Comprehensive Investigation of Structural and Photocatalytic Properties of Cobalt and Nickel Co-Doped Magnesium Oxide Nanoparticles
Abstract
1. Introduction
2. Results and Discussion
3. Experimentation
3.1. Materials
3.2. Synthesis of Co0.05NixMg0.95−xO Nanoparticles
3.3. Characterization
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Abid, Z.; Sarwar, Z.; Munir, N.; Safi, S.Z.; Arshad, M. Effluent Treatment in Textile Industry to Achieve SDGs. In Enzymes in Textile Processing: A Climate Changes Mitigation Approach: Textile Industry, Enzymes, and SDGs; Springer: Singapore, 2025; pp. 363–390. [Google Scholar]
- Ejaz, M.; Sharif, M.; Safi, S.Z.; Nawaz, S.; Jamil, S.; Syed, M.A.; Ahmed, W. Microbial Enzymes in Bioremediation of Water Polluted by Textile Industry Effluents. In Enzymes in Textile Processing: A Climate Changes Mitigation Approach: Textile Industry, Enzymes, and SDGs; Springer: Singapore, 2025; pp. 391–417. [Google Scholar]
- Ruan, H.; Guo, L.; Ding, N.; Cui, H.; Lu, Y.; Qiu, Y.; Yao, Y.; Liao, J.; Shen, J. Enhanced recovery of p-Aminophenol from high-salt wastewater via optimized bipolar membrane electrodialysis in a Water-Ethanol system. Sep. Purif. Technol. 2025, 360, 131038. [Google Scholar] [CrossRef]
- Shamshad, J.; Rehman, R.U. Innovative approaches to sustainable wastewater treatment: A comprehensive exploration of conventional and emerging technologies. Environ. Sci. Adv. 2025, 4, 189–222. [Google Scholar] [CrossRef]
- Kanwal, A.; Rehman, R.; Imran, M.; Samin, G.; Jahangir, M.M.; Ali, S. Phytoremediative adsorption methodologies to decontaminate water from dyes and organic pollutants. RSC Adv. 2023, 13, 26455–26474. [Google Scholar] [CrossRef]
- Zhang, J.; Tian, B.; Wang, L.; Xing, M.; Lei, J. Lecture Notes in Chemistry. In Photocatalysis; Springer: Singapore, 2018; pp. 1–17. [Google Scholar]
- AlMohamadi, H.; Awad, S.A.; Sharma, A.K.; Fayzullaev, N.; Távara-Aponte, A.; Chiguala-Contreras, L.; Amari, A.; Rodriguez-Benites, C.; Tahoon, M.A.; Esmaeili, H. Photocatalytic activity of metal-and non-metal-anchored ZnO and TiO2 nanocatalysts for advanced photocatalysis: Comparative study. Catalysts 2024, 14, 420. [Google Scholar] [CrossRef]
- Arif, S.; Javaid, I.; Israr, Z.; Gillani, S.; Anwar, M. Sunlight-driven degradation of water pollutants using pomegranate-synthesized CuO nanoparticles. Mater. Sci. Eng. B 2024, 310, 117749. [Google Scholar] [CrossRef]
- Cheng, C.; Amini, A.; Zhu, C.; Xu, Z.; Song, H.; Wang, N. Enhanced photocatalytic performance of TiO2-ZnO hybrid nanostructures. Sci. Rep. 2014, 4, 4181. [Google Scholar] [CrossRef]
- Balakrishnan, G.; Velavan, R.; Batoo, K.M.; Raslan, E.H. Microstructure, optical and photocatalytic properties of MgO nanoparticles. Results Phys. 2020, 16, 103013. [Google Scholar] [CrossRef]
- Hornak, J. Synthesis, properties, and selected technical applications of magnesium oxide nanoparticles: A review. Int. J. Mol. Sci. 2021, 22, 12752. [Google Scholar] [CrossRef]
- Arif, S.; Nawaz, M.; Siddique, S.; Ayub, R.; Saleem, S. Synthesis, characterization and photocatalytic activity of Mg1− xCuxO nanoparticles for wastewater treatment. Mater. Today Commun. 2022, 33, 104361. [Google Scholar] [CrossRef]
- Rotti, R.B.; Sunitha, D.; Manjunath, R.; Roy, A.; Mayegowda, S.B.; Gnanaprakash, A.; Alghamdi, S.; Almehmadi, M.; Abdulaziz, O.; Allahyani, M. Green synthesis of MgO nanoparticles and its antibacterial properties. Front. Chem. 2023, 11, 1143614. [Google Scholar] [CrossRef]
- Sim, H.T.; Gençaslan, M.; Merdan, M. Synthesis of MgO nanoparticles via the sol-gel method for antibacterial applications, investigation of optical properties and comparison with commercial MgO. Discov. Appl. Sci. 2024, 6, 577. [Google Scholar] [CrossRef]
- Arif, S.; Tahir, J.; Fatima, H.; Anwar, M. Investigation of structural defects and magnetic ordering in Co-doped magnesium oxide nanoparticles. Inorg. Chem. Commun. 2025, 178, 114655. [Google Scholar] [CrossRef]
- Chauhan, D.; Kumar, R.; Thakur, N.; Kumar, K. Exploring transition metal (Co, Cu, and Zn) doped magnesium oxide nanoparticles for their environmental remediation potential. Mater. Sci. Eng. B 2024, 302, 117256. [Google Scholar] [CrossRef]
- El-Shobaky, G.; El-Molla, S.; Ali, A. Catalytic promotion of NiO/MgO system by doping with some transition metal cations. Appl. Catal. A Gen. 2003, 253, 417–425. [Google Scholar] [CrossRef]
- He, T.; Chen, L.; Su, Y.; Lu, Y.; Bao, L.; Chen, G.; Zhang, Q.; Chen, S.; Wu, F. The effects of alkali metal ions with different ionic radii substituting in Li sites on the electrochemical properties of Ni-Rich cathode materials. J. Power Sources 2019, 441, 227195. [Google Scholar] [CrossRef]
- Lim, J.S.; Yam, F.K. Structural parameters of CVD synthesized Ga2O3 nanostructures from X-ray diffraction analysis derived by Scherrer, Williamson-Hall, Size-Strain Plot and Halder-Wagner methods–A comparative study. Phys. B Condens. Matter 2025, 699, 416798. [Google Scholar] [CrossRef]
- Arif, S.; Shahzadi, K.; Sabah, A.; Anwar, M. Antibacterial and solar-driven photocatalytic activities of Co x Sn1− x O2− δ nanoparticles for wastewater treatment. Appl. Phys. A 2024, 130, 208. [Google Scholar] [CrossRef]
- Balzar, D.; Ledbetter, H. Voigt-function modeling in Fourier analysis of size-and strain-broadened X-ray diffraction peaks. Appl. Crystallogr. 1993, 26, 97–103. [Google Scholar] [CrossRef]
- Bodke, M.; Gawai, U.; Patil, A.; Dole, B. Estimation of accurate size, lattice strain using Williamson-Hall models, SSP and TEM of Al doped ZnO nanocrystals. Matériaux Tech. 2018, 106, 602. [Google Scholar] [CrossRef]
- Dave, M.S.; Giri, R.K.; Vaidya, R.D.; Patel, K.R.; Bharucha, S.R.; Solanki, M.B. Unravelling NbSe2 single crystal: First principle insights, optical properties, synthesis and X-ray diffraction profile investigation. Next Mater. 2025, 7, 100361. [Google Scholar] [CrossRef]
- Ditto, A.; Joseph, D.P.; Baby, B.L.; Mohan, D.B. Structural Analysis of Ag Doped SnS Nanorods. In Proceedings of the International Conference on Emerging Multifunctional Materials and Devices for Sustainable Technologies: IEMDST-2024, Hanamkonda, India, 4–5 July 2025; p. 109. [Google Scholar]
- Gueddim, A.; Bouarissa, N.; Villesuzanne, A. Pressure dependence of elastic constants and related parameters for rocksalt MgO. Comput. Mater. Sci. 2010, 48, 490–494. [Google Scholar] [CrossRef]
- Jamal, M.; Asadabadi, S.J.; Ahmad, I.; Aliabad, H.R. Elastic constants of cubic crystals. Comput. Mater. Sci. 2014, 95, 592–599. [Google Scholar] [CrossRef]
- Nath, D.; Singh, F.; Das, R. X-ray diffraction analysis by Williamson-Hall, Halder-Wagner and size-strain plot methods of CdSe nanoparticles-a comparative study. Mater. Chem. Phys. 2020, 239, 122021. [Google Scholar] [CrossRef]
- Obeid, M.M.; Edrees, S.J.; Shukur, M.M. Synthesis and characterization of pure and cobalt doped magnesium oxide nanoparticles: Insight from experimental and theoretical investigation. Superlattices Microstruct. 2018, 122, 124–139. [Google Scholar] [CrossRef]
- Schott, J.A.; Do-Thanh, C.-L.; Shan, W.; Puskar, N.G.; Dai, S.; Mahurin, S.M. FTIR investigation of the interfacial properties and mechanisms of CO2 sorption in porous ionic liquids. Green Chem. Eng. 2021, 2, 392–401. [Google Scholar] [CrossRef]
- Kumar, A.; Mishra, N.K.; Sachan, K.; Ali, M.A.; Gupta, S.S.; Singh, R. Trimetallic oxide nanocomposites of transition metals titanium and vanadium by sol-gel technique: Synthesis, characterization and electronic properties. Mater. Res. Express 2018, 5, 045037. [Google Scholar] [CrossRef]
- Dai, F.; Zhuang, Q.; Huang, G.; Deng, H.; Zhang, X. Infrared spectrum characteristics and quantification of OH groups in coal. ACS Omega 2023, 8, 17064–17076. [Google Scholar] [CrossRef]
- Hanif, A.; Dasgupta, S.; Nanoti, A. Facile synthesis of high-surface-area mesoporous MgO with excellent high-temperature CO2 adsorption potential. Ind. Eng. Chem. Res. 2016, 55, 8070–8078. [Google Scholar] [CrossRef]
- Zviagina, B.B.; McCarty, D.K.; Środoń, J.; Drits, V.A. Interpretation of infrared spectra of dioctahedral smectites in the region of OH-stretching vibrations. Clays Clay Miner. 2004, 52, 399–410. [Google Scholar] [CrossRef]
- Kang, M.; Kumaravel, V. Photocatalytic Hydrogen Evolution; MDPI AG: Basel, Switzerland, 2020. [Google Scholar]
- Shaji, R.P.; Kunjumon, J.; Aleena, P.; Jose, A.K.; Shaiju, S.; Nair, S.S.; Vinitha, G.; Alex, J.; George, M.; Sajan, D. Influence of cobalt doping on the structural and third order nonlinear optical properties of MgO nanostructures. Mater. Sci. Eng. B 2025, 321, 118507. [Google Scholar] [CrossRef]
- Zhang, A.; Liang, Y.; Zhang, H.; Geng, Z.; Zeng, J. Doping regulation in transition metal compounds for electrocatalysis. Chem. Soc. Rev. 2021, 50, 9817–9844. [Google Scholar] [CrossRef]
- Almontasser, A.; Parveen, A. Probing the effect of Ni, Co and Fe doping concentrations on the antibacterial behaviors of MgO nanoparticles. Sci. Rep. 2022, 12, 7922. [Google Scholar] [CrossRef]
- Chandrasekar, M.; Subash, M.; Perumal, V.; Panimalar, S.; Aravindan, S.; Uthrakumar, R.; Inmozhi, C.; Isaev, A.B.; Muniyasamy, S.; Raja, A. Specific charge separation of Sn doped MgO nanoparticles for photocatalytic activity under UV light irradiation. Sep. Purif. Technol. 2022, 294, 121189. [Google Scholar] [CrossRef]
- Gebreaneniya, M.F.; Berhe, G.G.; Teklu, T. Synthesis, Characterization, and Photocatalytic Activity of Cu-Doped MgO Nanoparticles on Degradation of Methyl Orange (MO). Adv. Mater. Sci. Eng. 2024, 2024, 9969064. [Google Scholar] [CrossRef]
- Arif, S.; Fatima, H.; Tahir, J.; Anwar, M. Doped hydroxyapatite photocatalyst for efficient degradation of Methylene blue dye. Inorg. Chem. Commun. 2025, 172, 113684. [Google Scholar] [CrossRef]
- Gatou, M.-A.; Bovali, N.; Lagopati, N.; Pavlatou, E.A. MgO nanoparticles as a promising photocatalyst towards rhodamine B and rhodamine 6G degradation. Molecules 2024, 29, 4299. [Google Scholar] [CrossRef] [PubMed]
- Muhaymin, A.; Mohamed, H.E.A.; Hkiri, K.; Safdar, A.; Azizi, S.; Maaza, M. Green synthesis of magnesium oxide nanoparticles using Hyphaene thebaica extract and their photocatalytic activities. Sci. Rep. 2024, 14, 20135. [Google Scholar] [CrossRef]
- Tahir, H.; Anwer, M.; Khan, S.; Saad, M. Enhancement of adsorption and photocatalytic activity of MgO nanoparticles for the treatment of textile dye using ultrasound assisted process by Response Surface Methodology. Desalination Water Treat. 2024, 319, 100429. [Google Scholar] [CrossRef]
Sample ID | Average Crystallite Size (nm) | Lattice Parameter (A°) | Dislocation Density (nm−2) |
---|---|---|---|
Co0.05Mg0.95O | 14.50 | 4.220 | 0.505 |
Co0.05Ni0.01Mg0.94O | 13.87 | 4.217 | 0.522 |
Co0.05Ni0.03Mg0.92O | 13.85 | 4.215 | 0.562 |
Co0.05Ni0.05Mg0.90O | 12.76 | 4.213 | 0.614 |
Co0.05Ni0.07Mg0.88O | 11.73 | 4.211 | 1.604 |
Sample ID | Modified Scherrer Model | Williamson Hall Model | SSP | |||||||
---|---|---|---|---|---|---|---|---|---|---|
UDM | USDM | UDEDM | ||||||||
D (nm) | ε (10−3) | D (nm) | ε (10−3) | D (nm) | ε (10−3) | D (nm) | ε (10−3) | D (nm) | ε (10−3) | |
Co0.05Mg0.95O | 13.4 | 1.0 | 13.8 | 0.0008 | 13.8 | 0.041 | 13.8 | 0.0046 | 13.8 | 0.01 |
Co0.05Ni0.01Mg0.94O | 12.7 | 0.95 | 12.6 | 0.0017 | 12.6 | 0.07 | 13.8 | 0.0078 | 12.6 | 0.002 |
Co0.05Ni0.03Mg0.92O | 12.5 | 1.0 | 13.8 | 0.0008 | 13.8 | 0.046 | 13.8 | 0.0045 | 10.8 | 0.003 |
Co0.05Ni0.05Mg0.90O | 10.8 | 1.0 | 13.8 | 0.0001 | 13.8 | 0.004 | 13.8 | 0.0002 | 9.39 | 0.004 |
Co0.05Ni0.07Mg0.88O | 10.8 | 0.79 | 13.8 | 0.0026 | 10.6 | 0.07 | 9.9 | 0.0084 | 9.78 | 0.003 |
Sample ID | Rate Constant (min−1) | R2 |
---|---|---|
Co0.05Mg0.95O | 0.0021 | 0.998 |
Co0.05Ni0.01Mg0.94O | 0.0025 | 0.973 |
Co0.05Ni0.03Mg0.92O | 0.0032 | 0.991 |
Co0.05Ni0.05Mg0.90O | 0.0041 | 0.994 |
Co0.05Ni0.07Mg0.88O | 0.0046 | 0.992 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arif, S.; Sarwar, A.; Anwar, M.S. Comprehensive Investigation of Structural and Photocatalytic Properties of Cobalt and Nickel Co-Doped Magnesium Oxide Nanoparticles. Condens. Matter 2025, 10, 41. https://doi.org/10.3390/condmat10030041
Arif S, Sarwar A, Anwar MS. Comprehensive Investigation of Structural and Photocatalytic Properties of Cobalt and Nickel Co-Doped Magnesium Oxide Nanoparticles. Condensed Matter. 2025; 10(3):41. https://doi.org/10.3390/condmat10030041
Chicago/Turabian StyleArif, Shafaq, Amna Sarwar, and M. S. Anwar. 2025. "Comprehensive Investigation of Structural and Photocatalytic Properties of Cobalt and Nickel Co-Doped Magnesium Oxide Nanoparticles" Condensed Matter 10, no. 3: 41. https://doi.org/10.3390/condmat10030041
APA StyleArif, S., Sarwar, A., & Anwar, M. S. (2025). Comprehensive Investigation of Structural and Photocatalytic Properties of Cobalt and Nickel Co-Doped Magnesium Oxide Nanoparticles. Condensed Matter, 10(3), 41. https://doi.org/10.3390/condmat10030041