures

Graphical abstract

16 pages, 3399 KiB  
Article
Relationship Between Filler Type, Thermomechanical Properties, and Aging of RTV Silicone Foams
by Xavier M. Torres, John R. Stockdale, Adam Pacheco, Shelbie A. Legett, Lindsey B. Bezek, Bart Benedikt, Andrea Labouriau and Santosh Adhikari
Polymers 2025, 17(14), 1998; https://doi.org/10.3390/polym17141998 - 21 Jul 2025
Viewed by 333
Abstract
Room-temperature vulcanizing (RTV) silicone foams are used in many industrial applications that require the material to perform over long time periods. However, mechanical properties tend to deteriorate when these foams age under a compressive load. The chemical aging is attributed to the presence [...] Read more.
Room-temperature vulcanizing (RTV) silicone foams are used in many industrial applications that require the material to perform over long time periods. However, mechanical properties tend to deteriorate when these foams age under a compressive load. The chemical aging is attributed to the presence of unreacted functional groups of the prepolymers, residues from acid, and catalytically active tin (II) species. Here, an optimized thermal treatment of an RTV foam that achieves completion of curing reactions and deactivation of reactive species is proposed. Foams that were thermally aged for three months under compressive load showed no signs of compression set, indicative of the effectiveness of the implemented post-curing approach. In addition, the effects of fillers (diatomaceous earth, fumed silica, and carbon nanofibers) on thermomechanical properties were investigated. Tensile strength, tear strength, and thermal conductivity increased when these fillers were added to the unfilled RTV formulation, with carbon nanofibers (CNFs) being the most effective filler. Rheological studies of RTV formulations indicated that 2.5 wt.% of CNFs is the upper limit that can be added to the RTV formulation. Full article
(This article belongs to the Special Issue Functional Polymer Composites: Synthesis and Application)
Show Figures

Figure 1

37 pages, 3892 KiB  
Review
Sustainable Remediation Strategies and Technologies of Per- and Polyfluoroalkyl Substances (PFAS)-Contaminated Soils: A Critical Review
by Rosario Napoli, Filippo Fazzino, Federico G. A. Vagliasindi and Pietro P. Falciglia
Sustainability 2025, 17(14), 6635; https://doi.org/10.3390/su17146635 - 21 Jul 2025
Viewed by 678
Abstract
Per- and polyfluoroalkyl substances (PFAS) have been reported to contaminate soil as a result of improper management of waste, wastewater, landfill leachate, biosolids, and a large and indiscriminate use of aqueous film-forming foams (AFFF), posing potential risks to human health. However, their high [...] Read more.
Per- and polyfluoroalkyl substances (PFAS) have been reported to contaminate soil as a result of improper management of waste, wastewater, landfill leachate, biosolids, and a large and indiscriminate use of aqueous film-forming foams (AFFF), posing potential risks to human health. However, their high chemical and thermal stability pose a great challenge for remediation. As a result, there is an increasing interest in identifying and optimizing very effective and sustainable technologies for PFAS removal. This review summarizes both traditional and innovative remediation strategies and technologies for PFAS-contaminated soils. Unlike existing literature, which primarily focuses on the effectiveness of PFAS remediation, this review critically discusses several techniques (based on PFAS immobilization, mobilization and extraction, and destruction) with a deep focus on their sustainability and scalability. PFAS destruction technologies demonstrate the highest removal efficiencies; however, thermal treatments face sustainability challenges due to high energy demands and potential formation of harmful by-products, while mechanical treatments have rarely been explored at full scale. PFAS immobilization techniques are less costly than destruction methods, but issues related to the regeneration/disposal of spent sorbents should be still addressed and more long-term studies conducted. PFAS mobilization techniques such as soil washing/flushing are hindered by the generation of PFAS-laden wastewater requiring further treatments, while phytoremediation is limited to small- or medium-scale experiments. Finally, bioremediation would be the cheapest and least impactful alternative, though its efficacy remains uncertain and demonstrated under simplified lab-scale conditions. Future research should prioritize pilot- and full-scale studies under realistic conditions, alongside comprehensive assessments of environmental impacts and economic feasibility. Full article
Show Figures

Figure 1

13 pages, 3049 KiB  
Article
Preparation of Foamed Ceramic from Cr Slag and MSWI Fly Ash and Its Cr Leaching Inhibition
by Hesong Li, Cheng Liu, Yikun Tang and Shilin Zhao
Materials 2025, 18(14), 3372; https://doi.org/10.3390/ma18143372 - 18 Jul 2025
Viewed by 237
Abstract
The sustainable utilization of solid waste is crucial for environmental protection. This work investigates the fabrication of foamed ceramics from Cr slag and municipal solid waste incineration (MSWI) fly ash, focusing on the effects of three inhibitors—NH2SO3H, ZnO·TiO2 [...] Read more.
The sustainable utilization of solid waste is crucial for environmental protection. This work investigates the fabrication of foamed ceramics from Cr slag and municipal solid waste incineration (MSWI) fly ash, focusing on the effects of three inhibitors—NH2SO3H, ZnO·TiO2, and (NH4)2HPO4—on material properties and Cr leaching behavior. Experimental analysis, chemical thermodynamic calculations, and material characterization were all employed. Results show that the prepared foamed ceramics meet the JG/T 511-2017 standard for building materials, exhibiting excellent physical properties but significant Cr leaching. Among the inhibitors, (NH4)2HPO4 with a molar ratio of n(P)/n(Cr) = 1 shows the best performance, achieving a bulk density of 205 kg/m3, compressive strength of 0.850 MPa, Cr leaching concentration of 188 μg/L, and a 70.0% of Cr leaching inhibition rate. The improvement is attributed to the AlPO4 formation that enhancing the strength, and Ca2P2O7 that stabilizing Cr during sintering. This work provides a feasible method for the safe resource utilization of Cr-containing waste. Full article
Show Figures

Figure 1

17 pages, 2219 KiB  
Article
Oil Spill Recovery of Petroleum-Derived Fuels Using a Bio-Based Flexible Polyurethane Foam
by Fabrizio Olivito, Zul Ilham, Wan Abd Al Qadr Imad Wan-Mohtar, Goldie Oza, Antonio Procopio and Monica Nardi
Polymers 2025, 17(14), 1959; https://doi.org/10.3390/polym17141959 - 17 Jul 2025
Viewed by 369
Abstract
In this study, we tested a flexible polyurethane (PU) foam, synthesized from bio-based components, for the removal of petroleum-derived fuels from water samples. The PU was synthesized via the prepolymer method through the reaction of PEG 400 with L-lysine ethyl ester diisocyanate (L-LDI), [...] Read more.
In this study, we tested a flexible polyurethane (PU) foam, synthesized from bio-based components, for the removal of petroleum-derived fuels from water samples. The PU was synthesized via the prepolymer method through the reaction of PEG 400 with L-lysine ethyl ester diisocyanate (L-LDI), followed by chain extension with 2,5-bis(hydroxymethyl)furan (BHMF), a renewable platform molecule derived from carbohydrates. Freshwater and seawater samples were artificially contaminated with commercial diesel, gasoline, and kerosene. Batch adsorption experiments revealed that the total sorption capacity (S, g/g) of the PU was slightly higher for diesel in both water types, with values of 67 g/g in freshwater and 70 g/g in seawater. Sorption kinetic analysis indicated that the process follows a pseudo-second-order kinetic model, suggesting strong chemical interactions. Equilibrium data were fitted using Langmuir and Freundlich isotherm models, with the best fit achieved by the Langmuir model, supporting a monolayer adsorption mechanism on homogeneous surfaces. The PU foam can be regenerated up to 50 times by centrifugation, maintaining excellent performance. This study demonstrates a promising application of this sustainable and bio-based polyurethane foam for environmental remediation. Full article
Show Figures

Graphical abstract

21 pages, 5153 KiB  
Article
Macro- and Micro-Analysis of Factors Influencing the Performance of Sustained-Release Foamed Cement Materials
by Yijun Chen, Shengyu Wang, Yu Zhao, Pan Guo, Lei Zhang, Yingchun Cai, Jiandong Wei and Heng Liu
Materials 2025, 18(14), 3330; https://doi.org/10.3390/ma18143330 - 15 Jul 2025
Viewed by 314
Abstract
This paper addresses the issues of insufficient expansion force, low early strength (1-day compressive strength < 1.5 MPa), and poor toughness (flexural strength < 0.8 MPa) in traditional chemical foamed cement used for road grouting repair. By combining single-factor gradient experiments with microscopic [...] Read more.
This paper addresses the issues of insufficient expansion force, low early strength (1-day compressive strength < 1.5 MPa), and poor toughness (flexural strength < 0.8 MPa) in traditional chemical foamed cement used for road grouting repair. By combining single-factor gradient experiments with microscopic mechanism analysis, the study systematically investigates the performance modulation mechanisms of controlled-release foamed cement using additives such as heavy calcium powder (0–20%), calcium chloride (0.2–1.2%), latex powder (0.2–1.2%), and polypropylene fiber (0.2–0.8%). The study innovatively employs a titanium silicate coupling agent coating technique (with the coating agent amounting to 25% of the catalyst’s mass) to delay foaming by 40 s. Scanning electron microscopy (SEM) and pore structure analysis reveal the microscopic essence of material performance optimization. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

20 pages, 3251 KiB  
Review
Chemical Functionalization of Camelina, Hemp, and Rapeseed Oils for Sustainable Resin Applications: Strategies for Tailoring Structure and Performance
by Elham Nadim, Pavan Paraskar, Emma J. Murphy, Mohammadnabi Hesabi and Ian Major
Compounds 2025, 5(3), 26; https://doi.org/10.3390/compounds5030026 - 10 Jul 2025
Viewed by 309
Abstract
This review examines the chemical functionalization of Camelina, hemp, and rapeseed oils for the development of sustainable bio-based resins. Key strategies, including epoxidation, acrylation, and click chemistry, are discussed in the context of tailoring molecular structure to enhance reactivity, compatibility, and material performance. [...] Read more.
This review examines the chemical functionalization of Camelina, hemp, and rapeseed oils for the development of sustainable bio-based resins. Key strategies, including epoxidation, acrylation, and click chemistry, are discussed in the context of tailoring molecular structure to enhance reactivity, compatibility, and material performance. Particular emphasis is placed on overcoming the inherent limitations of vegetable oil structures to enable their integration into high-performance polymer systems. The agricultural sustainability and environmental advantages of these feedstocks are also highlighted alongside the technical challenges associated with their chemical modification. Functionalized oils derived from Camelina, hemp, and rapeseed have been successfully applied in various resin systems, including protective coatings, pressure-sensitive adhesives, UV-curable oligomers, and polyurethane foams. These advances demonstrate their growing potential as renewable alternatives to petroleum-based polymers and underline the critical role of structure–property relationships in designing next-generation sustainable materials. Ultimately, the objective of this review is to distill the most effective functionalization pathways and design principles, thereby illustrating how Camelina, hemp, and rapeseed oils could serve as viable substitutes for petrochemical resins in future industrial applications. Full article
(This article belongs to the Special Issue Compounds–Derived from Nature)
Show Figures

Figure 1

28 pages, 4983 KiB  
Review
Physical Processing-Assisted pH Shifting for Food Protein Modification: A Comprehensive Review
by Ruiqi Long, Yuanyuan Huang, Mokhtar Dabbour, Benjamin Kumah Mintah, Jiayin Pan, Minquan Wu, Shengqi Zhang, Zhou Qin, Ronghai He and Haile Ma
Foods 2025, 14(13), 2360; https://doi.org/10.3390/foods14132360 - 3 Jul 2025
Viewed by 582
Abstract
The increasing demand for sustainable protein sources has intensified interest in improving the processing efficiency of traditional proteins and developing novel alternatives, particularly those derived from plants and algae. Among various processing technologies, pH shifting has attracted attention due to its simplicity, low [...] Read more.
The increasing demand for sustainable protein sources has intensified interest in improving the processing efficiency of traditional proteins and developing novel alternatives, particularly those derived from plants and algae. Among various processing technologies, pH shifting has attracted attention due to its simplicity, low cost, and capacity to effectively alter protein structure and functionality. However, employing pH shifting alone requires extremely acidic or alkaline conditions, which can lead to protein denaturation and the generation of undesirable by-products. To address these limitations, this review explores the integration of pH shifting with physical processing techniques such as ultrasound, high-pressure processing, pulsed electric fields, and thermal treatments. Moreover, this review highlights the effects of these combined treatments on protein conformational transitions and the resulting improvements in functional properties such as solubility, emulsification, foaming capacity, and thermal stability. Importantly, they reduce reliance on extreme chemical conditions, providing greater sustainability in industrial applications, particularly in food product development where milder processing conditions help preserve nutritional quality and functional properties. In that sense, this combined treatment approach provides a promising and eco-efficient protein modification strategy, and bridges technological innovation with sustainable resource utilization. Full article
Show Figures

Figure 1

30 pages, 10507 KiB  
Article
Thermal Properties of Geopolymer Concretes with Lightweight Aggregates
by Agnieszka Przybek, Paulina Romańska, Kinga Korniejenko, Krzysztof Krajniak, Maria Hebdowska-Krupa and Michał Łach
Materials 2025, 18(13), 3150; https://doi.org/10.3390/ma18133150 - 3 Jul 2025
Cited by 1 | Viewed by 536
Abstract
Despite the availability of various materials for chimney applications, ongoing research seeks alternatives with improved thermal and chemical resistance. Geopolymers are a promising solution, exhibiting exceptional resistance to high temperatures, fire, and aggressive chemicals. This study investigates fly ash-based lightweight geopolymer concretes that [...] Read more.
Despite the availability of various materials for chimney applications, ongoing research seeks alternatives with improved thermal and chemical resistance. Geopolymers are a promising solution, exhibiting exceptional resistance to high temperatures, fire, and aggressive chemicals. This study investigates fly ash-based lightweight geopolymer concretes that incorporate expanded clay aggregate (E.C.A.), perlite (P), and foamed geopolymer aggregate (F.G.A.). The composites were designed to ensure a density below 1200 kg/m3, reducing overall weight while maintaining necessary performance. Aggregate content ranged from 60 to 75 wt.%. Physical (density, thickness, water absorption), mechanical (flexural and compressive strength), and thermal (conductivity, resistance) properties were evaluated. F.G.A. 60 achieved a 76.8% reduction in thermal conductivity (0.1708 vs. 0.7366 W/(m·K)) and a 140.4% increase in thermal resistance (0.1642 vs. 0.0683). The F.G.A./E.C.A./P 60 mixture showed the highest compressive strength (18.069 MPa), reaching 52.7% of the reference concrete’s strength, with a 32.3% lower density (1173.3 vs. 1735.0 kg/m3). Water absorption ranged from 4.9% (REF.) to 7.3% (F.G.A. 60). All samples, except F.G.A. 70 and F.G.A. 75, endured heating up to 800 °C. The F.G.A./E.C.A./P 60 composite demonstrated well-balanced performance: low thermal conductivity (0.2052 W/(m·K)), thermal resistance up to 1000 °C, flexural strength of 4.386 MPa, and compressive strength of 18.069 MPa. The results confirm that well-designed geopolymer lightweight concretes are suitable for chimney and flue pipe linings operating between 500 and 1000 °C and exposed to acidic condensates and aggressive chemicals. This study marks the initial phase of a broader project on geopolymer-based prefabricated chimney systems. Full article
(This article belongs to the Special Issue Advances in Function Geopolymer Materials—Second Edition)
Show Figures

Figure 1

29 pages, 5886 KiB  
Review
Advances in the Applications and Studies of Polyurethane Foam for Flexible Strain Sensors
by Shuai Huang, Guanbing Liu, Ying Sun and Xiacong Zhang
Polymers 2025, 17(13), 1851; https://doi.org/10.3390/polym17131851 - 2 Jul 2025
Viewed by 801
Abstract
Polyurethane (PU) foam, renowned for its structural versatility, elasticity, compressibility, and adaptability, has garnered significant attention for its use in flexible strain sensors due to its capability to detect mechanical deformation. This review presents a comprehensive analysis of both the studies and recent [...] Read more.
Polyurethane (PU) foam, renowned for its structural versatility, elasticity, compressibility, and adaptability, has garnered significant attention for its use in flexible strain sensors due to its capability to detect mechanical deformation. This review presents a comprehensive analysis of both the studies and recent advancements in PU foam-based strain sensors, particularly those incorporating conductive materials. The review begins by examining the chemical composition and structural characteristics of PU foam, followed by a discussion of various fabrication methods and their effects on sensor performance. It also explores the sensing mechanisms, including piezoresistive, piezoelectric, and capacitive effects. Moreover, key applications in motion detection, health monitoring, and environmental and industrial sensing are examined. Finally, the review addresses technological advancements, current challenges, and prospects. Full article
(This article belongs to the Special Issue Advances in Functional Rubber and Elastomer Composites, 3rd Edition)
Show Figures

Figure 1

14 pages, 4047 KiB  
Article
Impact of Long-Term Alkaline Cleaning on Ultrafiltration Tubular PVDF Membrane Performances
by Marek Gryta and Piotr Woźniak
Membranes 2025, 15(7), 192; https://doi.org/10.3390/membranes15070192 - 27 Jun 2025
Viewed by 531
Abstract
The application of an ultrafiltration (UF) process with periodic membrane cleaning with the use of alkaline detergent solutions was proposed for the recovery of wash water from car wash effluent. In order to test the resistance of the membranes to the degradation caused [...] Read more.
The application of an ultrafiltration (UF) process with periodic membrane cleaning with the use of alkaline detergent solutions was proposed for the recovery of wash water from car wash effluent. In order to test the resistance of the membranes to the degradation caused by the cleaning solutions, a pilot plant study was carried out for almost two years. The installation included an industrial module with FP100 tubular membranes made of polyvinylidene fluoride (PVDF). The module was fed with synthetic effluent obtained by mixing foaming agents and hydrowax. To limit the fouling phenomenon, the membranes were cleaned cyclically with P3 Ultrasil 11 solution (pH = 11.7) or Insect solution (pH = 11.5). During plant shutdowns, the membrane module was maintained with a sodium metabisulphite solution. Changes in the permeate flux, turbidity, COD, and surfactant rejection were analysed during the study. Scanning electron microscopy (SEM), atomic force microscopy (AFM), differential scanning calorimetry (DSC), and Fourier-transform infrared spectroscopy (FTIR) analysis were used to determine the changes in the membrane structure. As a result of the repeated chemical cleaning, the pore size increased, resulting in a more than 50% increase in permeate flux. However, the quality of the recovered wash water did not deteriorate, as an additional separation layer was formed on the membrane surface due to the fouling phenomenon. Full article
(This article belongs to the Special Issue Recent Advances in Polymeric Membranes—Preparation and Applications)
Show Figures

Figure 1

13 pages, 2159 KiB  
Communication
NiCo(OH)2/NiCo2O4 as a Heterogeneous Catalyst for the Electrooxidation of 5-Hydroxymethylfurfural
by Wen Li, Di Yin, Wanxin Liu, Yi Li and Yijin Wu
Inorganics 2025, 13(7), 211; https://doi.org/10.3390/inorganics13070211 - 24 Jun 2025
Viewed by 436
Abstract
The electrochemical oxidation of biomass-derived 5-hydroxymethylfurfural (HMF) coupled with water electrolysis for green hydrogen production is a promising strategy to address energy crises and environmental pollution. Despite the suitable adsorption energy for HMF due to their partially filled d-band electronic structures, Ni- or [...] Read more.
The electrochemical oxidation of biomass-derived 5-hydroxymethylfurfural (HMF) coupled with water electrolysis for green hydrogen production is a promising strategy to address energy crises and environmental pollution. Despite the suitable adsorption energy for HMF due to their partially filled d-band electronic structures, Ni- or Co-based oxides/hydroxides still face challenges in insufficient activity and stability. In this study, a porous heterogeneous nickel cobalt oxide/hydroxide growth on nickel foam (NF), which is defined as NF@NiCo-H/O, was developed via immersion in concentrated alkali solution. Compared with the single-component NiCo oxides, the NF@NiCo-H/O catalyst exhibits a lower application potential of only 1.317 V, 1.395 V, and 1.443 V to achieve current densities of 20, 50, and 100 mA cm−2, respectively, in an alkaline solution containing HMF. Additionally, it demonstrates rapid reaction kinetics with a Tafel slope of 27.6 mV dec−1 and excellent cycling stability. Importantly, the presence of more high-valent Ni3+-O species on the catalyst surface contributes to its exceptional selectivity for 2,5-furandicarboxylic acid (86.7%), Faradaic efficiency (93.1%), and conversion rate (94.4%). This catalyst provides some theoretical guidance for the development of biomass electrooxidation catalysts for sustainable energy and chemical production. Full article
Show Figures

Graphical abstract

18 pages, 3581 KiB  
Article
Evaluation of Bio-Polyurethane Foam Synthesized from Liquefied Waste Wood Polyol
by Go Masuda, Christian Ebere Enyoh, Keiju Ishidoya, Weiqian Wang and Qingyue Wang
Recycling 2025, 10(4), 126; https://doi.org/10.3390/recycling10040126 - 22 Jun 2025
Viewed by 426
Abstract
Bio-polyurethane foam was synthesized in this study using bio-polyol derived from liquefied waste wood as a sustainable alternative to petroleum-based polyols. It has been widely reported that polyurethane foams incorporating liquefied wood exhibit biodegradability when buried in soil, with assessments typically relying on [...] Read more.
Bio-polyurethane foam was synthesized in this study using bio-polyol derived from liquefied waste wood as a sustainable alternative to petroleum-based polyols. It has been widely reported that polyurethane foams incorporating liquefied wood exhibit biodegradability when buried in soil, with assessments typically relying on CO2 emission measurements in a close system. However, this method cannot obtain any chemical bonding breakage information of the bio-polyurethane foam. On the other hand, our study investigated the biodegradation process by employing an elemental composition analysis using a CHN coder and functional group analysis through Fourier transform infrared (FT-IR) spectroscopy to capture chemical structure changing. The results demonstrated that biodegradation occurs in three different stages over time, even in the absence of significant early-stage weight loss. The gradual breakdown of urethane bonds was confirmed through changes in the elemental composition and functional group ratios, providing a more detailed understanding of the degradation mechanism. These findings suggest highlighting the importance of complementary chemical analytical techniques for a more accurate evaluation. On the other hand, TG data showed that bio-polyurethane foams remained thermally stable even after biodegradation occurred. Full article
Show Figures

Figure 1

19 pages, 3945 KiB  
Article
Static Analysis of a Composite Box Plate with Functionally Graded Foam Core
by Andrejs Kovalovs
J. Manuf. Mater. Process. 2025, 9(7), 209; https://doi.org/10.3390/jmmp9070209 - 22 Jun 2025
Viewed by 461
Abstract
In functionally graded polymer foam, mechanical properties and chemical composition vary in a prescribed direction according to a power law distribution. However, most manufacturing methods lack precise control over pore size, limiting their application. In this case, the graded foam structure can be [...] Read more.
In functionally graded polymer foam, mechanical properties and chemical composition vary in a prescribed direction according to a power law distribution. However, most manufacturing methods lack precise control over pore size, limiting their application. In this case, the graded foam structure can be formed from separate layers, with each layer assigned unique values in terms of mechanical properties or chemical composition based on the power law distribution. The hypothesis of the work is that the application of functionally graded (FG) foam materials inside the rotor blades or wings of an unmanned aerial vehicle can provide the ability to vary their stiffness properties. The aim of this work is to conduct an investigation of the static behaviour of a composite box plate with constant and variable heights that simulate the dimensions and changing profile of a helicopter rotor blade. In the numerical analysis, two models of composite box plate are considered and the material properties of graded polymeric foam core are assumed to vary continuously by the power law along the width of cross-sectional structures. It is not possible to model the continuous flow of graded properties through the foam in construction; therefore, the layers of foam are modelled using discontinuous gradients, where the gradient factor changes step by step. The numerical results are obtained using ANSYS software. The results of the numerical calculation showed that the use of graded foam affects the parameters under study. The stiffness of a structure significantly decreases with an increase in the power law index. Full article
Show Figures

Figure 1

Back to TopTop