Impact of Long-Term Alkaline Cleaning on Ultrafiltration Tubular PVDF Membrane Performances
Abstract
1. Introduction
2. Materials and Methods
2.1. UF Installation
2.2. Feed Solutions
2.3. Analytical
3. Results and Discussion
3.1. Car Wash Wastewater Ultrafiltration
3.2. Membrane Morphology
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Kuan, W.-H.; Hu, C.-Y.; Ke, L.-W.; Wu, J.-M. A Review of On-Site Carwash Wastewater Treatment. Sustainability 2022, 14, 5764. [Google Scholar] [CrossRef]
- 39 Car Wash Industry Statistics for 2025. Available online: https://www.keevee.com/car-wash-industry-statistics (accessed on 27 May 2025).
- Sarmadi, M.; Foroughi, M.; Saleh, H.N.; Sanaei, D.; Zarei, A.A.; Ghahrchi, M.; Bazrafshan, E. Efficient technologies for carwash wastewater treatment: A systematic review. Environ. Sci. Pollut. Res. 2020, 27, 34823–34839. [Google Scholar] [CrossRef] [PubMed]
- Mark VII AquaPur. Available online: https://www.markvii.net/wasserrueckgewinnung/mark-vii-aquapur/ (accessed on 20 May 2025).
- Car Wash Global Market Report 2025. Available online: https://www.thebusinessresearchcompany.com/report/car-wash-global-market-report (accessed on 17 May 2025).
- System Overview—Hoffman innovateIT. Available online: https://innovateitcarwash.com/docs/ro/manual/system-overview/ (accessed on 20 May 2025).
- Uçar, D. Membrane processes for the reuse of car washing wastewater. J. Water Reuse Desalination 2018, 8, 169–175. [Google Scholar] [CrossRef]
- Boluarte, I.A.R.; Andersen, M.; Pramanik, B.K.; Chang, C.Y.; Bagshaw, S.; Farago, L.; Shu, L. Reuse of car wash wastewater by chemical coagulation and membrane bioreactor treatment processes. Int. Biodeterior. Biodegrad. 2016, 113, 44–48. [Google Scholar] [CrossRef]
- Moazzem, S.; Wills, J.; Fan, L.; Roddick, F.; Jegatheesan, V. Performance of ceramic ultrafiltration and reverse osmosis membranes in treating car wash wastewater for reuse. Environ. Sci. Pollut. Res. 2018, 25, 8654–8668. [Google Scholar] [CrossRef]
- Car Wash Industry Statistics. Available online: https://gitnux.org/car-wash-industry-statistics/ (accessed on 20 May 2025).
- Woźniak, P.; Gryta, M. Application of Polymeric Tubular Ultrafiltration Membranes for Separation of Car Wash Wastewater. Membranes 2024, 14, 210. [Google Scholar] [CrossRef]
- Rabuni, M.F.; Sulaiman, N.M.N.; Aroua, M.K.; Chee, C.Y.; Hashim, N.A. Impact of in situ physical and chemical cleaning on PVDF membrane properties and performances. Chem. Eng. Sci. 2015, 122, 426–435. [Google Scholar] [CrossRef]
- Menon, S.; Bansode, K.; Nandi, S.; Kalyanraman, V. Impact of cleaning agents on properties of tubular polyvinylidene fluoride (PVDF) membrane. Mater. Today Proc. 2021, 47, 1466–1471. [Google Scholar] [CrossRef]
- Gryta, M.; Woźniak, P. Polyethersulfone membrane fouling mitigation during ultrafiltration of wastewaters from car washes. Desalination 2024, 574, 117254. [Google Scholar] [CrossRef]
- Tomczak, W.; Gryta, M. The Application of Polyethersulfone Ultrafiltration Membranes for Separation of Car Wash Wastewaters: Experiments and Modelling. Membranes 2023, 13, 321. [Google Scholar] [CrossRef]
- Zulkefli, N.F.; Alias, N.H.; Jamaluddin, N.S.; Abdullah, N.; Abdul Manaf, S.F.; Othman, N.H.; Marpani, F.; Mat-Shayuti, M.S.; Kusworo, T.D. Recent Mitigation Strategies on Membrane Fouling for Oily Wastewater Treatment. Membranes 2021, 12, 26. [Google Scholar] [CrossRef] [PubMed]
- Shi, X.; Tal, G.; Hankins, N.P.; Gitis, V. Fouling and Cleaning of Ultrafiltration Membranes: A Review. J. Water Process Eng. 2014, 1, 121–138. [Google Scholar] [CrossRef]
- Lau, W.J.; Ismail, A.F.; Firdaus, S. Car wash industry in Malaysia: Treatment of car wash effluent using ultrafiltration and nanofiltration membranes. Sep. Purif. Technol. 2013, 104, 26–31. [Google Scholar] [CrossRef]
- Palanisamy, T.; Tabatabai, S.A.A.; Zhang, T.; Leiknes, T.O. Role of surfactants in cleaning of PVDF ultrafiltration membranes fouled by emulsified cutting oil. J. Water Process Eng. 2021, 40, 101923. [Google Scholar] [CrossRef]
- Chheang, M.; Hongprasith, N.; Ratanatawanate, C.; Lohwacharin, J. Effects of Chemical Cleaning on the Ageing of Polyvinylidene Fluoride Microfiltration and Ultrafiltration Membranes Fouled with Organic and Inorganic Matter. Membranes 2022, 12, 280. [Google Scholar] [CrossRef]
- Hashim, N.A.; Liu, Y.; Li, K. Stability of PVDF hollow fibre membranes in sodium hydroxide aqueous solution. Chem. Eng. Sci. 2011, 66, 1565–1575. [Google Scholar] [CrossRef]
- Li, K.; Su, Q.; Li, S.; Wen, G.; Huang, T. Aging of PVDF and PES Ultrafiltration Membranes by Sodium Hypochlorite: Effect of Solution pH. J. Environ. Sci. 2021, 104, 444–455. [Google Scholar] [CrossRef]
- Weis, A.; Bird, M.R.; Nyström, M. The chemical cleaning of polymeric UF membranes fouled with spent sulphite liquor over multiple operational cycles. J. Membr. Sci. 2003, 216, 67–79. [Google Scholar] [CrossRef]
- Weis, A.; Bird, M.R. The influence of multiple fouling and cleaning cycles upon the membrane processing of lignosulphonates. Food Bioprod. Process. 2001, 79, 184–187. [Google Scholar] [CrossRef]
- Falsanisi, D.; Liberti, L.; Notarnicola, M. Ultrafiltration (UF) Pilot Plant for Municipal Wastewater Reuse in Agriculture: Impact of the Operation Mode on Process Performance. Water 2009, 1, 872–885. [Google Scholar] [CrossRef]
- DuPont™ IntegraTec™ P Series PES-UF Modules T-Rack™ and Modules for Open Platform. Process and Design Manual. Version 6. November 2022. Available online: https://www.google.com/url?sa=t&source=web&rct=j&opi=89978449&url=https://www.dupont.com/content/dam/water/amer/us/en/water/public/documents/en/UF-IntegraTec-P-Series-PES-IO-T-Rack-Assembly-Manual-45-D02230-en.pdf&ved=2ahUKEwjzo6iYx8WNAxUIA9sEHUy0KjMQFnoECB4QAQ&usg=AOvVaw1465VsDPd3Rb8PgX6K0FZa (accessed on 20 May 2025).
- Cai, X.; Wang, Z.; Qian, Y.; Wang, A.; Yang, Y.; Xia, S. Comprehensively understanding fouling properties of cake and bulk sludge in an anammox membrane bioreactor: Focusing on the composition, interfacial thermodynamics and microbial community. J. Environ. Chem. Eng. 2022, 10, 108612. [Google Scholar] [CrossRef]
- Li, J.-X.; Sanderson, R.D.; Chai, G.Y. A focused ultrasonic sensor for in situ detection of protein fouling on tubular ultrafiltration membranes. Sens. Actuators B Chem. 2006, 114, 182–191. [Google Scholar] [CrossRef]
- Woźniak, P.; Gryta, M. Influence of Reclaimed Water on the Visual Quality of Automotive Coating. Materials 2024, 17, 5382. [Google Scholar] [CrossRef]
- Ali, S.; Rana, U.A.; Zahid, M.; Hussain, A. Effect of NaOH concentration on morphology and performance of PVDF membranes for desalination. Sep. Purif. Technol. 2019, 209, 46–56. [Google Scholar] [CrossRef]
- Wen, G.; Chen, K.; Zhang, Y.; Zhou, Y.; Pan, J.; Wang, Q.; Sun, S.; Wang, Z. Preparation of alkali-resistant PVDF membranes via immobilization of sodium lauryl sulfate (SDS) on surface. Appl. Water Sci. 2021, 11, 55. [Google Scholar] [CrossRef]
- Tomczak, W.; Gryta, M. Long-Term Performance of Ultrafiltration Membranes: Corrosion Fouling Aspect. Materials 2023, 16, 1673. [Google Scholar] [CrossRef] [PubMed]
- Gryta, M.; Tomczak, W. Changes in Tubular PVDF Membrane Performance During Initial Period of Pilot Plant Operation. Membranes 2025, 15, 119. [Google Scholar] [CrossRef] [PubMed]
- Tomczak, W.; Woźniak, P.; Gryta, M. Ultrafiltration of Car Wash Wastewater: Pilot-Scale Studies. Water 2025, 17, 213. [Google Scholar] [CrossRef]
- Gan, X.; Lin, T.; Jiang, F.; Zhang, X. Impacts on characteristics and effluent safety of PVDF ultrafiltration membranes aged by different chemical cleaning types. J. Membr. Sci. 2021, 640, 119770. [Google Scholar] [CrossRef]
- Khoiruddin, I.G.W.; Hakim, A.N.; Aryanti, P.T.P.; Rova, N. Long-Term Performance of a Pilot Scale Combined Chemical Precipitation-Ultrafiltration Technique for Waste Brine Regeneration at Chevron Steam Flooding Plant. J. Eng. Technol. Sci. 2020, 52, 501–513. [Google Scholar] [CrossRef]
- Cui, Z.; Hassankiadeh, N.T.; Zhuang, Y.; Drioli, E.; Lee, Y.M. Crystalline polymorphism in poly(vinylidenefluoride) membranes. Prog. Polym. Sci. 2015, 51, 94–126. [Google Scholar] [CrossRef]
- Ali, B.T.I.; Romadiansyah, T.Q.; Lestari, W.C.; Kusumawati, Y.; Ermavitalini, D.; Widiastuti, N. Modification of PVDF ultrafiltration membrane for high concentration of nannochloropsis as a raw material for bioethanol: Computations and experiments. S. Afr. J. Chem. Eng. 2023, 46, 42–55. [Google Scholar] [CrossRef]
- Kong, Y.; Hay, J.N. The measurement of the crystallinity of polymers by DSC. Polymer 2002, 43, 3873–3878. [Google Scholar] [CrossRef]
Parameter | Unit | B1 Module | FP100 |
---|---|---|---|
Length | mm | 1220 | 1200 |
Diameter | mm | 100 | 1.25 |
Tube | - | 18 | 1 |
Material | - | AISI 316 Stainless Steel | PVDF |
Operating pressure | bar | 64 | 10 |
Operating temperature | °C | 80 | 80 |
Volume shroud-side | L | 6.7 | - |
Volume tube-side | L | 2.8 | 0.147 |
Nominal retention | kDa | - | 100 |
pH range | - | 1.5–12 | 1.5–12 |
Wastewater | COD [mg/L] | Anionic [mg/L] | Nonionic [mg/L] | pH [-] | Cond. [μS/cm] | Turbidity [NTU] |
---|---|---|---|---|---|---|
White | 2275 ± 378 | 463 ± 26 | 25 ± 8 | 8.5 ± 0.2 | 155 ± 1 | 11.3 ± 1.4 |
Green | 2150 ± 70 | 420 ± 20 | 21 ± 6 | 8.8 ± 0.2 | 162 ± 2 | 12.5 ± 5.2 |
Blue | 2391 ± 115 | 393 ± 29 | 40 ± 14 | 8.6 ± 0.1 | 167 ± 2 | 83.2 ± 14.7 |
Parameter | New | After UF Tests | Rinsed |
---|---|---|---|
Rq [nm] | 35.1 ± 1.4 | 223.7 ± 12.8 | 114.5 ± 17.4 |
Ra [nm] | 28.2 ± 4.1 | 179.2 ± 9.4 | 81.9 ± 18.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gryta, M.; Woźniak, P. Impact of Long-Term Alkaline Cleaning on Ultrafiltration Tubular PVDF Membrane Performances. Membranes 2025, 15, 192. https://doi.org/10.3390/membranes15070192
Gryta M, Woźniak P. Impact of Long-Term Alkaline Cleaning on Ultrafiltration Tubular PVDF Membrane Performances. Membranes. 2025; 15(7):192. https://doi.org/10.3390/membranes15070192
Chicago/Turabian StyleGryta, Marek, and Piotr Woźniak. 2025. "Impact of Long-Term Alkaline Cleaning on Ultrafiltration Tubular PVDF Membrane Performances" Membranes 15, no. 7: 192. https://doi.org/10.3390/membranes15070192
APA StyleGryta, M., & Woźniak, P. (2025). Impact of Long-Term Alkaline Cleaning on Ultrafiltration Tubular PVDF Membrane Performances. Membranes, 15(7), 192. https://doi.org/10.3390/membranes15070192