Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (388)

Search Parameters:
Keywords = chemical coprecipitation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
28 pages, 11672 KiB  
Article
Microwave-Assisted Hydrothermal Synthesis of Cu/Sr-Doped Hydroxyapatite with Prospective Applications for Bone Tissue Engineering
by Diana-Elena Radulescu, Bogdan Stefan Vasile, Otilia Ruxandra Vasile, Ionela Andreea Neacsu, Roxana Doina Trusca, Vasile-Adrian Surdu, Alexandra Catalina Birca, Georgiana Dolete, Cornelia-Ioana Ilie and Ecaterina Andronescu
J. Compos. Sci. 2025, 9(8), 427; https://doi.org/10.3390/jcs9080427 (registering DOI) - 7 Aug 2025
Abstract
One of the main challenges in hydroxyapatite research is to develop cost-effective synthesis methods that consistently produce materials closely resembling natural bone, while maintaining high biocompatibility, phase purity, and mechanical stability for biomedical applications. Traditional synthetic techniques frequently fail to provide desirable mechanical [...] Read more.
One of the main challenges in hydroxyapatite research is to develop cost-effective synthesis methods that consistently produce materials closely resembling natural bone, while maintaining high biocompatibility, phase purity, and mechanical stability for biomedical applications. Traditional synthetic techniques frequently fail to provide desirable mechanical characteristics and antibacterial activity, necessitating the development of novel strategies based on natural precursors and selective ion doping. The present study aims to explore the possibility of synthesizing hydroxyapatite through the co-precipitation method, followed by a microwave-assisted hydrothermal maturation process. The main CaO sources selected for this study are eggshells and mussel shells. Cu2+ and Sr2+ ions were added into the hydroxyapatite structure at concentrations of 1% and 5% to investigate their potential for biomedical applications. Furthermore, the morpho-structural and biological properties have been investigated. Results demonstrated the success of hydroxyapatite synthesis and ion incorporation into its chemical structure. Moreover, HAp samples exhibited significant antimicrobial properties, especially the samples doped with 5% Cu and Sr. Additionally, all samples presented good biological activity on MC3T3-E1 osteoblast cells, demonstrating good cellular viability of all samples. Therefore, by correlating the results, it could be concluded that the undoped and doped hydroxyapatite samples are suitable biomaterials to be further applied in orthopedic applications. Full article
(This article belongs to the Special Issue Composites: A Sustainable Material Solution, 2nd Edition)
Show Figures

Figure 1

14 pages, 2177 KiB  
Article
Study on the Regulation Mechanism of Silane Coupling Agents’ Molecular Structure on the Rheological Properties of Fe3O4/CNT Silicone Oil-Based Magnetic Liquids
by Wenyi Li, Xiaotong Zeng, Shiyu Yang, Bingxue Wang, Xiangju Tian and Weihao Shen
J. Compos. Sci. 2025, 9(8), 423; https://doi.org/10.3390/jcs9080423 - 7 Aug 2025
Abstract
Silicone oil-based magnetic liquids containing carbon nanotubes (CNTs) were prepared using an in situ chemical coprecipitation method. The surface modification of Fe3O4/CNT composite particles was carried out by using three silane coupling agents: γ-aminopropyltriethoxysilane (550), γ-methacryloxypropyltrimethoxysilane (570), and phenyltrimethoxysilane [...] Read more.
Silicone oil-based magnetic liquids containing carbon nanotubes (CNTs) were prepared using an in situ chemical coprecipitation method. The surface modification of Fe3O4/CNT composite particles was carried out by using three silane coupling agents: γ-aminopropyltriethoxysilane (550), γ-methacryloxypropyltrimethoxysilane (570), and phenyltrimethoxysilane (7030). Infrared Spectroscopy (IR), Transmission Electron Microscopy (TEM), and X-ray Diffraction (XRD) were used to confirm the successful doping of CNTs and the effective coating of the coupling agents. The rheological behavior of the magnetic liquids was systematically studied using an Anton Paar Rheometer. The results show that viscosity decreases exponentially with increasing temperature (fitting the Arrhenius equation), increases and tends to saturate with rising magnetic field intensity, and exhibits shear-thinning characteristics with increasing shear rate. Among the samples, Fe3O4@7030 has the best visco-thermal performance due to the benzene ring structure, which reduces the symmetry of the molecular chains. In contrast, Fe3O4@570 shows the most significant magneto-viscous effect (viscosity variation of 161.4%) as a result of the long-chain structure enhancing the steric hindrance of the magnetic dipoles. Full article
(This article belongs to the Section Composites Modelling and Characterization)
Show Figures

Figure 1

11 pages, 1745 KiB  
Article
Comprehensive Investigation of Structural and Photocatalytic Properties of Cobalt and Nickel Co-Doped Magnesium Oxide Nanoparticles
by Shafaq Arif, Amna Sarwar and M. S. Anwar
Condens. Matter 2025, 10(3), 41; https://doi.org/10.3390/condmat10030041 - 4 Aug 2025
Viewed by 146
Abstract
Cobalt and Nickel (Co, Ni) co-doped magnesium oxide (MgO) nanoparticles (NPs) have been synthesized using the coprecipitation method. The structural, chemical, and optical properties of the as-synthesized NPs are systematically investigated using X-ray Diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR), and UV-visible spectroscopy. [...] Read more.
Cobalt and Nickel (Co, Ni) co-doped magnesium oxide (MgO) nanoparticles (NPs) have been synthesized using the coprecipitation method. The structural, chemical, and optical properties of the as-synthesized NPs are systematically investigated using X-ray Diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR), and UV-visible spectroscopy. It is found that the optical bandgap of co-doped MgO NPs reduces from 2.30 to 1.98 eV (14%) with increasing Ni dopant concentrations up to 7%. The Co0.05Ni0.07Mg0.88O NPs exhibit a high photocatalytic degradation efficiency of 93% for methylene blue dye (MB) under natural sunlight irradiation for 240 min. Our findings indicate that the Co0.05NixMg0.95−xO NPs have strong potential for use as photocatalysts in industrial wastewater treatment. Full article
Show Figures

Figure 1

13 pages, 1750 KiB  
Article
Mineral-Based Synthesis of CuFe2O4 Nanoparticles via Co-Precipitation and Microwave Techniques Using Leached Copper Solutions from Mined Minerals
by Carolina Venegas Abarzúa, Mauricio J. Morel, Gabriela Sandoval-Hevia, Thangavel Kavinkumar, Natarajan Chidhambaram, Sathish Kumar Kamaraj, Nagarajan Dineshbabu and Arun Thirumurugan
Minerals 2025, 15(8), 819; https://doi.org/10.3390/min15080819 - 1 Aug 2025
Viewed by 157
Abstract
Environmental sustainability and responsible resource utilization are critical global challenges. In this work, we present a sustainable and circular-economy-based approach for synthesizing CuFe2O4 nanoparticles by directly utilizing copper oxide minerals sourced from Chilean mining operations. Copper sulfate (CuSO4) [...] Read more.
Environmental sustainability and responsible resource utilization are critical global challenges. In this work, we present a sustainable and circular-economy-based approach for synthesizing CuFe2O4 nanoparticles by directly utilizing copper oxide minerals sourced from Chilean mining operations. Copper sulfate (CuSO4) was extracted from these minerals through acid leaching and used as a precursor for nanoparticle synthesis via both chemical co-precipitation and microwave-assisted methods. The influence of different precipitating agents—NaOH, Na2CO3, and NaF—was systematically evaluated. XRD and FESEM analyses revealed that NaOH produced the most phase-pure and well-dispersed nanoparticles, while NaF resulted in secondary phase formation. The microwave-assisted method further improved particle uniformity and reduced agglomeration due to rapid and homogeneous heating. Electrochemical characterization was conducted to assess the suitability of the synthesized CuFe2O4 for supercapacitor applications. Cyclic voltammetry (CV) and galvanostatic charge–discharge (GCD) measurements confirmed pseudocapacitive behavior, with a specific capacitance of up to 1000 F/g at 2 A/g. These findings highlight the potential of CuFe2O4 as a low-cost, high-performance electrode material for energy storage. This study underscores the feasibility of converting primary mined minerals into functional nanomaterials while promoting sustainable mineral valorization. The approach can be extended to other critical metals and mineral residues, including tailings, supporting the broader goals of a circular economy and environmental remediation. Full article
Show Figures

Figure 1

18 pages, 6380 KiB  
Article
Synthesis and Application of Fe3O4–ZrO2 Magnetic Nanoparticles for Fluoride Adsorption from Water
by Israel Águila-Martínez, José Antonio Pérez-Tavares, Efrén González-Aguiñaga, Pablo Eduardo Cardoso-Avila, Héctor Pérez Ladrón de Guevara and Rita Patakfalvi
Inorganics 2025, 13(7), 248; https://doi.org/10.3390/inorganics13070248 - 19 Jul 2025
Viewed by 616
Abstract
This study presents the synthesis, characterization, and application of magnetic magnetite–zirconium dioxide (Fe3O4–ZrO2) nanoparticles as an efficient nanoadsorbent for fluoride removal from water. The nanoparticles were synthesized using a wet chemical co-precipitation method with Fe/Zr molar ratios [...] Read more.
This study presents the synthesis, characterization, and application of magnetic magnetite–zirconium dioxide (Fe3O4–ZrO2) nanoparticles as an efficient nanoadsorbent for fluoride removal from water. The nanoparticles were synthesized using a wet chemical co-precipitation method with Fe/Zr molar ratios of 1:1, 1:2, and 1:4, and characterized using Fourier-transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), X-ray diffraction (XRD), and energy-dispersive X-ray spectroscopy (EDS). FTIR analysis confirmed the presence of Fe3O4 and ZrO2 functional groups, while XRD showed that increased Zr content led to a dominant amorphous phase. SEM and EDS analyses revealed quasi-spherical and elongated morphologies with uniform elemental distribution, maintaining the designed Fe/Zr ratios. Preliminary adsorption tests identified the Fe/Zr = 1:1 (M1) nanoadsorbent as the most effective due to its high surface homogeneity and optimal fluoride-binding characteristics. Adsorption experiments demonstrated that the material achieved a maximum fluoride adsorption capacity of 70.4 mg/g at pH 3, with the adsorption process best fitting the Temkin isotherm model (R2 = 0.987), suggesting strong adsorbate–adsorbent interactions. pH-dependent studies confirmed that adsorption efficiency decreased at higher pH values due to electrostatic repulsion and competition with hydroxyl ions. Competitive ion experiments revealed that common anions such as nitrate, chloride, and sulfate had negligible effects on fluoride adsorption, whereas bicarbonate, carbonate, and phosphate reduced removal efficiency due to their strong interactions with active adsorption sites. The Fe3O4–ZrO2 nanoadsorbent exhibited excellent magnetic properties, facilitating rapid and efficient separation using an external magnetic field, making it a promising candidate for practical water treatment applications. Full article
Show Figures

Graphical abstract

22 pages, 6390 KiB  
Article
Exploring the Tribological Potential of Y2BaCuO5 Precursor Powders as a Novel Lubricant Additive
by Shuo Cheng, Longgui He and Jimin Xu
Lubricants 2025, 13(7), 315; https://doi.org/10.3390/lubricants13070315 - 19 Jul 2025
Viewed by 308
Abstract
Friction leads to substantial energy losses and wear in mechanical systems. This study explores the tribological potential of the high-temperature superconductor precursor Y2BaCuO5 (Y211), synthesized via chemical co-precipitation, as a novel additive to PAO6 base oil. A 0.3 wt.% Y211/PAO6 [...] Read more.
Friction leads to substantial energy losses and wear in mechanical systems. This study explores the tribological potential of the high-temperature superconductor precursor Y2BaCuO5 (Y211), synthesized via chemical co-precipitation, as a novel additive to PAO6 base oil. A 0.3 wt.% Y211/PAO6 lubricant (CD) was formulated using ultrasonic dispersion. Tribological performance was evaluated using a custom end-face tribometer (steel-on-iron) under varying loads (100–500 N) and speeds (300–500 rpm), comparing CD to neat PAO6. The results indicate that the Y211 additive consistently reduced the coefficient of friction (COF) relative to neat PAO6, maintaining a stable value around ~0.1. However, its effectiveness was strongly load-dependent: a significant friction reduction was observed at 100 N, while the benefit diminished at higher loads (>200 N), with the COF peaking around 200 N. Rotational speed exerted minimal influence. Compared with neat PAO6, the inclusion of 0.3 wt.% Y211 resulted in a reduction in the coefficient of friction by approximately 50% under low-load conditions (100 N), with COF values decreasing from 0.1 to 0.045. Wear depth measurements also revealed a reduction of over 30%, supporting the additive’s anti-wear efficacy. Y211 demonstrates potential as a friction-reducing additive, particularly under low loads, but its high-load performance limitations warrant further optimization and mechanistic studies. This highlights a novel tribological application for Y211. The objective of this study is to evaluate the tribological effectiveness of Y2BaCuO5 (Y211) as a lubricant additive, investigate its load-dependent friction behavior, and explore its feasibility as a multifunctional additive leveraging its superconductive precursor structure. Full article
(This article belongs to the Special Issue Novel Lubricant Additives in 2025)
Show Figures

Figure 1

18 pages, 5941 KiB  
Article
Non-Calcined Metal Tartrate Pore Formers for Lowering Sintering Temperature of Solid Oxide Fuel Cells
by Mehdi Choolaei, Mohsen Fallah Vostakola and Bahman Amini Horri
Crystals 2025, 15(7), 636; https://doi.org/10.3390/cryst15070636 - 10 Jul 2025
Viewed by 301
Abstract
This paper investigates the application of non-calcined metal tartrate as a novel alternative pore former to prepare functional ceramic composites to fabricate solid oxide fuel cells (SOFCs). Compared to carbonaceous pore formers, non-calcined pore formers offer high compatibility with various ceramic composites, providing [...] Read more.
This paper investigates the application of non-calcined metal tartrate as a novel alternative pore former to prepare functional ceramic composites to fabricate solid oxide fuel cells (SOFCs). Compared to carbonaceous pore formers, non-calcined pore formers offer high compatibility with various ceramic composites, providing better control over porosity and pore size distribution, which allows for enhanced gas diffusion, reactant transport and gaseous product release within the fuel cells’ functional layers. In this work, nanocrystalline gadolinium-doped ceria (GDC) and Ni-Gd-Ce-tartrate anode powders were prepared using a single-step co-precipitation synthesis method, based on the carboxylate route, utilising ammonium tartrate as a low-cost, environmentally friendly precipitant. The non-calcined Ni-Gd-Ce-tartrate was used to fabricate dense GDC electrolyte pellets (5–20 μm thick) integrated with a thin film of Ni-GDC anode with controlled porosity at 1300 °C. The dilatometry analysis showed the shrinkage anisotropy factor for the anode substrates prepared using 20 wt. The percentages of Ni-Gd-Ce-tartrate were 30 wt.% and 40 wt.%, with values of 0.98 and 1.01, respectively, showing a significant improvement in microstructural properties and pore size compared to those fabricated using a carbonaceous pore former. The results showed that the non-calcined pore formers can also lower the sintering temperature for GDC to below 1300 °C, saving energy and reducing thermal stresses on the materials. They can also help maintain optimal material properties during sintering, minimising the risk of unwanted chemical reactions or contamination. This flexibility enables the versatile designing and manufacturing of ceramic fuel cells with tailored compositions at a lower cost for large-scale applications. Full article
(This article belongs to the Section Materials for Energy Applications)
Show Figures

Graphical abstract

25 pages, 6059 KiB  
Article
Comparative Evaluation of β-Cyclodextrin Inclusion Complexes with Eugenol, Eucalyptol, and Clove Essential Oil: Characterisation and Antimicrobial Activity Assessment for Pharmaceutical Applications
by Alina Ionela Stancu, Magdalena Mititelu, Anton Ficai, Lia-Mara Ditu, Mihaela Buleandră, Irinel Adriana Badea, Elena Pincu, Marius Constantin Stoian, Oana Brîncoveanu, Adina Boldeiu and Eliza Oprea
Pharmaceutics 2025, 17(7), 852; https://doi.org/10.3390/pharmaceutics17070852 - 29 Jun 2025
Viewed by 486
Abstract
Clove essential oil (Eugenia caryophyllata essential oil, ECEO) is known for its high eugenol content and notable antimicrobial properties. However, the volatility and instability of its active compounds hinder broader pharmaceutical applications. Methods: This study characterised the chemical composition of ECEO and [...] Read more.
Clove essential oil (Eugenia caryophyllata essential oil, ECEO) is known for its high eugenol content and notable antimicrobial properties. However, the volatility and instability of its active compounds hinder broader pharmaceutical applications. Methods: This study characterised the chemical composition of ECEO and comparatively evaluated four β-cyclodextrin (β-CD) encapsulation methods: kneading, co-precipitation, lyophilisation, and co-precipitation–lyophilisation for eugenol, eucalyptol, and ECEO. Encapsulation efficiency, physicochemical properties, and antimicrobial potential were assessed. Analytical techniques included Gas Chromatography–Mass Spectrometry (GC-MS), Headspace GC-MS (HS-GC-MS), Differential Scanning Calorimetry (DSC), Job’s method, and Dynamic Light Scattering (DLS). Results: GC-MS identified eugenol (90.67%), eugenyl acetate (4.77%), and (E)–β-caryophyllene (3.98%) as major components of ECEO, while HS-GC-MS indicated a slightly reduced eugenol content (86.46%). The kneading method yielded the highest encapsulation efficiency for eugenol, whereas the co-precipitation–lyophilisation method was optimal for eucalyptol. DSC thermograms confirmed complex formation, and DLS analysis revealed nanostructures averaging 186.4 nm in diameter (PDI = 0.298). Antimicrobial assays showed MIC values ranging from 0.039 mg/mL to 10,000 mg/mL. Notably, ECEO and its β-CD complex displayed enhanced efficacy against Escherichia coli (0.039 mg/mL), surpassing the reference antibiotic gentamicin (0.049 mg/mL). Conclusions: β-Cyclodextrin encapsulation significantly enhances the stability and bioactivity of volatile antimicrobial compounds, thereby supporting their potential integration into advanced essential oil-based pharmaceutical formulations. Full article
(This article belongs to the Special Issue Cyclodextrins and Their Pharmaceutical Applications)
Show Figures

Figure 1

14 pages, 3018 KiB  
Article
Fractional Coprecipitation of Drugs and Natural Extracts with Zinc Hydroxide
by Andrea Franzese and Luca Regazzoni
Molecules 2025, 30(13), 2699; https://doi.org/10.3390/molecules30132699 - 23 Jun 2025
Viewed by 327
Abstract
Zinc hydroxide has been reported as an effective precipitating reagent for removing proteins in biological samples. This procedure is quite effective for removing interfering proteins before the chromatographic separation of small organic compounds. However, preliminary data suggested that also some small molecules could [...] Read more.
Zinc hydroxide has been reported as an effective precipitating reagent for removing proteins in biological samples. This procedure is quite effective for removing interfering proteins before the chromatographic separation of small organic compounds. However, preliminary data suggested that also some small molecules could precipitate together with proteins and zinc hydroxide. Therefore, herein it is reported a study on a panel of drugs having different chemical structures. The results suggest that the common trait of organic molecules coprecipitating with zinc hydroxide is to have acidic groups, while neutral or basic molecules are not affected by zinc hydroxide precipitation. Such observations were consistent with some analyses conducted on hydroalcoholic extracts prepared from natural edible materials such as green tea. In such matrices, a quantitative coprecipitation of polyphenols was obtained upon inducing the precipitation of zinc hydroxide, while alkaloids such as caffeine remained selectively isolated in the supernatants. Interestingly, the compounds coprecipitated with zinc hydroxide can be easily and quantitatively recovered as well, just by redissolving the precipitate. These findings open potential applications for the isolation of specific classes of compounds from crude natural extracts and for the use of zinc hydroxide to remove interfering compounds before chromatographic analyses. Full article
(This article belongs to the Section Medicinal Chemistry)
Show Figures

Figure 1

14 pages, 5300 KiB  
Article
Synthesis and Antibacterial Evaluation of Silver-Coated Magnetic Iron Oxide/Activated Carbon Nanoparticles Derived from Hibiscus esculentus
by Müslüm Güneş, Erdal Ertaş, Seyhmus Tumur, Parvin Zulfugarova, Fidan Nuriyeva, Taras Kavetskyy, Yuliia Kukhazh, Pavlo Grozdov, Ondrej Šauša, Oleh Smutok, Dashgin Ganbarov and Arnold Kiv
Magnetochemistry 2025, 11(7), 53; https://doi.org/10.3390/magnetochemistry11070053 - 21 Jun 2025
Viewed by 492
Abstract
The increasing prevalence of antimicrobial resistance alongside the pharmacological limitations and adverse effects associated with conventional antibiotics necessitates the development of novel and efficacious antimicrobial agents. In this study, magnetic iron oxide nanoparticles (MIONPs) were synthesized via a chemical co-precipitation method. Activated carbon [...] Read more.
The increasing prevalence of antimicrobial resistance alongside the pharmacological limitations and adverse effects associated with conventional antibiotics necessitates the development of novel and efficacious antimicrobial agents. In this study, magnetic iron oxide nanoparticles (MIONPs) were synthesized via a chemical co-precipitation method. Activated carbon (AC) derived from Hibiscus esculentus (HE) fruit was coated onto the nanoparticle surfaces to fabricate MIONPs/HEAC nanocomposites. To augment their antimicrobial properties, silver ions were chemically reduced and deposited onto the MIONPs/HEAC surface, yielding MIONPs/HEAC@Ag nanocomposites. Comprehensive characterization of the synthesized nanocomposites was performed using scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), vibrating sample magnetometry (VSM), dynamic light scattering (DLS), and zeta potential analysis. DLS measurements indicated average particle sizes of approximately 122 nm and 164 nm for MIONPs/HEAC and MIONPs/HEAC@Ag, respectively. Saturation magnetization values were determined to be 73.6 emu/g for MIONPs and 65.5 emu/g for MIONPs/HEAC. Antibacterial assays demonstrated that MIONPs/HEAC@Ag exhibited significant inhibitory effects against Escherichia coli ATCC 25922 and Staphylococcus aureus ATCC 25923, with inhibition zone diameters of 11.50 mm and 13.00 mm, respectively. In contrast, uncoated MIONPs/HEAC showed negligible antibacterial activity against both bacterial strains. These findings indicate that MIONPs/HEAC@Ag nanocomposites possess considerable potential as antimicrobial agents for biomedical applications, particularly in addressing infections caused by antibiotic-resistant bacteria. Full article
Show Figures

Figure 1

16 pages, 9334 KiB  
Article
Polyethyleneimine Modified Expanded Vermiculite-Supported Nano Zero-Valent Iron for Cr(VI) Removal from Aqueous Solution
by Xinyu Yang, Yan Mu, Lina Zhang, Dan Sun, Tiantian Jian and Weiliang Tian
Materials 2025, 18(13), 2930; https://doi.org/10.3390/ma18132930 - 20 Jun 2025
Viewed by 827
Abstract
In order to develop an efficient, environmentally friendly heavy metal ions adsorbent, the amino-modified expanded vermiculite-supported nano zero-valent iron (nZVI@PEI/EVMT) was prepared by using polyethyleneimine (PEI) as the functional reagent and expanded vermiculite (EVMT) as the carrier. The characterization results of nZVI@PEI/EVMT confirm [...] Read more.
In order to develop an efficient, environmentally friendly heavy metal ions adsorbent, the amino-modified expanded vermiculite-supported nano zero-valent iron (nZVI@PEI/EVMT) was prepared by using polyethyleneimine (PEI) as the functional reagent and expanded vermiculite (EVMT) as the carrier. The characterization results of nZVI@PEI/EVMT confirm that the PEI modification did not destroy the crystal configuration of EVMT, and when nano zero-valent iron (nZVI) was successfully loaded onto the PEI/EVMT surface, the value of saturation magnetic field was 41.5 emu/g, which could be separated from solution with magnet. The performance of Cr(VI) adsorption onto nZVI@PEI/EVMT was studied, showing that the ideal mass ratio for nZVI@PEI/EVMT was 1:1, and the removal capacity was largest when solution pH was 2. After four adsorption–desorption cycles, the adsorption amounts remained 40.1 mg/g. The Cr(VI) adsorption onto nZVI@PEI/EVMT was more consistent with a pseudo-second-order kinetics equation. Isotherm adsorption data accord with the Langmuir model, which suggests that the adsorption was the monolayer, the maximum adsorption amount was 116.2 mg/g at 30 °C and pH 2, and the adsorption was spontaneous and endothermic. It was inferred that the adsorption mechanisms included electrostatic attraction, reduction, chemical complexation, and co-precipitation. Full article
(This article belongs to the Section Polymeric Materials)
Show Figures

Figure 1

20 pages, 9749 KiB  
Article
Sustainable Strategy for Microplastic Mitigation: Fe3O4 Acid-Functionalized Magnetic Nanoparticles for Microplastics Removal
by Ivanilson da Silva de Aquino, Ester de Araújo Freire, Alisson Mendes Rodrigues, Otilie Eichler Vercillo, Mauro Francisco Pinheiro da Silva, Mateus Faustino Salazar da Rocha, Míriam Cristina Santos Amaral and Ariuska Karla Barbosa Amorim
Sustainability 2025, 17(11), 5203; https://doi.org/10.3390/su17115203 - 5 Jun 2025
Cited by 1 | Viewed by 1212
Abstract
Microplastic (MPs) pollution has emerged as a critical environmental issue due to its persistent accumulation in ecosystems, posing risks to aquatic life, food safety, and human health. In this study, magnetic Fe3O4 nanoparticles functionalized with citric acid (Fe3O [...] Read more.
Microplastic (MPs) pollution has emerged as a critical environmental issue due to its persistent accumulation in ecosystems, posing risks to aquatic life, food safety, and human health. In this study, magnetic Fe3O4 nanoparticles functionalized with citric acid (Fe3O4@AC) were used to remove high-density polyethylene (HDPE), low-density polyethylene (LDPE), and polypropylene (PP) MPs from an aqueous medium. Fe3O4@AC was synthesized via the coprecipitation method and characterized by morphology (SEM), crystalline phases (XRD), chemical aspects (FTIR), and surface area (nitrogen sorption isotherms). The MPs removal efficiency of Fe3O4@AC was evaluated based on the initial concentration, contact time, and pH. The adsorption isotherm and kinetics data were best described by the Sips and pseudo-second-order models, respectively. Fe3O4@AC removed 80% of the MPs at a pH of 6. Based on experimental observations (zeta potential, porosity, and SEM) and theoretical insights, it was concluded that hydrogen bonding, pore filling, and van der Waals forces governed the adsorption mechanism. Reusability tests showed that Fe3O4@AC could be reused up to five times, with a removal efficiency above 50%. These findings suggest that Fe3O4@AC is a sustainable and promising material for the efficient removal of microplastics from wastewater, offering a reusable and low-impact alternative that contributes to environmentally responsible wastewater treatment strategies. Full article
(This article belongs to the Special Issue Resource Sustainability: Sustainable Materials and Green Engineering)
Show Figures

Graphical abstract

21 pages, 6797 KiB  
Article
The Catalytic Performance of Metal-Oxide-Based Catalysts in the Synthesis of Glycerol Carbonate: Toward the Green Valorization of Glycerol
by Mirna Lea Charif, Rami Doukeh and Dragos Mihael Ciuparu
Catalysts 2025, 15(6), 534; https://doi.org/10.3390/catal15060534 - 27 May 2025
Cited by 1 | Viewed by 592
Abstract
The rising concern over carbon dioxide (CO2) emissions has led to increased research on its conversion into value-added chemicals. Glycerol carbonate (GC), a versatile and eco-friendly compound, can be synthesized via the catalytic carbonylation of glycerol with CO2. This [...] Read more.
The rising concern over carbon dioxide (CO2) emissions has led to increased research on its conversion into value-added chemicals. Glycerol carbonate (GC), a versatile and eco-friendly compound, can be synthesized via the catalytic carbonylation of glycerol with CO2. This study investigates the catalytic performance of three novel mixed metal oxide catalysts, Ti-Al-Mg, Ti-Cr-Mg, and Ti-Fe-Mg, synthesized via co-precipitation. The catalysts were characterized using XRD, SEM, XPS, CO2-TPD, FTIR, TGA-DTG, and nitrogen adsorption–desorption isotherms. Among the tested systems, Ti-Al-Mg demonstrated the highest surface area, optimal porosity, and a balanced acid–base profile, resulting in superior catalytic activity. Under optimized conditions (175 °C, 10 bar CO2, 4 h), Ti-Al-Mg achieved a maximum GC yield of 36.1%, outperforming Ti-Cr-Mg and Ti-Fe-Mg. The improved performance was attributed to the synergistic effects of its physicochemical properties, including high magnesium content and lower CO2 binding energy, which favored CO2 activation and glycerol conversion while minimizing side reactions. These findings highlight the potential of tailored mixed metal oxide systems for efficient CO2 immobilization and sustainable glycerol valorization. Full article
(This article belongs to the Special Issue Exclusive Feature Papers in Catalytic Materials)
Show Figures

Figure 1

9 pages, 1696 KiB  
Article
Interactions Between Trivalent Elements Enable Ultrastable LDH Cathode for High-Performance Zinc Battery
by Junhua Zeng, Jinlei Gao, Wenyao Lu, Jiashuo Feng and Ting Deng
Batteries 2025, 11(5), 170; https://doi.org/10.3390/batteries11050170 - 23 Apr 2025
Viewed by 393
Abstract
Layered double hydroxides (LDHs) are one class of two-dimensional materials, with tunable chemical composition and large interlayer spacing, that is a potential cathode material candidate for aqueous zinc-ion batteries (AZIBs). Nevertheless, the low conductivity and fragile structure of LDH have impeded their practical [...] Read more.
Layered double hydroxides (LDHs) are one class of two-dimensional materials, with tunable chemical composition and large interlayer spacing, that is a potential cathode material candidate for aqueous zinc-ion batteries (AZIBs). Nevertheless, the low conductivity and fragile structure of LDH have impeded their practical application in AZIBs. Herein, a ternary CoMnAl LDH is synthesized via the facile coprecipitation method as the cathode material for AZIB. The interaction between trivalent Al3+ and Mn3+ not only lowers the redox energy barrier but also enhances the electronic structure, as proved by EIS analysis and DFT simulation. As a result, the synthesized CoMnAl LDH displays a high specific capacity of 238.9 mAh g−1 at 0.5 A g−1, an outstanding rate performance (138.8 mAh g−1 at 5 A g−1), and a stable cyclability (92% capacity retention after 2000 cycles). Full article
Show Figures

Graphical abstract

16 pages, 1263 KiB  
Article
Smart Prussian Blue Analog Decorated with Zinc Oxide Nanohybrid: Fluorescent Sensing and Sustainability of Sunset Yellow in Food and Environment
by Hany A. Batakoushy, Amr K. A. Bass, Hassanien Gomaa, Sami El Deeb and Adel Ehab Ibrahim
Biosensors 2025, 15(4), 263; https://doi.org/10.3390/bios15040263 - 20 Apr 2025
Viewed by 560
Abstract
In the current study, the Prussian blue analog decorated with zinc oxide (PBA@ZnO) was produced using a simple chemical co-precipitation method. The nanohybrid was examined using XRD, EDX, SEM, and TEM techniques, where it exhibited a polycrystalline structure with highly intense broadening peaks. [...] Read more.
In the current study, the Prussian blue analog decorated with zinc oxide (PBA@ZnO) was produced using a simple chemical co-precipitation method. The nanohybrid was examined using XRD, EDX, SEM, and TEM techniques, where it exhibited a polycrystalline structure with highly intense broadening peaks. The surface morphology was observed as thin nanosheets decorated with tiny spheres. Following excitation at 360 nm, the fluorescence spectra of PBA@ZnO showed fluorescence emission at 455 nm. The developed PBA@ZnO was used to qualitatively and quantitatively assess sunset yellow (SY), where its native fluorescence was selectively quenched as SY concentrations increased. For the first time, PBA@ZnO was used as a turn-off nano-sensor for the spectrofluorimetric measurement of SY. The method’s markable sensitivity was demonstrated within an SY linearity range of 50–500 ng/mL, where the limit of detection was calculated as 9.77 ng/mL. Real sample analysis in the food industry, including samples from real food, soft drinks, and sun cream, was made possible by the detection of tiny amounts of SY. Analytical Greenness (AGREE), AGREEprep, and the complementing Green Analytical Procedure Index (Complex MoGAPI) were used to illustrate the new approach’s exceptional eco-friendliness and greenness. The RGB 12 algorithm worked to demonstrate that the suggested approach is less costly, more environmentally friendly, more sustainable, analytically sound, and whiter than the ones that were previously published. In accordance with ICH principles, the suggested method was validated. This approach offers a promising way to rapidly and accurately identify and measure SY in the food industry, helping to guarantee food safety and maintain the health of customers. Full article
(This article belongs to the Special Issue Innovative Biosensing Technologies for Sustainable Healthcare)
Show Figures

Figure 1

Back to TopTop