Composites: A Sustainable Material Solution, 2nd Edition

A special issue of Journal of Composites Science (ISSN 2504-477X).

Deadline for manuscript submissions: 31 December 2026 | Viewed by 1287

Special Issue Editors


E-Mail Website
Guest Editor

E-Mail Website
Guest Editor
Department of Mechanical Engineering, Gokaraju Rangaraju Institute of Engineering & Technology, Telangana 500090, India
Interests: metal forming; material modelling; bio-composites; finite element method; green composites
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Sustainable and green composites refer to materials that are developed with a focus on environmental friendliness and longevity. These composites typically integrate natural fibers such as bamboo, hemp, or flax with bio-based resins or recycled polymers. By utilizing renewable resources and reducing reliance on fossil fuels, they help mitigate the environmental impact of traditional composite materials.

One key advantage of sustainable composites is their reduced carbon footprint compared to conventional counterparts, as they require less energy to produce and often sequester carbon dioxide during growth. Additionally, these materials can offer comparable or even superior mechanical properties, making them suitable for various applications including automotive, construction, and consumer goods.

The production process for sustainable composites also tends to generate less waste and fewer emissions, further contributing to their eco-friendliness. Moreover, their biodegradability or recyclability at the end-of-life stage ensures a closed-loop system, minimizing waste accumulation and resource depletion.

Overall, sustainable and green composites represent a promising avenue for creating durable, environmentally responsible materials that align with the principles of a circular economy and sustainable development. Continued research and innovation in this field hold the potential to further enhance their performance and widen their applicability across industries.

Dr. Julfikar Haider
Prof. Dr. Swadesh Kumar Singh
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Journal of Composites Science is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 1800 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • polymer composites
  • biobased composites
  • metallic composites
  • nanocomposites
  • natural fibre based composites
  • smart composites

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (3 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

28 pages, 11672 KiB  
Article
Microwave-Assisted Hydrothermal Synthesis of Cu/Sr-Doped Hydroxyapatite with Prospective Applications for Bone Tissue Engineering
by Diana-Elena Radulescu, Bogdan Stefan Vasile, Otilia Ruxandra Vasile, Ionela Andreea Neacsu, Roxana Doina Trusca, Vasile-Adrian Surdu, Alexandra Catalina Birca, Georgiana Dolete, Cornelia-Ioana Ilie and Ecaterina Andronescu
J. Compos. Sci. 2025, 9(8), 427; https://doi.org/10.3390/jcs9080427 - 7 Aug 2025
Viewed by 219
Abstract
One of the main challenges in hydroxyapatite research is to develop cost-effective synthesis methods that consistently produce materials closely resembling natural bone, while maintaining high biocompatibility, phase purity, and mechanical stability for biomedical applications. Traditional synthetic techniques frequently fail to provide desirable mechanical [...] Read more.
One of the main challenges in hydroxyapatite research is to develop cost-effective synthesis methods that consistently produce materials closely resembling natural bone, while maintaining high biocompatibility, phase purity, and mechanical stability for biomedical applications. Traditional synthetic techniques frequently fail to provide desirable mechanical characteristics and antibacterial activity, necessitating the development of novel strategies based on natural precursors and selective ion doping. The present study aims to explore the possibility of synthesizing hydroxyapatite through the co-precipitation method, followed by a microwave-assisted hydrothermal maturation process. The main CaO sources selected for this study are eggshells and mussel shells. Cu2+ and Sr2+ ions were added into the hydroxyapatite structure at concentrations of 1% and 5% to investigate their potential for biomedical applications. Furthermore, the morpho-structural and biological properties have been investigated. Results demonstrated the success of hydroxyapatite synthesis and ion incorporation into its chemical structure. Moreover, HAp samples exhibited significant antimicrobial properties, especially the samples doped with 5% Cu and Sr. Additionally, all samples presented good biological activity on MC3T3-E1 osteoblast cells, demonstrating good cellular viability of all samples. Therefore, by correlating the results, it could be concluded that the undoped and doped hydroxyapatite samples are suitable biomaterials to be further applied in orthopedic applications. Full article
(This article belongs to the Special Issue Composites: A Sustainable Material Solution, 2nd Edition)
Show Figures

Figure 1

16 pages, 2673 KiB  
Article
Thermal and Volumetric Signatures of the Mullins Effect in Carbon Black Reinforced Styrene-Butadiene Rubber Composites
by Nicolas Candau, Guillaume Corvec, Noel León-Albiter and Miguel Mudarra Lopez
J. Compos. Sci. 2025, 9(8), 393; https://doi.org/10.3390/jcs9080393 - 24 Jul 2025
Viewed by 351
Abstract
This paper investigates the interplay between rubber network damage, carbon black (CB) network damage, heat exchange, and voiding mechanisms in filled Styrene-butadiene rubber (SBR) under cyclic loading. To do so, three carbon black filled SBR composites, SBR5, SBR30 and SBR60 are studied. The [...] Read more.
This paper investigates the interplay between rubber network damage, carbon black (CB) network damage, heat exchange, and voiding mechanisms in filled Styrene-butadiene rubber (SBR) under cyclic loading. To do so, three carbon black filled SBR composites, SBR5, SBR30 and SBR60 are studied. The study aims to quantify molecular damage and its role in inducing reversible or irreversible heat flow and voiding behavior to inform the design of more resilient rubber composites with improved fatigue life and thermal management capabilities. The study effectively demonstrated how increasing carbon black content, particularly in SBR60, leads to a shift from mostly reversible to irreversible and cumulative damage mechanisms during cyclic loading, as evidenced by thermal, volumetric, and electrical resistivity changes. In particular, we identify a critical mechanical energy of 7 MJ.m−3 associated with such transition. These irreversible changes are strongly linked to the damage and re-arrangement of the carbon black filler network, as well as the rubber chains network and the formation/growth of voids, while reversible mechanisms are likely related to rubber chains alignment associated with entropic elasticity. Full article
(This article belongs to the Special Issue Composites: A Sustainable Material Solution, 2nd Edition)
Show Figures

Figure 1

20 pages, 1913 KiB  
Article
Assessment of Sustainable Structural Concrete Made by Composite Waste for the Concrete Industry: An Experimental Study
by Jamal K. Nejem, Mohammad Nadeem Akhtar, Amin H. Almasri and Mohd Salman Rais
J. Compos. Sci. 2025, 9(6), 279; https://doi.org/10.3390/jcs9060279 - 30 May 2025
Viewed by 525
Abstract
Natural sand and high OPC utilization in the concrete industry have affected our environment and caused climate change. This study developed a novel methodology to prepare modified sand by adding (50% R-Sand + 50% M-Sand) to replace 100% natural sand. The two SCMs [...] Read more.
Natural sand and high OPC utilization in the concrete industry have affected our environment and caused climate change. This study developed a novel methodology to prepare modified sand by adding (50% R-Sand + 50% M-Sand) to replace 100% natural sand. The two SCMs (5–20% of FA) and 10% of optimized SF were added to the four newly developed concrete mixes. The developed sustainable design mix concrete achieved the design and target strength after a curing period of 28 days. The findings for flexural strength showed comparable trends. Significant strength improvement was also seen at later curing ages, till 182 days. The water absorption and sulfuric acid attacks of the design mix concrete at the hardened stage were also measured. The analysis reveals that water absorption percentages tend to decline as the curing age progresses. The developed mixes show better resistance against sulfuric acid attacks than the reference mix NAC*. A mass loss of around 5% was discovered, much closer to the published studies. The developed mix 15FASFRSC showed consistent results when the modified sand (50% R-Sand + 50% M-Sand) was combined with the SCMs of (15% FA + 10% SF). Hence, the mix 15FASFRSC is the best sustainable mix for the concrete industry. Full article
(This article belongs to the Special Issue Composites: A Sustainable Material Solution, 2nd Edition)
Show Figures

Figure 1

Back to TopTop