Smart Prussian Blue Analog Decorated with Zinc Oxide Nanohybrid: Fluorescent Sensing and Sustainability of Sunset Yellow in Food and Environment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Reagents
2.2. Preparation of PBA@ZnO Nanohybrid
2.3. Standard Sunset Yellow Solution
2.4. Real Sample Preparation
2.5. Sunblock Skincare Cream
2.6. Calibration Graph Procedure
2.7. Instrumentation
3. Results
3.1. Structural and Morphological Analysis
3.2. Fluorescence Quantum Yield of (PBA@ZnO) Nanohybrid
3.3. Optical Characters of the Synthesized PBA@ZnO Nanohybrid
3.4. Optimization of the Developed Method
3.5. Suggested Interreaction Mechanism of the Proposed Method
3.6. Method’s Validation
3.7. Real Sample Determination of SY
3.8. Comparison Study of the Proposed and the Reported Methods for the Determination of SY
3.9. Evaluations of Sustainability
3.9.1. Whiteness Metric
3.9.2. Greenness Assessment
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sahraei, R.; Farmany, A.; Mortazavi, S. A nanosilver-based spectrophotometry method for sensitive determination of tartrazine in food samples. Food Chem. 2013, 138, 1239–1242. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.; Li, C.; Liu, S.; Liu, Z.; Yang, J.; Tian, J.; Hu, X. A non-diazotization-coupling reaction-based colorimetric determination of nitrite in tap water and milk. Eur. Food Res. Technol. 2014, 238, 889–894. [Google Scholar] [CrossRef]
- Jalali Sarvestani, M.R. A Review on Sunset Yellow Toxicity and its Analytical Methods. J. Chem. Biol. Med. Sci. 2024, 1, 1–7. [Google Scholar]
- Mohiuddin, A. The mysterious domination of food/Drinking water contaminants and adulterants in Bangladesh. PharmaTutor 2019, 7, 42–58. [Google Scholar] [CrossRef]
- Liang, J. Nutritional Toxicology; Springer: Berlin/Heidelberg, Germany, 2022; pp. 167–180. [Google Scholar]
- Zhang, Q.; Wang, X.; Yuan, L.; Yu, L.; Shao, C.; Jia, H.; Lu, S. Nitrogen-doped biomass-derived carbon dots for fluorescence determination of sunset yellow. Anal. Methods 2024, 16, 2063–2070. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Y.; Zhao, X.; Qiao, M.; Zhu, J.; Liu, S.; Yang, J.; Hu, X. Determination of sunset yellow in soft drinks based on fluorescence quenching of carbon dots. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2016, 167, 106–110. [Google Scholar] [CrossRef]
- Agbokponto, J.E.; Kpaibe, A.P.S.; Yemoa, L.A.; Assanhou, A.G.; Ganfon, H.; Gbassi, G.K.; Aké, M. Simultaneous determination by HPLC-UV vis of tartrazine and sunset yellow in soft drinks sold in benin. Am. J. Anal. Chem. 2022, 13, 277–288. [Google Scholar] [CrossRef]
- Chakraborty, A.; Jayaseelan, K. Analytical Quality by Design aided RP-HPLC method for the estimation of Sunset Yellow in commercial food samples employing green ultrasound assisted extraction: Greenness, Blueness and Whiteness evaluation. Green Anal. Chem. 2024, 12, 100183. [Google Scholar] [CrossRef]
- Gosetti, F.; Gianotti, V.; Polati, S.; Gennaro, M.C. HPLC-MS degradation study of E110 Sunset Yellow FCF in a commercial beverage. J. Chromatogr. A 2005, 1090, 107–115. [Google Scholar] [CrossRef]
- Zou, T.; He, P.; Yasen, A.; Li, Z. Determination of seven synthetic dyes in animal feeds and meat by high performance liquid chromatography with diode array and tandem mass detectors. Food Chem. 2013, 138, 1742–1748. [Google Scholar] [CrossRef]
- Dinç, E.; Baydan, E.; Kanbur, M.; Onur, F. Spectrophotometric multicomponent determination of sunset yellow, tartrazine and allura red in soft drink powder by double divisor-ratio spectra derivative, inverse least-squares and principal component regression methods. Talanta 2002, 58, 579–594. [Google Scholar] [CrossRef]
- Peña-Gonzalez, A.; García-Beltrán, O.; Nagles, E. Detection of sunset yellow by adsorption voltammetry at glassy carbon electrode modified with chitosan. Int. J. Electrochem. Sci. 2018, 13, 5005–5015. [Google Scholar] [CrossRef]
- Calam, T.T.; Çakıcı, G.T. Optimization of square wave voltammetry parameters by response surface methodology for the determination of Sunset yellow using an electrochemical sensor based on Purpald®. Food Chem. 2023, 404, 134412. [Google Scholar] [CrossRef]
- El Mously, D.A.; Mahmoud, A.M.; Abdel-Raoof, A.M.; Elgazzar, E. Synthesis of prussian blue analogue and its catalytic activity toward reduction of environmentally toxic nitroaromatic pollutants. ACS Omega 2022, 7, 43139–43146. [Google Scholar] [CrossRef] [PubMed]
- Naggar, A.H.; Seaf-Elnasr, T.A.; Thabet, M.; El-Monaem, E.M.A.; Chong, K.F.; Bakr, Z.H.; Alsohaimi, I.H.; Ali, H.M.; El-Nasser, K.S.; Gomaa, H. A hybrid mesoporous composite of SnO2 and MgO for adsorption and photocatalytic degradation of anionic dye from a real industrial effluent water. Environ. Sci. Pollut. Res. 2023, 30, 108247–108262. [Google Scholar] [CrossRef] [PubMed]
- Batakoushy, H.A.; Hafez, H.M.; Soliman, M.M.; Mohamed, T.F.; Ahmed, A.B.; El Hamd, M.A. Isoquinoline-based intrinsic fluorescence assessment of erythropoiesis-stimulating agent, Roxadustat (FG-4592), in tablets: Applications to content uniformity and human plasma evaluation. Luminescence 2024, 39, e4741. [Google Scholar] [CrossRef]
- Nowak, P.M.; Wietecha-Posłuszny, R.; Pawliszyn, J. White Analytical Chemistry: An approach to reconcile the principles of Green Analytical Chemistry and functionality. TRAC Trends Anal. Chem. 2021, 138, 116223. [Google Scholar] [CrossRef]
- Abdel-Lateef, M.A.; Darwish, I.A.; Gomaa, H.; Katamesh, N.S. Design of resonance Rayleigh scattering and spectrofluorimetric methods for the determination of the antihistaminic drug, hydroxyzine, based on its interaction with 2, 4, 5, 7-tetraiodofluorescein: Evaluation of analytical eco-scale and greenness/whiteness algorithms. Luminescence 2024, 39, e4766. [Google Scholar]
- Tobiszewski, M.; Marć, M.; Gałuszka, A.; Namieśnik, J. Green chemistry metrics with special reference to green analytical chemistry. Molecules 2015, 20, 10928–10946. [Google Scholar] [CrossRef]
- Sajid, M.; Płotka-Wasylka, J. Green analytical chemistry metrics: A review. Talanta 2022, 238, 123046. [Google Scholar] [CrossRef]
- Xu, L.; Liu, Y.; Chen, M.; Wu, W.; Qiu, S.; Wu, H.; Zheng, M.; Zhang, X.; Wu, X. Suppressing vacancies and crystal water of sodium manganese iron-based Prussian blue analogue by potassium doping for advanced sodium-ion batteries. Chem. Eng. Sci. 2025, 302, 120848. [Google Scholar] [CrossRef]
- Mosaad, S.; Ibrahim, A.H.; Elesh, E.; El-Damhogi, D.G.; Elgazzar, E. Synthesis of prussian blue analog (Co/TCNi/HCCr) nanoparticles using a facile co-precipitation approach and evaluation of their dielectric characteristics for electronic applications. J. Mater. Sci. Mater. Electron. 2023, 34, 2204. [Google Scholar] [CrossRef]
- Elgazzar, E. Prussian blue analogue cobalt tetracyanonickelate hexacyanochromate decorated by CNTs: Structural, morphological, optical characterization. Mater. Res. Express 2020, 7, 075004. [Google Scholar] [CrossRef]
- Pal, S.; Jana, S.; Singh, D.K.; Ganesan, V.; Azad, U.P.; Prakash, R. Engineered Ni–Fe prussian blue analogue nanocubes and their transformation into nanocages and mixed oxide for applications as bifunctional electrocatalyst. Int. J. Hydrogen Energy 2024, 50, 52–65. [Google Scholar] [CrossRef]
- Zhang, H.; Jiang, Q.; Hadden, J.H.; Xie, F.; Riley, D.J. Pd ion-exchange and ammonia etching of a prussian blue analogue to produce a high-performance water-splitting catalyst. Adv. Funct. Mater. 2021, 31, 2008989. [Google Scholar] [CrossRef]
- Mostafa, W.A.; Elgazzar, E.; Beall, G.W.; Rashed, S.S.; Rashad, E.M. Insecticidal effect of zinc oxide and aluminum oxide nanoparticles synthesized by co-precipitation technique on Culex quinquefasciatus larvae (Diptera: Culicidae). Int. J. Appl. Res. 2018, 4, 290–297. [Google Scholar]
- Hezam, F.A.; Nur, O.; Mustafa, M.A. Synthesis, structural, optical and magnetic properties of NiFe2O4/MWCNTs/ZnO hybrid nanocomposite for solar radiation driven photocatalytic degradation and magnetic separation. Colloids Surf. A Physicochem. Eng. Asp. 2020, 592, 124586. [Google Scholar] [CrossRef]
- Gu, Y.; Lu, Y.; Dai, P.; Cao, X.; Zhou, Y.; Tang, Y.; Fang, Z.; Wu, P. Self-assembled high-entropy Prussian blue analogue nanosheets enabling efficient sodium storage. J. Colloid Interface Sci. 2025, 677, 307–313. [Google Scholar] [CrossRef]
- Wang, J.; Wang, L.; Li, Z.; Xu, L.; Zhang, L.; Bao, K.; Li, T.; Chen, L. Fe-doped phosphide nanosheet array derived from prussian blue analogues for high-efficient electrocatalytic water splitting. Int. J. Hydrogen Energy 2024, 88, 52–61. [Google Scholar] [CrossRef]
- An, X.; Quan, L.; Liu, J.; Tang, Q.; Lan, H.; Liu, H. Mo, Fe-codoped metal phosphide nanosheets derived from Prussian blue analogues for efficient overall water splitting. J. Colloid Interface Sci. 2022, 615, 456–464. [Google Scholar] [CrossRef]
- Yu, M.; Li, Z.; Shi, H.; Lin, S.; Zhang, X.; Mo, F.; Lai, F.; Liang, D. Preparation of graphite carbon/Prussian blue analogue/palladium (GC/PBA/pd) synergistic-effect electrocatalyst with high activity for ethanol oxidation reaction. Int. J. Hydrogen Energy 2022, 47, 6721–6733. [Google Scholar] [CrossRef]
- Elshorbagy, M.; Ramadan, R.; Abdelhady, K. Preparation and characterization of spray-deposited efficient Prussian blue electrochromic thin film. Optik 2017, 129, 130–139. [Google Scholar] [CrossRef]
- Padhan, S.; Wagri, N.K.; Dash, L.; Das, A.; Das, S.R.; Rafighi, M.; Sharma, P. Investigation on Surface Integrity in Hard Turning of AISI 4140 Steel with SPPP-AlTiSiN Coated Carbide Insert under Nano-MQL. Lubricants 2023, 11, 49. [Google Scholar] [CrossRef]
- Moumen, A.; Kaur, N.; Poli, N.; Zappa, D.; Comini, E. One Dimensional ZnO Nanostructures: Growth and Chemical Sensing Performances. Nanomaterials 2020, 10, 1940. [Google Scholar] [CrossRef]
- Rurack, K. Fluorescence quantum yields: Methods of determination and standards. Stand. Qual. Assur. Fluoresc. Meas. I Tech. 2008, 101–145. [Google Scholar] [CrossRef]
- Salman, B.I.; Hassan, A.I.; Al-Harrasi, A.; Ibrahim, A.E.; Saraya, R.E. Copper and nitrogen-doped carbon quantum dots as green nano-probes for fluorimetric determination of delafloxacin; characterization and applications. Anal. Chim. Acta 2024, 1327, 343175. [Google Scholar] [CrossRef]
- Salman, B.I.; Batakoushy, H.A.; Sarya, R.E.; Hassan, A.I.; Al-Harrasi, A.; Ibrahim, A.E. Comprehensive Investigation of Prunus armeniaca for Natural Green Synthesis of Carbon Quantum Dots; Applications as Fluorescent Nano-probes for Ramipril. Talanta 2025, 292, 128014. [Google Scholar] [CrossRef]
- Tanwar, A.S.; Chanu, M.A.; Parui, R.; Barman, D.; Im, Y.-H.; Krishnan Iyer, P. Dynamic quenching mechanism based optical detection of carcinogenic Cr(vi) in water and on economical paper test strips via a conjugated polymer. RSC Appl. Polym. 2024, 2, 196–204. [Google Scholar] [CrossRef]
- Xiao, Y.; Xiao, J.; Zhao, H.; Li, J.; Zhang, G.; Zhang, D.; Guo, X.; Gao, H.; Wang, Y.; Chen, J. Prussian Blue Analogues for Sodium-Ion Battery Cathodes: A Review of Mechanistic Insights, Current Challenges, and Future Pathways. Small 2024, 20, 2401957. [Google Scholar] [CrossRef]
- Rashdan, H.R.M.; Batakoushy, H.A.; Magdy, G.; Morsy, M.; Elzwawy, A. Feasible synthesis and physicochemical features of a luminescent cadmium-metal organic frameworks (Cd-MOFs) composite, and its functionalization as a turn-off sensor towards selective determination of bisphenol A in food, water, and paper products. Microchem. J. 2024, 207, 112125. [Google Scholar] [CrossRef]
- Kumar Panigrahi, S.; Kumar Mishra, A. Inner filter effect in fluorescence spectroscopy: As a problem and as a solution. J. Photochem. Photobiol. C Photochem. Rev. 2019, 41, 100318. [Google Scholar] [CrossRef]
- Branch, S.K. Guidelines from the international conference on harmonisation (ICH). J. Pharm. Biomed. Anal. 2005, 38, 798–805. [Google Scholar] [CrossRef] [PubMed]
- Oymak, T.; Dural, E. Determination of sunset yellow, allura red, and fast green using a novel magnetic nanoadsorbent modified with Elaeagnus angustifolia based on magnetic solid-phase extraction by HPLC. Braz. J. Pharm. Sci. 2022, 58, e20884. [Google Scholar] [CrossRef]
- Hosseini, S.F.; Heidari, T.; Zendegi-Shiraz, A.; Ameri, M. Application of chemometrics based on digital image analysis for simultaneous determination of tartrazine and sunset yellow in food samples. Food Chem. 2025, 470, 142619. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Sun, J.; Yan, F.; Zhang, H.; Ma, R.; Zang, Y.; Guan, S.; Wang, X. Fluorescence sensing performance of carbon dots of functionalization toward sunset yellow. Part. Part. Syst. Charact. 2022, 39, 2100207. [Google Scholar] [CrossRef]
- Nowak, P.M.; Kościelniak, P. What color is your method? Adaptation of the RGB additive color model to analytical method evaluation. Anal. Chem. 2019, 91, 10343–10352. [Google Scholar] [CrossRef]
- Pena-Pereira, F.; Wojnowski, W.; Tobiszewski, M. AGREE—Analytical GREEnness Metric Approach and Software. Anal. Chem. 2020, 92, 10076–10082. [Google Scholar] [CrossRef]
- Wojnowski, W.; Tobiszewski, M.; Pena-Pereira, F.; Psillakis, E. AGREEprep–analytical greenness metric for sample preparation. TrAC Trends Anal. Chem. 2022, 149, 116553. [Google Scholar] [CrossRef]
- Mansour, F.R.; Płotka-Wasylka, J.; Locatelli, M. Modified GAPI (MoGAPI) tool and software for the assessment of method greenness: Case studies and applications. Analytica 2024, 5, 451–457. [Google Scholar] [CrossRef]
- Ibrahim, A.E.; Alamir, S.G.; Maged, K.; Magdy, G.; Salman, B.I.; Al-Harrasi, A. Leveraging Green Chromatography in Quality-by-Design-Driven Study for the Simultaneous Analysis of Essential Single-Pill Antidiabetic Drug Combinations. J. Sep. Sci. 2024, 47, e70063. [Google Scholar] [CrossRef]
Nanohybrid | D (nm) | |||
---|---|---|---|---|
PBA@ZnO | 23.70 | 17.80 | 6.79 | 17.25 |
Parameter | SY |
---|---|
Wavelength, λex/λem (nm) | 360/455 |
Linearity range (ng/mL) | 50–500 |
LOD (ng/mL) | 9.77 |
LOQ (ng/mL) | 29.32 |
Intercept ± SDa (sa) | 140.58 ± 2.84 |
Slope ± SDa (sb) | 0.9616 ± 0.009 |
Correlation coefficient (r) | 0.9998 |
SD of residuals (Sy/x) | 3.66 |
(Intra-day precision) % Recovery ± RSD | (98.74–100.21) ± (0.55–1.15) |
(Inter-day precision) % Recovery ± RSD | (99.15–99.98) ± (0.57–1.22) |
NO. | Added Conc. (ng/mL) | Found Conc. (ng/mL) | % Recovery * ± RSD |
---|---|---|---|
1 | 50 | 50.91 | 101.82 ± 0.44 |
2 | 100 | 100.61 | 100.61 ± 0.67 |
3 | 200 | 197.94 | 98.97 ± 1.20 |
4 | 300 | 297.33 | 99.11 ± 1.07 |
5 | 400 | 405.02 | 101.25 ± 0.76 |
Intra-day precision | 100 | 99.57 | 99.46 ± 0.55 |
200 | 200.43 | 100.21 ± 0.68 | |
300 | 296.22 | 98.74 ± 1.15 | |
Inter-day precision | 100 | 99.98 | 99.98 ± 0.57 |
200 | 198.50 | 99.25 ± 0.67 | |
300 | 297.45 | 99.15 ± 1.22 |
Sample | Added Conc. (ng/mL) | Found Conc. (ng/mL) | % Recovery * ± RSD |
---|---|---|---|
Doritos Snaks | 100 | 100.55 | 100.55 ± 1.20 |
200 | 201.13 | 100.56 ± 0.67 | |
300 | 299.32 | 99.77 ± 1.09 | |
Soft Drink | 100 | 100.76 | 100.76 ± 0.79 |
200 | 200.60 | 100.30 ± 0.90 | |
300 | 299.62 | 99.87 ± 1.42 | |
Skincare Cream | 100 | 100.94 | 100.94 ± 0.71 |
200 | 200.67 | 100.34 ± 0.55 | |
300 | 299.61 | 99.98 ± 0.80 |
No. | Analytical Method | Linearity Range | LOD | Real Sample | Ref. |
---|---|---|---|---|---|
(1) | HPLC | 1–20 µg/mL | 70.0 ng/mL | Mineral water | [44] |
(2) | HPLC | 1–100 µg/mL | 30.0 ng/mL | Soft Drinks | [8] |
(3) | Chemometrics analysis | 2–29 µg/mL | 0.9 µg/mL | Soft Drinks | [45] |
(4) | Fluorescence (CDs-PTD) | 0–180 | 106.8 × 10−9 M | Beverages | [46] |
(5) | HPLC-MS | 1–1000 ng/mL | 2.2 ng/mL | Animal feeds and meat | [11] |
(6) | Fluorimetry: PBA@ZnO nanohybrid | 50–500 ng/mL | 9.8 ng/mL | Food snacks, soft drinks, sunscreen cream | The present Work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Batakoushy, H.A.; Bass, A.K.A.; Gomaa, H.; El Deeb, S.; Ibrahim, A.E. Smart Prussian Blue Analog Decorated with Zinc Oxide Nanohybrid: Fluorescent Sensing and Sustainability of Sunset Yellow in Food and Environment. Biosensors 2025, 15, 263. https://doi.org/10.3390/bios15040263
Batakoushy HA, Bass AKA, Gomaa H, El Deeb S, Ibrahim AE. Smart Prussian Blue Analog Decorated with Zinc Oxide Nanohybrid: Fluorescent Sensing and Sustainability of Sunset Yellow in Food and Environment. Biosensors. 2025; 15(4):263. https://doi.org/10.3390/bios15040263
Chicago/Turabian StyleBatakoushy, Hany A., Amr K. A. Bass, Hassanien Gomaa, Sami El Deeb, and Adel Ehab Ibrahim. 2025. "Smart Prussian Blue Analog Decorated with Zinc Oxide Nanohybrid: Fluorescent Sensing and Sustainability of Sunset Yellow in Food and Environment" Biosensors 15, no. 4: 263. https://doi.org/10.3390/bios15040263
APA StyleBatakoushy, H. A., Bass, A. K. A., Gomaa, H., El Deeb, S., & Ibrahim, A. E. (2025). Smart Prussian Blue Analog Decorated with Zinc Oxide Nanohybrid: Fluorescent Sensing and Sustainability of Sunset Yellow in Food and Environment. Biosensors, 15(4), 263. https://doi.org/10.3390/bios15040263