Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (170)

Search Parameters:
Keywords = cheese alternative

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
30 pages, 1834 KiB  
Article
Development of Innovative Mediterranean-Style Semi-Hard Goat’s Cheese Supplemented with Seaweeds (Palmaria palmata and Ulva sp.) and Its Characterization
by Bruno M. Campos, Bruno S. Moreira-Leite, Abigail Salgado, Edgar Ramalho, Isa Marmelo, Manuel Malfeito-Ferreira, Paulo H. M. de Sousa, Adolfo Henriques, João P. Noronha, Mário S. Diniz and Paulina Mata
Appl. Sci. 2025, 15(15), 8232; https://doi.org/10.3390/app15158232 - 24 Jul 2025
Viewed by 204
Abstract
The main objective of this study was the development of two semi-hard goat cheeses supplemented with Palmaria palmata and Ulva sp. with the aim of developing innovative food products, increasing the concentration of nutrients in these cheeses and familiarizing consumers with seaweed-containing foods. [...] Read more.
The main objective of this study was the development of two semi-hard goat cheeses supplemented with Palmaria palmata and Ulva sp. with the aim of developing innovative food products, increasing the concentration of nutrients in these cheeses and familiarizing consumers with seaweed-containing foods. The impact of seaweed addition was evaluated through physicochemical, microbiological, and organoleptic properties of the semi-hard goat cheeses. Carbohydrate content was relatively low, whereas the total lipid content was relatively high (particularly in semi-hard goat cheese supplemented with seaweeds). Crude protein content presented higher values in semi-hard goat cheese supplemented with Ulva sp. The semi-hard goat cheese supplemented with Ulva sp. shows increased levels of Ca, Fe, Mn, and Zn. Instrumental color and the textural parameters of semi-hard goat’s cheese varied significantly with seaweed addition. Most of the microbiological load complies with the Portuguese (INSA) and the United Kingdom’s (HPA) guidelines for assessing the microbiological safety of ready-to-eat foods placed on the market. Additionally, the Flash Profile scores of semi-hard goat cheeses supplemented with seaweeds highlighted aroma and flavor complexity. Overall, this study confirms the potential of using seaweeds as a viable alternative to produce semi-hard goat cheeses with less pungency or goat milk flavor, making this product more pleasant and appealing to consumers sensitive to these sensory characteristics. Full article
Show Figures

Figure 1

24 pages, 1694 KiB  
Article
Belgian Case Series Identifies Non-Cow Mammalian Milk Allergy as a Rare, Severe, Selective, and Late-Onset Condition
by Sophie Verelst, Robbe Sinnesael, Firoz Taïbi, Sebastian Tuyls, Lieve Coorevits, Christine Breynaert, Dominique Bullens and Rik Schrijvers
Nutrients 2025, 17(15), 2393; https://doi.org/10.3390/nu17152393 - 22 Jul 2025
Viewed by 319
Abstract
Background: Cow’s milk allergy (CMA) is the most common food allergy in children, typically resolving by adolescence. In contrast, the clinical spectrum of allergies to non-cow mammalian milk and their patterns of IgE cross-reactivity are less well documented. Nutritional differences between various [...] Read more.
Background: Cow’s milk allergy (CMA) is the most common food allergy in children, typically resolving by adolescence. In contrast, the clinical spectrum of allergies to non-cow mammalian milk and their patterns of IgE cross-reactivity are less well documented. Nutritional differences between various mammalian milks may also impact dietary management in milk-allergic patients. Objectives: To characterize clinical features, onset age, and IgE cross-reactivity patterns of non-cow mammalian milk allergies in adult patients seen at a tertiary allergy center, and to compare these findings with published cases. Methods: A retrospective analysis of patients included in the “Extended Laboratory Investigation for Rare Causes of Anaphylaxis study” with mammalian milk allergy was performed using clinical history, skin testing, and serum-specific IgE measurements. Cross-reactivity patterns were assessed in selected cases using immunoblotting, specific IgE inhibition, and basophil activation testing, and compared with published reports of non-cow mammalian milk allergy. Results: In our case series of 22 patients with mammalian milk allergy and 10 healthy control subjects, 3 patients were identified with isolated adult-onset non-cow mammalian milk allergy (n = 1 buffalo milk; n = 2 mare milk), confirmed via immunoblotting and basophil activation testing. Streptavidin-based specific IgE measurement for buffalo cheese was positive in the buffalo milk allergic patient. The literature review identified 82 cases of non-cow mammalian milk allergy. These cases typically showed late onset (mean age 8.6 years; range 1–70 years), severe reactions (CoFAR (Consortium for Food Allergy Research) grade 3 or 4 in 66%, and one fatality), and selective sensitization (affecting sheep and/or goat, camel, mare, buffalo, donkey, or combinations thereof in 56, 10, 5, 5, 4, and 2 cases, respectively). Conclusions: Non-cow mammalian milk allergies are rare but generally present later in life with selective IgE cross-reactivity, differing from the broader cross-reactivity observed in CMA. This selectivity may allow for safe dietary alternatives. These findings underscore the need for improved diagnostics and personalized dietary management in this patient population. Full article
Show Figures

Figure 1

15 pages, 993 KiB  
Review
Energy Footprint of Cheese: A Critical Review of the Environmental Impact and Opportunities for Sustainability
by Karina S. Silvério, Daniela Freitas and João M. Dias
Appl. Sci. 2025, 15(14), 8072; https://doi.org/10.3390/app15148072 - 20 Jul 2025
Viewed by 517
Abstract
Cheese production is an ancient practice that is associated with the food and cultural identity of different peoples. There are over 500 cheese types globally, including 207 with protected denomination of origin (PDO) and 70 with protected geographical indication (PGI) status in the [...] Read more.
Cheese production is an ancient practice that is associated with the food and cultural identity of different peoples. There are over 500 cheese types globally, including 207 with protected denomination of origin (PDO) and 70 with protected geographical indication (PGI) status in the European Union (EU). Each cheese has various biochemical compositions, production methods, and maturation environments. This study has provided a critical review of the environmental impacts of cheese production, focusing on energy consumption, greenhouse gas (GHG) emissions, and the integration of renewable energy sources as sustainable strategies for this sector. Based on case studies and life cycle assessment (LCA) methodologies, the analysis revealed significant variability in energy use (3.0 to 70.2 MJ/kg) and GHG emissions (up to 22.13 kg CO2 eq/kg), influenced by factors such as the cheese type, production complexity, system boundaries, and the technological or geographical context. Particular attention was given to heat treatment, refrigeration, and maturation processes, which contribute substantially to the overall energy footprint. The paper also discusses the methodological challenges in LCA studies, including the role of co-product allocation and database limitations. Finally, strategic renewable energy options, such as biogas recovery and solar thermal integration, are discussed as sustainable alternatives to reduce the environmental footprint of the dairy sector and support its sustainability. Full article
(This article belongs to the Section Food Science and Technology)
Show Figures

Figure 1

13 pages, 497 KiB  
Article
Extracts of Hechtia spp. as Novel Coagulants Reduce the Pollutant Load of Whey
by Leopoldo González-Cruz, Miguel Angel Mosqueda-Avalos, María de la Luz Xochilt Negrete-Rodríguez, Eloy Conde-Barajas, Norma Leticia Flores-Martínez and Aurea Bernardino-Nicanor
Sustainability 2025, 17(14), 6579; https://doi.org/10.3390/su17146579 - 18 Jul 2025
Viewed by 291
Abstract
Traditional coagulant calf rennet, which is used in cheese production, is currently facing the problem of an unsustainable source. In addition, the production of cheese with calf rennet produces whey with high biochemical (BOD) and chemical oxygen demand (COD) values. For these reasons, [...] Read more.
Traditional coagulant calf rennet, which is used in cheese production, is currently facing the problem of an unsustainable source. In addition, the production of cheese with calf rennet produces whey with high biochemical (BOD) and chemical oxygen demand (COD) values. For these reasons, plant extracts have been investigated as sustainable sources of coagulants for milk. However, there are few reports on the changes in the COD and BOD of whey when plant extracts are used. For this reason, this study investigated the potential of extracts from two Hechtia species native to Mexico (H. glomerata and H. podantha) as sustainable milk coagulants for cheese production, with the aim of simultaneously reducing the pollutant load of residual whey. The milk coagulation efficiency of the extracts of the two Hechtia species was investigated, and in addition, their effects on cheese texture and color, and the composition of the residual whey, including BOD and COD, were evaluated. Most extracts of H. podantha showed adequate milk coagulation and yielded fresh cheese with textural properties comparable to those of cheese produced with conventional calf rennet. A significant reduction in carbohydrate content was achieved when H. podantha extracts were used. As a result, a significant decrease in the BOD and COD values was achieved. In some cases, a reduction of up to 1.78 times compared with those of the control was achieved. The results of this study show that H. podantha is a promising source of natural coagulants for sustainable cheese production, offering a dual benefit by providing an alternative to conventional rennet and reducing the environmental impact of whey. Full article
Show Figures

Figure 1

26 pages, 1254 KiB  
Article
Cheese Analogues, an Alternative to Dietary Restrictions and Choices: The Current Scenario and Future
by Ingrid Leal, Paulo Correia, Marina Lima, Bruna Machado and Carolina de Souza
Foods 2025, 14(14), 2522; https://doi.org/10.3390/foods14142522 - 18 Jul 2025
Viewed by 468
Abstract
The increasing demand for plant-based cheese alternatives reflects a shift toward healthier and more sustainable food choices. This study aimed to map technological trends, formulation strategies, and major challenges in the development of plant-based cheese analogues through a systematic review of the scientific [...] Read more.
The increasing demand for plant-based cheese alternatives reflects a shift toward healthier and more sustainable food choices. This study aimed to map technological trends, formulation strategies, and major challenges in the development of plant-based cheese analogues through a systematic review of the scientific literature and patents. Following the PRISMA protocol, searches were conducted in ScienceDirect and Lens.org between December 2024 and January 2025 using keywords related to cheese analogues. A total of 1553 scientific articles and 155 patents were initially retrieved. After applying inclusion and exclusion criteria, 88 articles and 66 patents were selected for detailed analysis. The results show a growing interest in this field since 2020, peaking in 2024. Data from 2025 may be limited due to the search period. Keywords were clustered into three main areas: (1) Formulation and Composition, (2) Texture and Processing, and (3) Food Safety and Consumer Acceptance. The United States leads in patent registrations (59). Valio Company and Cargill were the most active assignees, with nine and eight patents, respectively. This study highlights the importance of integrating food science and technology to improve the quality, sensory attributes, and market competitiveness of plant-based cheese analogues compared to traditional dairy products. Full article
Show Figures

Figure 1

17 pages, 7114 KiB  
Article
Synthetic Feed Attractants in European Seabass (Dicentrarchus labrax) Culture: Effects on Growth, Health, and Appetite Stimulation
by Federico Conti, Matteo Zarantoniello, Nico Cattaneo, Matteo Antonucci, Elena Antonia Belfiore and Ike Olivotto
Animals 2025, 15(14), 2060; https://doi.org/10.3390/ani15142060 - 12 Jul 2025
Viewed by 584
Abstract
Synthetic flavors from standardized processes have recently emerged as a promising and sustainable alternative to traditional feed attractants. In this study, two attractive (F25, cheese; F35, caramel) and one repulsive (F32-, coconut) synthetic flavors were individually added (1% w/w) to [...] Read more.
Synthetic flavors from standardized processes have recently emerged as a promising and sustainable alternative to traditional feed attractants. In this study, two attractive (F25, cheese; F35, caramel) and one repulsive (F32-, coconut) synthetic flavors were individually added (1% w/w) to a commercial diet for European seabass (Dicentrarchus labrax) and tested over a 90-day feeding trial (30 fish per tank, in triplicate; initial weight 72.48 ± 8.04 g) to assess their impact on fish growth performance, welfare, and the modulation of brain appetite and monoaminergic pathways. None of the tested flavors negatively affected overall fish health. The F35 flavor enhanced feed intake (90.1 ± 5.6%) and growth (SGR 2.2 ± 0.2%) and positively influenced appetite-related and monoaminergic signals, thus being more effective than the F25 one (80.4 ± 3.2 and 1.6 ± 0.1%, respectively). A weekly feeding rotation between F35 and F25 (ROT group) resulted in suboptimal outcomes compared to F35 administration alone. The F32- flavor was not clearly perceived as strongly aversive by seabass and did not impair zootechnical performance. These findings highlight the potential of attractive synthetic flavors to improve diet palatability in a carnivorous species of commercial value, offering novel insights for more sustainable and cost-effective aquaculture feeding strategies. Full article
(This article belongs to the Special Issue Recent Advances in Nutritional Ingredients for Aquaculture)
Show Figures

Figure 1

24 pages, 3328 KiB  
Article
Biocontrol of Cheese Spoilage Moulds Using Native Yeasts
by Catalina M. Cabañas, Alejandro Hernández León, Santiago Ruiz-Moyano, Almudena V. Merchán, José Manuel Martínez Torres and Alberto Martín
Foods 2025, 14(14), 2446; https://doi.org/10.3390/foods14142446 - 11 Jul 2025
Viewed by 407
Abstract
Biocontrol is one of the most promising alternatives to chemical preservatives for food preservation. This study investigated the biocontrol potential of yeasts isolated from raw milk cheese against spoilage moulds. Eighty-four native yeast strains were screened for antagonistic activity against Penicillium commune, [...] Read more.
Biocontrol is one of the most promising alternatives to chemical preservatives for food preservation. This study investigated the biocontrol potential of yeasts isolated from raw milk cheese against spoilage moulds. Eighty-four native yeast strains were screened for antagonistic activity against Penicillium commune, Fusarium verticillioides, and Mucor plumbeus/racemosus via confrontation using a milk-based culture medium. Fifteen strains from the species Pichia jadinii, Kluyveromyces lactis, Kluyveromyces marxianus, and Geotrichum candidum exhibited significant antagonistic activity (inhibition zone > 2 mm) against M. plumbeus/racemosus and F. verticillioides. The modelling of the impact of ripening conditions revealed that temperature was the primary factor influencing yeast antagonism. In addition, notable variability at both species and strain levels was found. The antagonist activity was associated with different mechanisms depending on the species and strains. K. lactis stood out for its proteolytic activity and competition for iron and manganese. Additionally, two strains of this species (KL890 and KL904) were found to produce volatile organic compounds with antifungal properties (phenylethyl alcohol and 1-butanol-3-methyl propionate). G. candidum GC663 exhibited strong competition for space, as well as the ability to parasitise hyphae linked to its pectinase and β-glucanase activity. The latter enzymatic activity was detected in all P. jadinii strains, with P. jadinii PJ433 standing out due to its proteolytic activity. In a cheese matrix, the efficacy of eight yeast strains against three target moulds was assessed, highlighting the potential of G. candidum GC663 and P. jadinii PJ433 as biocontrol agents, exhibiting high and moderate efficacy, respectively, in controlling the growth of F. verticillioides and M. plumbeus/racemosus. Nonetheless, further research is necessary to elucidate their full spectrum of antifungal mechanisms and to validate their performance under industrial-scale conditions, including their impact on cheese quality. Full article
(This article belongs to the Section Food Microbiology)
Show Figures

Figure 1

12 pages, 640 KiB  
Article
Mid-Infrared Spectroscopy for Predicting Goat Milk Coagulation Properties
by Arianna Goi, Silvia Magro, Luigi Lanni, Carlo Boselli and Massimo De Marchi
Foods 2025, 14(13), 2403; https://doi.org/10.3390/foods14132403 - 7 Jul 2025
Viewed by 456
Abstract
The assessment of milk coagulation properties (MCPs) is crucial for enhancing goat cheese production and quality. In this study, 501 bulk goat milk samples were collected from various farms to evaluate the MCPs. Traditionally, cheesemaking aptitude is evaluated using lactodynamographic analysis, a reliable [...] Read more.
The assessment of milk coagulation properties (MCPs) is crucial for enhancing goat cheese production and quality. In this study, 501 bulk goat milk samples were collected from various farms to evaluate the MCPs. Traditionally, cheesemaking aptitude is evaluated using lactodynamographic analysis, a reliable but time-consuming laboratory method. Mid-infrared spectroscopy (MIRS) offers a promising alternative for the large-scale prediction of goat milk’s technological traits. Reference MCP measurements were paired with mid-infrared spectra, and prediction models were developed using partial least squares regression, with accuracy evaluated through cross- and external validation. The ability of MIRS to classify milk samples by coagulation aptitude was evaluated using partial least squares discriminant analysis. Only the model for rennet coagulation time obtained sufficient accuracy to be applied for screening (R2CrV = 0.68; R2Ext = 0.66; RPD = 2.05). Lower performance was observed for curd-firming time (R2CrV = 0.33; R2Ext = 0.27; RPD = 1.42) and curd firmness (R2CrV = 0.55; R2Ext = 0.43; RPD = 1.35). Classification of high coagulation aptitude achieved balanced accuracy values of 0.81 (calibration) and 0.74 (validation). With further model refinement and larger calibration datasets, MIRS may become a resource for the dairy-goat sector to monitor and improve milk suitability for cheesemaking. Full article
(This article belongs to the Section Dairy)
Show Figures

Figure 1

17 pages, 1998 KiB  
Article
Property Changes in Production of Hybrid Fresh Cheese Rich in Polyunsaturated Fatty Acids from Sacha Inchi (Plukenetia volubilis) Oil
by Hoang Giang, Nguyen Chinh Nghia, Chu Ky Son, Ho Phu Ha, Bui Quang Minh, Le Quang Huong, Le Tuan Phuc, Hoang Quoc Tuan, Vu Hong Son and Vu Thu Trang
Processes 2025, 13(7), 1978; https://doi.org/10.3390/pr13071978 - 23 Jun 2025
Viewed by 651
Abstract
Milk fat plays an important role in the flavor and texture of cheese. However, it contains high amounts of saturated fat and cholesterol, which have recently been reported to be unsuitable for maintaining good health. The aim of this study was to evaluate [...] Read more.
Milk fat plays an important role in the flavor and texture of cheese. However, it contains high amounts of saturated fat and cholesterol, which have recently been reported to be unsuitable for maintaining good health. The aim of this study was to evaluate the effects of milk fat’s replacement with sacha inchi (Plukenetia volubilis) oil in fresh cheese processing on the coagulation properties, nutritional value, and sensory properties, aiming to obtain a hybrid fresh cheese rich in polyunsaturated fatty acids (PUFAs). Milk fat (3.8% in standardized milk) was partly replaced with Vietnamese sacha inchi oil at 20, 40, 60, and 80%. The coagulation time, curd formation, and cheese yield showed no significant differences among the treatments (p > 0.05), suggesting that sacha inchi oil did not adversely affect curd formation. The cholesterol levels decreased substantially, from 8.27 ± 0.53 mg/g in control samples to 2.63 ± 0.63 mg/g at 80% fat replacement. An increase in essential fatty acids in the fresh cheese was also found with an increase in the use of sacha inchi oil to replace milk fat, with the oleic acid concentration (OA, C18:1, cis ω-9) rising from 7.88 ± 0.36% to 23.44 ± 0.13% and the linoleic acid concentration (LA, C18:2, cis ω-6) from 6.44 ± 0.68% to 41.75 ± 2.50% at the highest substitution level. From a nutritional perspective, the replacement of milk fat with sacha inchi oil did not affect the macronutritional values (fat, protein), but it reduced the cholesterol levels and enhanced the overall nutritional value of the fresh cheese with increasing essential fatty acids. The milk fat alternative of sacha inchi oil for cheese processing contributed to a richer and creamier sensory experience of the final products, but no significant differences in the overall liking were found regarding the acceptance of customers. Thus, replacement with sacha inchi oil in PUFA cheese processing is a promising method to improve the nutritional value and sensory quality of fresh cheese. Full article
(This article belongs to the Section Food Process Engineering)
Show Figures

Figure 1

34 pages, 1036 KiB  
Review
Conventional and Innovative Methods for Reducing the Incidence of Listeria monocytogenes in Milk and Dairy Products
by Adriana Dabija, Cristina Ștefania Afloarei, Dadiana Dabija and Ancuța Chetrariu
Appl. Sci. 2025, 15(12), 6580; https://doi.org/10.3390/app15126580 - 11 Jun 2025
Viewed by 857
Abstract
Listeriosis, the disease caused by the bacterium L. monocytogenes, can take invasive forms, with severe complications such as septicemia or meningitis, mainly affecting vulnerable people, such as pregnant women, the elderly, and immunocompromised people. The main transmission is through the consumption of [...] Read more.
Listeriosis, the disease caused by the bacterium L. monocytogenes, can take invasive forms, with severe complications such as septicemia or meningitis, mainly affecting vulnerable people, such as pregnant women, the elderly, and immunocompromised people. The main transmission is through the consumption of contaminated food, and unpasteurized dairy products are common sources of infection. Due to the high mortality and the difficulty in eliminating the bacterium from the production environment, rigorous hygiene and control measures are essential to prevent the spread of Listeria in the food chain, and research on biofilm formation and bacterial resistance is vital to improve food safety. Dairy products, raw milk, and soft cheeses are among the most vulnerable to contamination with L. monocytogenes, especially due to pH values and low-temperature storage conditions. This paper presents a synthesis of the specialized literature on methods to reduce the incidence of L. monocytogenes in milk and dairy products. Conventional strategies, such as pasteurization and the use of chemical disinfectants, are effective but can affect food quality. Specialists have turned their attention to innovative and safer approaches, such as biocontrol and the use of nonthermal methods, such as pulsed electric fields, irradiation, and nanotechnology. Barrier technology, which combines several methods, has demonstrated superior efficiency in combating the bacterium without compromising product quality. Additionally, lactic acid bacteria (LAB) and bacteriocins are examples of biopreservation techniques that provide a future option while preserving food safety. Natural preservatives, especially those derived from plants and fruits, are promising alternatives to synthetic compounds. Future solutions should focus on developing commercial formulations that optimize these properties and meet consumer demands for healthy, environmentally friendly, and clean-label products. Full article
Show Figures

Figure 1

16 pages, 390 KiB  
Article
Impact of Balkan and Banat Donkey Milk on the Technological Process, Microbiological Quality, Composition, and Consumer Acceptability of Rolled Cheese
by Suzana Vidaković Knežević, Jelena Vranešević, Nenad Popov, Slobodan Knežević, Dragana Ljubojević Pelić and Milica Živkov Baloš
Foods 2025, 14(12), 2041; https://doi.org/10.3390/foods14122041 - 10 Jun 2025
Viewed by 706
Abstract
Donkey milk is well known for its beneficial properties for human health, making it a valuable ingredient in the production of value-added cheese. Rolled cheese, a type of pasta filata cheese, is traditionally produced in the northern part of Serbia. In this study, [...] Read more.
Donkey milk is well known for its beneficial properties for human health, making it a valuable ingredient in the production of value-added cheese. Rolled cheese, a type of pasta filata cheese, is traditionally produced in the northern part of Serbia. In this study, we produced rolled cheese by adding a certain amount of donkey’s milk from the Balkan and Banat breeds to cow’s milk. The rolled cheese samples were analyzed for their microbiological quality, chemical composition, content of essential and trace elements, as well as sensory characteristics. Adding 10% and 20% donkey’s milk had no effect on the microbiological quality or hedonic scale of rolled cheeses compared with rolled cheese made from raw cow’s milk. However, the addition of donkey’s milk partially affected the chemical composition and mineral profile of the cheeses. The fat, fat in dry matter, calcium contents, and the ratio of calcium and phosphorus significantly (p < 0.05) decreased with the addition of donkey’s milk, while the ash, salt, sodium, and potassium contents significantly (p < 0.05) increased. The assessors successfully distinguished the rolled cheeses containing donkey’s milk from those made with cow’s milk, encouraging the future production of value-added cheese. Full article
(This article belongs to the Section Dairy)
Show Figures

Figure 1

12 pages, 579 KiB  
Article
Autonomous Farmers Use of Complementary and Alternative Veterinary Medicines in Pasture-Based Dairy Goat Systems
by Jacques Cabaret and Vincent Lictevout
Animals 2025, 15(11), 1627; https://doi.org/10.3390/ani15111627 - 31 May 2025
Viewed by 434
Abstract
Consumers expect ruminants to graze outdoors and flocks to be of a reasonable size. Dairy goats can be kept outdoors (natural) or indoors. There are few pasture-grazed-system goat farms. The farms we studied in the centre-west of France were either organic or conventional, [...] Read more.
Consumers expect ruminants to graze outdoors and flocks to be of a reasonable size. Dairy goats can be kept outdoors (natural) or indoors. There are few pasture-grazed-system goat farms. The farms we studied in the centre-west of France were either organic or conventional, and all used pastures and tended to meet consumer demand for naturalness. We obtained information through semi-directed interviews. Dairy goats are susceptible to gastrointestinal infections when using pastures and this was one of the main health problems mentioned by organic farmers. There are a very limited number of medicines available for lactating dairy goats and farmers can use complementary and alternative veterinary medicine (CAVM), where they are completely autonomous in their choice. The use of CAVM has also been driven by organic labels and protected designation of origin (PDO) regulations for goat cheese. Homeopathy, phytotherapy, and aromatherapy were used for various health problems on almost all the farms surveyed. Herd size and farm area were negatively associated with the complex use of CAVM, possibly due to the workload on larger farms. Some CAVMs were used more in relation to the management of farms: aromatherapy in organic farms and homeopathy in cheese-making farms. The farmers with higher levels of education were more likely to employ phytotherapy. The farmers were autonomous in the choice of CAVM and did not rely on the advice of veterinarians. Full article
(This article belongs to the Section Veterinary Clinical Studies)
Show Figures

Figure 1

16 pages, 2657 KiB  
Article
Evaluation of Growth Performance, Biochemical Composition, and Polyhydroxyalkanoates Production of Four Cyanobacterial Species Grown in Cheese Whey
by Eirini Sventzouri, Konstantinos Pispas, Georgia G. Kournoutou, Maria Geroulia, Eleni Giakoumatou, Sameh Samir Ali and Michael Kornaros
Microorganisms 2025, 13(5), 1157; https://doi.org/10.3390/microorganisms13051157 - 19 May 2025
Viewed by 657
Abstract
Large-scale cultivation of cyanobacteria is often limited by the high cost of synthetic culture medium and the environmental impact of nutrient consumption. Cheese whey, a major agro-industrial waste product, is rich in organic and inorganic nutrients, making it a promising low-cost alternative for [...] Read more.
Large-scale cultivation of cyanobacteria is often limited by the high cost of synthetic culture medium and the environmental impact of nutrient consumption. Cheese whey, a major agro-industrial waste product, is rich in organic and inorganic nutrients, making it a promising low-cost alternative for microbial growth while addressing waste bioremediation. This study investigates the growth performance and the biochemical composition of four different cyanobacterial species (Phormidium sp., Synechocystis sp., Chlorogloeopsis fritschii, and Arthrospira platensis), cultivated in cheese whey (CW). Pretreated CW was used at 20% and 100% v/v concentrations. All species grew satisfactorily in both concentrations, reaching biomass above 4 g L−1 (in 100% v/v CW) and 2 g L−1 (in 20% v/v CW). The highest μmax value (0.28 ± 0.02 d−1) was presented by Synechocystis sp. grown in 20% CW. Waste bioremediation of both 20 and 100% v/v CW demonstrated effective nutrient removal, with COD removal exceeding 50% for most species, while total nitrogen (TN) and total phosphorus (TP) removals reached up to 33% and 32%, respectively. Biochemical composition analysis revealed high carbohydrate and protein content, while lipid content remained below 15% in all cases. Interestingly, C. fritschii accumulated 11% w/w polyhydroxyalkanoates (PHAs) during the last day of cultivation in 20% v/v CW. These findings highlight the potential of C. fritschii as a valuable candidate for integration into bioprocesses aimed at sustainable bioplastic production. Its ability to synthesize PHAs from agro-industrial waste not only enhances the economic viability of the process but also aligns with circular economy principles. This study is a primary step towards establishing a biorefinery concept for the cultivation of cyanobacterial species in cheese whey-based wastewater streams. Full article
(This article belongs to the Special Issue Biotechnology for Environmental Remediation)
Show Figures

Figure 1

36 pages, 2328 KiB  
Review
Antimicrobial Potential of Hyssopus officinalis L. and Agastache foeniculum (Pursh) Kuntze Essential Oils for Food Applications: A Review of Their Chemical Compositions and Antimicrobial Efficacy
by Alina L. Nistor, Carmen R. Pop, Laura Mitrea, Giorgiana M. Cătunescu, Rodica Vârban, Florin D. Lipșa, Crina Claudia Rusu and Ancuța M. Rotar
Appl. Sci. 2025, 15(9), 4772; https://doi.org/10.3390/app15094772 - 25 Apr 2025
Viewed by 483
Abstract
The rising demand for natural and safe products has increased interest in essential oils (EOs) as alternatives to synthetic preservatives. EOs could be encapsulated in active packaging or incorporated in nano-emulsion systems and help extend food shelf life by inhibiting the growth of [...] Read more.
The rising demand for natural and safe products has increased interest in essential oils (EOs) as alternatives to synthetic preservatives. EOs could be encapsulated in active packaging or incorporated in nano-emulsion systems and help extend food shelf life by inhibiting the growth of pathogens. H. officinalis and Agastache foeniculum (Lamiaceae) are widely used in food and beverages. This review aims to explores their potential food applications, focusing on their antimicrobial activities, chemical compositions, and toxicity. H. officinalis EO mainly consists of oxygenated monoterpenes (27.32–92.25%), with 1,8-cineole, isopinocamphone, and pinocamphone as key compounds. It also contains monoterpene hydrocarbons (3.84–67.24%), including β-pinene, β-phellandrene, and β-ocimene. A. foeniculum EO is rich in phenylpropanoids (22.39–84.67%), primarily estragole (3.2–94.89%) and methyl eugenol, along with oxygenated monoterpenes (0.08–54.51%), mainly menthone (31.58–34.3%). H. officinalis EO exhibited antimicrobial activity against Escherichia coli, Staphylococcus aureus, Bacillus cereus, Salmonella Typhimurium, Pseudomonas aeruginosa, and various fungi, including Penicillium, Cladosporium, Candida, and Aspergillus species. A. foeniculum EO seemed to be effective against fungi and Gram-positive bacteria but showed lower activity against Gram-negative bacteria. H. officinalis EO showed no mutagenic or genotoxic effects in the available studies, while the toxicity of A. foeniculum EO remains unstudied. H. officinalis EO exhibited potential preservative properties when added to ground meat or used as coating for cheese and shrimp. The results of this study provide critical insights into the possibilities of integrating these EOs into food preservation strategies and their potential contributions to enhancing food safety and sustainability. Full article
(This article belongs to the Special Issue Novel Analyses of Hazards and Risks in Food Safety)
Show Figures

Figure 1

36 pages, 1745 KiB  
Review
The Role of Whey in Functional Microorganism Growth and Metabolite Generation: A Biotechnological Perspective
by Iuliu Gabriel Malos, Andra-Ionela Ghizdareanu, Livia Vidu, Catalin Bogdan Matei and Diana Pasarin
Foods 2025, 14(9), 1488; https://doi.org/10.3390/foods14091488 - 24 Apr 2025
Cited by 5 | Viewed by 1940
Abstract
The valorization of cheese whey, a rich by-product of the dairy industry that is rich in lactose (approx. 70%), proteins (14%), and minerals (9%), represents a promising approach for microbial fermentation. With global whey production exceeding 200 million tons annually, the high biochemical [...] Read more.
The valorization of cheese whey, a rich by-product of the dairy industry that is rich in lactose (approx. 70%), proteins (14%), and minerals (9%), represents a promising approach for microbial fermentation. With global whey production exceeding 200 million tons annually, the high biochemical oxygen demand underlines the important need for sustainable processing alternatives. This review explores the biotechnological potential of whey as a fermentation medium by examining its chemical composition, microbial interactions, and ability to support the synthesis of valuable metabolites. Functional microorganisms such as lactic acid bacteria (Lactobacillus helveticus, L. acidophilus), yeasts (Kluyveromyces marxianus), actinobacteria, and filamentous fungi (Aspergillus oryzae) have demonstrated the ability to efficiently convert whey into a wide range of bioactive compounds, including organic acids, exopolysaccharides (EPSs), bacteriocins, enzymes, and peptides. To enhance microbial growth and metabolite production, whey fermentation can be carried out using various techniques, including batch, fed-batch, continuous and immobilized cell fermentation, and membrane bioreactors. These bioprocessing methods improve substrate utilization and metabolite yields, contributing to the efficient utilization of whey. These bioactive compounds have diverse applications in food, pharmaceuticals, agriculture, and biofuels and strengthen the role of whey as a sustainable biotechnological resource. Patents and clinical studies confirm the diverse bioactivities of whey-derived metabolites and their industrial potential. Whey peptides provide antihypertensive, antioxidant, immunomodulatory, and antimicrobial benefits, while bacteriocins and EPSs act as natural preservatives in foods and pharmaceuticals. Also, organic acids such as lactic acid and propionic acid act as biopreservatives that improve food safety and provide health-promoting formulations. These results emphasize whey’s significant industrial relevance as a sustainable, cost-efficient substrate for the production of high-quality bioactive compounds in the food, pharmaceutical, agricultural, and bioenergy sectors. Full article
Show Figures

Figure 1

Back to TopTop