Biocontrol of Cheese Spoilage Moulds Using Native Yeasts
Abstract
1. Introduction
2. Materials and Methods
2.1. Yeast and Mould Strains
2.2. Microorganism Culture and Inoculum Preparation
2.3. Screening of Antagonistic Activity
2.4. Modelling the Impact of Cheese Ripening Conditions on the Antifungal Activity
2.5. Characterisation of the Mechanism of Antagonist Activity
2.5.1. In Vitro Biofilm Formation
2.5.2. Production of Antifungal Extracellular Substances: Antibiosis and Lytic Enzyme
Antibiosis
Production of Lytic Enzymes
2.5.3. Parasitism of Hyphae
2.5.4. Effect of Iron and Manganese Concentration on the Antagonist Activity
2.5.5. Production of Antifungal Volatile Organic Compounds (VOCs)
2.5.6. Effect of Spore Germination on Spoilage Moulds
2.6. Evaluation of Antagonist Activity In Vivo
2.7. Statistical Analysis
3. Results
3.1. Mould Identification and Screening of Yeast Antagonist Activity
3.2. Impact of Cheese Ripening Conditions on the Antagonist Activity
3.3. Characterisation of the Mechanism of Antagonist Activity
3.4. Antagonist Activity In Vivo on Cheese Wedge
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Walsh, A.M.; Macori, G.; Kilcawley, K.N.; Cotter, P.D. Meta-analysis of cheese microbiomes highlights contributions to multiple aspects of quality. Nat. Food 2020, 1, 500–510. [Google Scholar] [CrossRef] [PubMed]
- Kure, C.F.; Skaar, I. The fungal problem in cheese industry. Curr. Opin. Food Sci. 2019, 29, 14–19. [Google Scholar] [CrossRef]
- Garnier, L.; Valence, F.; Mounier, J. Diversity and control of spoilage fungi in dairy products: An update. Microorganisms 2017, 5, 42. [Google Scholar] [CrossRef] [PubMed]
- Ledenbach, L.H.; Marshall, R.T. Microbiological spoilage of dairy products. In Compendium of the Microbiological Spoilage of Foods and Beverages; Springer: New York, NY, USA, 2009; pp. 41–67. [Google Scholar] [CrossRef]
- Hymery, N.; Vasseur, V.; Coton, M.; Mounier, J.; Jany, J.L.; Barbier, G.; Coton, E. Filamentous fungi and mycotoxins in cheese: A review. Compr. Rev. Food Sci. Food Saf. 2014, 13, 437–456. [Google Scholar] [CrossRef]
- Shi, C.; Maktabdar, M. Lactic acid bacteria as biopreservation against spoilage moulds in dairy products—A review. Front. Microbiol. 2022, 12, 819684. [Google Scholar] [CrossRef]
- Finol, M.L.; Marth, E.H.; Lindsay, R.C. Depletion of sorbate from different media during growth of Penicillium species. J. Food Prot. 1982, 45, 398–405. [Google Scholar] [CrossRef]
- Sofos, J.N.; Busta, F.F. Sorbic acid and sorbates. In Antimicrobials in Foods; Davidson, P.M., Branen, A.L., Eds.; Marcel Dekker: New York, NY, USA, 1993; pp. 49–94. [Google Scholar] [CrossRef]
- Marth, E.H.; Capp, C.M.; Hasenzahl, L.; Jackson, H.W.; Hussong, R.V. Degradation of potassium sorbate by Penicillium species. J. Dairy Sci. 1966, 49, 1197–1205. [Google Scholar] [CrossRef]
- Suhr, K.I.; Nielsen, P.V. Effect of weak acid preservatives on growth of bakery product spoilage fungi at different water activities and pH values. Int. J. Food Microbiol. 2004, 95, 67–78. [Google Scholar] [CrossRef]
- Davidson, P.M.; Doan, C. Natamycin. In Antimicrobials in Food; CRC Press: Boca Raton, FL, USA, 2020; pp. 339–356. [Google Scholar] [CrossRef]
- O’Sullivan, K. Recombinant Expression and Purification of Natamycinase: A Novel Serine Esterase Capable of Degrading the Polyene Antibiotic Natamycin. Master’s Thesis, Utrecht University, Utrecht, The Netherlands, 2024. [Google Scholar] [CrossRef]
- Maruyama, S.; Streletskaya, N.A.; Lim, J. Clean label: Why this ingredient but not that one? Food Qual. Prefer. 2021, 87, 104062. [Google Scholar] [CrossRef]
- Salas, M.L.; Mounier, J.; Maillard, M.B.; Valence, F.; Coton, E.; Thierry, A. Identification and quantification of natural compounds produced by antifungal bioprotective cultures in dairy products. Food Chem. 2019, 301, 125260. [Google Scholar] [CrossRef]
- Garnier, L.; Penland, M.; Thierry, A.; Maillard, M.B.; Jardin, J.; Coton, M.; Mounier, J. Antifungal activity of fermented dairy ingredients: Identification of antifungal compounds. Int. J. Food Microbiol. 2020, 322, 108574. [Google Scholar] [CrossRef]
- Liang, N.; Zhao, Z.; Curtis, J.M.; Gänzle, M.G. Antifungal cultures and metabolites of lactic acid bacteria for use in dairy fermentations. Int. J. Food Microbiol. 2022, 383, 109938. [Google Scholar] [CrossRef]
- Souza, L.V.; Martins, E.; Moreira, I.M.F.B.; De Carvalho, A.F. Strategies for the development of bioprotective cultures in food preservation. Int. J. Microbiol. 2022, 2022, 6264170. [Google Scholar] [CrossRef]
- Freimoser, F.M.; Rueda-Mejia, M.P.; Tilocca, B.; Migheli, Q. Biocontrol yeasts: Mechanisms and applications. World J. Microbiol. Biotechnol. 2019, 35, 154. [Google Scholar] [CrossRef]
- Fröhlich-Wyder, M.T.; Arias-Roth, E.; Jakob, E. Cheese yeasts. Yeast 2019, 36, 129–141. [Google Scholar] [CrossRef]
- Hernández, A.; Rodríguez, A.; Córdoba, M.G.; Martín, A.; Ruiz-Moyano, S. Fungal control in foods through biopreservation. Curr. Opin. Food Sci. 2022, 47, 100904. [Google Scholar] [CrossRef]
- Huang, C.; Zhang, L.; Johansen, P.G.; Petersen, M.A.; Arneborg, N.; Jespersen, L. Debaryomyces hansenii strains isolated from Danish cheese brines act as biocontrol agents to inhibit germination and growth of contaminating moulds. Front. Microbiol. 2021, 12, 662785. [Google Scholar] [CrossRef]
- Alvarez, M.; Delgado, J.; Nunez, F.; Roncero, E.; Andrade, M.J. Proteomic approach to unveil the ochratoxin A repression by Debaryomyces hansenii and rosemary on Penicillium nordicum during dry-cured fermented sausages ripening. Food Control 2022, 137, 108695. [Google Scholar] [CrossRef]
- Liu, S.Q.; Tsao, M. Biocontrol of dairy moulds by antagonistic dairy yeast Debaryomyces hansenii in yoghurt and cheese at elevated temperatures. Food Control 2009, 20, 852–855. [Google Scholar] [CrossRef]
- Merchan, A.V.; Benito, M.J.; Galván, A.I.; Ruiz-Moyano, S. Identification and selection of yeast with functional properties for future application in soft paste cheese. LWT 2020, 124, 109173. [Google Scholar] [CrossRef]
- Moure, M.C.; Pérez-Torrado, R.; Garmendia, G.; Vero, S.; Querol, A.; Alconada, T.; León Peláez, Á. Characterization of kefir yeasts with antifungal capacity against Aspergillus species. Int. Microbiol. 2023, 26, 361–370. [Google Scholar] [CrossRef] [PubMed]
- Zheng, X.; Zheng, L.; Xia, F.; Li, J.; Zhou, W.; Yuan, L.; Yang, Z. Biological control of blue mould rot in apple by Kluyveromyces marxianus XZ1 and the possible mechanisms of action. Postharvest Biol. Technol. 2023, 196, 112179. [Google Scholar] [CrossRef]
- Van den Tempel, T.; Jakobsen, M. The technological characteristics of Debaryomyces hansenii and Yarrowia lipolytica and their potential as starter cultures for production of Danablu. Int. Dairy J. 2000, 10, 263–270. [Google Scholar] [CrossRef]
- Lessard, M.H.; Bélanger, G.; St-Gelais, D.; Labrie, S. The composition of Camembert cheese-ripening cultures modulates both mycelial growth and appearance. Appl. Environ. Microbiol. 2012, 78, 1813–1819. [Google Scholar] [CrossRef]
- Merchan, A.V.; Ruiz-Moyano, S.; Hernández, M.V.; Benito, M.J.; Aranda, E.; Rodríguez, A.; Martín, A. Characterization of autochthonal yeasts isolated from Spanish soft raw ewe milk protected designation of origin cheeses for technological application. J. Dairy Sci. 2022, 105, 2931–2947. [Google Scholar] [CrossRef]
- White, T.J.; Bruns, T.; Lee, S.J.; Taylor, J. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In PCR Protocols: A Guide to Methods and Applications; Innis, M.A., Gelfand, D.H., Sninsky, J.J., White, T.J., Eds.; Academic Press: Cambridge, MA, USA, 1990; pp. 315–322. [Google Scholar] [CrossRef]
- Glass, N.L.; Donaldson, G.C. Development of primer sets designed for use with the PCR to amplify conserved genes from filamentous ascomycetes. Appl. Environ. Microbiol. 1995, 61, 1323–1330. [Google Scholar] [CrossRef] [PubMed]
- O’Donnell, K. The fungal holomorph: Mitotic, meiotic and pleomorphic speciation in fungal systematics. In The Fungal Holomorph; Reynolds, D.R., Taylor, J.W., Eds.; CAB International: Wallingford, UK, 1993; pp. 225–233. [Google Scholar] [CrossRef]
- Cabañas, C.M.; Hernández, A.; Martínez, A.; Tejero, P.; Vázquez-Hernández, M.; Martín, A.; Ruiz-Moyano, S. Control of Penicillium glabrum by indigenous antagonistic yeast from vineyards. Foods 2020, 9, 1864. [Google Scholar] [CrossRef]
- Casquete, R.; Benito, M.J.; Córdoba, M.G.; Ruiz-Moyano, S.; Galván, A.I.; Martín, A. Physicochemical factors affecting the growth and mycotoxin production of Penicillium strains in a synthetic cheese medium. LWT 2018, 89, 179–185. [Google Scholar] [CrossRef]
- Freitas, A.C.; Macedo, A.C.; Malcata, F.X. Technological and organoleptic issues pertaining to cheeses with denomination of origin manufactured in the Iberian Peninsula from ovine and caprine milks. Food Sci. Technol. Int. 2000, 6, 351–370. [Google Scholar] [CrossRef]
- Trmčić, A.; Ralyea, R.; Meunier-Goddik, L.; Donnelly, C.; Glass, K.; D’amico, D.; Wiedmann, M. Consensus categorization of cheese based on water activity and pH—A rational approach to systemizing cheese diversity. J. Dairy Sci. 2017, 100, 841–847. [Google Scholar] [CrossRef]
- Cordero-Bueso, G.; Mangieri, N.; Maghradze, D.; Foschino, R.; Valdetara, F.; Cantoral, J.M.; Vigentini, I. Wild grape-associated yeasts as promising biocontrol agents against Vitis vinifera fungal pathogens. Front. Microbiol. 2017, 8, 2025. [Google Scholar] [CrossRef]
- Ruiz-Moyano, S.; Hernández, A.; Galván, A.I.; Córdoba, M.G.; Casquete, R.; Serradilla, M.J.; Martín, A. Selection and application of antifungal VOCs-producing yeasts as biocontrol agents of grey mould in fruits. Food Microbiol. 2020, 92, 103556. [Google Scholar] [CrossRef]
- Kolde, R. pheatmap: Pretty Heatmaps. R Package Version 1.0.12. Available online: https://CRAN.R-project.org/package=pheatmap (accessed on 3 February 2025).
- Chen, X.; Abdallah, M.F.; Landschoot, S.; Audenaert, K.; De Saeger, S.; Rajkovic, A. Aspergillus flavus and Fusarium verticillioides and their main mycotoxins: Global distribution and scenarios of interactions in maize. Toxins 2023, 15, 577. [Google Scholar] [CrossRef]
- Marín, P.; Palmero, D.; Jurado, M. Occurrence of moulds associated with ovine raw milk and cheeses of the Spanish region of Castilla La Mancha. Int. J. Dairy Technol. 2015, 68, 565–572. [Google Scholar] [CrossRef]
- Arispe-Vazquez, J.L.; Sanchez-Arizpe, A.; Galindo-Cepeda, M.E. Microbiota fúngica en quesos artesanales en Saltillo, Coahuila, México. Rev. Ion 2021, 34, 7–13. [Google Scholar] [CrossRef]
- Sipiczki, M. Identification of antagonistic yeasts as potential biocontrol agents: Diverse criteria and strategies. Int. J. Food Microbiol. 2023, 406, 110360. [Google Scholar] [CrossRef]
- Fiori, S.; Urgeghe, P.P.; Hammami, W.; Razzu, S.; Jaoua, S.; Migheli, Q. Biocontrol activity of four non-and low-fermenting yeast strains against Aspergillus carbonarius and their ability to remove ochratoxin A from grape juice. Int. J. Food Microbiol. 2014, 189, 45–50. [Google Scholar] [CrossRef] [PubMed]
- Ghanbari, R.; Rezaie, S.; Noorbakhsh, F.; Khaniki, G.J.; Soleimani, M.; Aghaee, E.M. Biocontrol effect of Kluyveromyces lactis on aflatoxin expression and production in Aspergillus parasiticus. FEMS Microbiol. Lett. 2019, 366, fnz114. [Google Scholar] [CrossRef]
- Alasmar, R.; Ul-Hassan, Z.; Zeidan, R.; Al-Thani, R.; Al-Shamary, N.; Alnaimi, H.; Jaoua, S. Isolation of a novel Kluyveromyces marxianus strain QKM-4 and evidence of its volatilome production and binding potentialities in the biocontrol of toxigenic fungi and their mycotoxins. ACS Omega 2020, 5, 17637–17645. [Google Scholar] [CrossRef]
- Ramos-Pereira, J.; Mareze, J.; Fernández, D.; Rios, E.A.; Santos, J.A.; López-Díaz, T.M. Antifungal activity of lactic acid bacteria isolated from milk against Penicillium commune, P. nordicum, and P. verrucosum. Int. J. Food Microbiol. 2021, 355, 109331. [Google Scholar] [CrossRef]
- Mareze, J.; Ramos-Pereira, J.; Santos, J.A.; Beloti, V.; López-Díaz, T.M. Identification and characterisation of lactobacilli isolated from an artisanal cheese with antifungal and antibacterial activity against cheese spoilage and mycotoxigenic Penicillium spp. Int. Dairy J. 2022, 130, 105367. [Google Scholar] [CrossRef]
- Salas, M.L.; Thierry, A.; Lemaitre, M.; Garric, G.; Harel-Oger, M.; Chatel, M.; Coton, E. Antifungal activity of lactic acid bacteria combinations in dairy mimicking models and their potential as bioprotective cultures in pilot scale applications. Front. Microbiol. 2018, 9, 1787. [Google Scholar] [CrossRef]
- Garnier, L.; Mounier, J.; Lê, S.; Pawtowski, A.; Pinon, N.; Camier, B.; Valence, F. Development of antifungal ingredients for dairy products: From in vitro screening to pilot scale application. Food Microbiol. 2019, 81, 97–107. [Google Scholar] [CrossRef]
- Medina-Córdova, N.; Rosales-Mendoza, S.; Hernández-Montiel, L.G.; Angulo, C. The potential use of Debaryomyces hansenii for the biological control of pathogenic fungi in food. Biol. Control 2018, 121, 216–222. [Google Scholar] [CrossRef]
- Théolier, J.; Hammami, R.; Labelle, P.; Fliss, I.; Jean, J. Isolation and identification of antimicrobial peptides derived by peptic cleavage of whey protein isolate. J. Funct. Foods 2013, 5, 706–714. [Google Scholar] [CrossRef]
- Hidalgo, M.E.; Côrrea, A.P.F.; Canales, M.M.; Daroit, D.J.; Brandelli, A.; Risso, P. Biological and physicochemical properties of bovine sodium caseinate hydrolysates obtained by a bacterial protease preparation. Food Hydrocoll. 2015, 43, 510–520. [Google Scholar] [CrossRef]
- Sui, Y.; Wisniewski, M.; Droby, S.; Liu, J. Responses of yeast biocontrol agents to environmental stress. Appl. Environ. Microbiol. 2015, 81, 2968–2975. [Google Scholar] [CrossRef] [PubMed]
- Hudecová, A.; Valik, L.; Liptakova, D. Influence of temperature on the surface growth of Geotrichum candidum. Acta Chim. Slovaca 2009, 2, 75–87. [Google Scholar] [CrossRef]
- Spadaro, D.; Droby, S. Development of biocontrol products for postharvest diseases of fruit: The importance of elucidating the mechanisms of action of yeast antagonists. Trends Food Sci. Technol. 2016, 47, 39–49. [Google Scholar] [CrossRef]
- Ruiz-Moyano, S.; Martín, A.; Villalobos, M.C.; Calle, A.; Serradilla, M.J.; Córdoba, M.G.; Hernández, A. Yeasts isolated from figs (Ficus carica L.) as biocontrol agents of postharvest fruit diseases. Food Microbiol. 2016, 57, 45–53. [Google Scholar] [CrossRef]
- Jensen, A.N.; Jensen, L.T. Manganese transport, trafficking and function in invertebrates. In Manganese in Health and Disease; Costa, L.G., Aschner, M., Eds.; The Royal Society of Chemistry: Cambridge, UK, 2014; pp. 1–33. [Google Scholar] [CrossRef]
- Krause, D.J.; Kominek, J.; Opulente, D.A.; Shen, X.X.; Zhou, X.; Langdon, Q.K.; Hittinger, C.T. Functional and evolutionary characterization of a secondary metabolite gene cluster in budding yeasts. Proc. Natl. Acad. Sci. USA 2018, 115, 11030–11035. [Google Scholar] [CrossRef] [PubMed]
- Siedler, S.; Rau, M.H.; Bidstrup, S.; Vento, J.M.; Aunsbjerg, S.D.; Bosma, E.F.; Neves, A.R. Competitive exclusion is a major bioprotective mechanism of lactobacilli against fungal spoilage in fermented milk products. Appl. Environ. Microbiol. 2020, 86, e02312-19. [Google Scholar] [CrossRef]
- Ning, M.; Guo, Q.; Guo, P.; Cui, Y.; Wang, K.; Du, G.; Yue, T. Biocontrol activity of Kluyveromyces marxianus YG-4 against Penicillium expansum LPH9 on apples. Int. J. Food Microbiol. 2025, 427, 110943. [Google Scholar] [CrossRef]
- Choińska, R.; Piasecka-Jóźwiak, K.; Chabłowska, B.; Dumka, J.; Łukaszewicz, A. Biocontrol ability and volatile organic compounds production as a putative mode of action of yeast strains isolated from organic grapes and rye grains. Antonie Leeuwenhoek 2020, 113, 1135–1146. [Google Scholar] [CrossRef] [PubMed]
- Tejero, P.; Martín, A.; Rodríguez, A.; Galván, A.I.; Ruiz-Moyano, S.; Hernández, A. In vitro biological control of Aspergillus flavus by Hanseniaspora opuntiae L479 and Hanseniaspora uvarum L793, producers of antifungal volatile organic compounds. Toxins 2021, 13, 663. [Google Scholar] [CrossRef] [PubMed]
- Farbo, M.G.; Urgeghe, P.P.; Fiori, S.; Marcello, A.; Oggiano, S.; Balmas, V.; Migheli, Q. Effect of yeast volatile organic compounds on ochratoxin A-producing Aspergillus carbonarius and A. ochraceus. Int. J. Food Microbiol. 2018, 284, 1–10. [Google Scholar] [CrossRef]
- Hassan, Z.U.; Al Thani, R.; Atia, F.A.; Alsafran, M.; Migheli, Q.; Jaoua, S. Application of yeasts and yeast derivatives for the biological control of toxigenic fungi and their toxic metabolites. Environ. Technol. Innov. 2021, 22, 101447. [Google Scholar] [CrossRef]
- Borges, F.; Briandet, R.; Callon, C.; Champomier-Vergès, M.C.; Christieans, S.; Chuzeville, S.; Zagorec, M. Contribution of omics to biopreservation: Toward food microbiome engineering. Front. Microbiol. 2022, 13, 951182. [Google Scholar] [CrossRef]
- Coni, E.; Bocca, A.; Ianni, D.; Caroli, S. Preliminary evaluation of the factors influencing the trace element content of milk and dairy products. Food Chem. 1995, 52, 123–130. [Google Scholar] [CrossRef]
KL371 1 | KL874 | KL890 | KL904 | KL1098 | KL1351 | KL1507 | KM364 | KM1070 | PJ173 | PJ433 | PJ659 | PJ1008 | PJ1468 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
A: Temperature | 0.071 | 0.536 | 0.536 | 0.232 | 0.403 | 0.275 | 0.314 | 0.314 | 0.133 | 0.000 ** | 0.030 * | 0.006 * | 0.016 * | 0.312 |
B: aw | 0.593 | 0.103 | 0.045 * | 0.748 | 0.128 | 0.275 | 0.314 | 0.314 | 0.286 | 0.076 | 0.363 | 0.036 * | 0.188 | 0.438 |
C: pH | 0.593 | 1.000 | 0.536 | 0.063 | 0.403 | 0.451 | 0.020 * | 0.314 | 0.133 | 1.000 | 1.000 | 0.147 | 0.356 | 0.438 |
AA | 0.154 | 0.030 * | 0.193 | 0.565 | 0.562 | 0.224 | 0.306 | 0.720 | 0.278 | 0.000 ** | 0.014 * | 0.023 * | 0.016 * | 0.675 |
AB | 0.167 | 1.000 | 0.391 | 0.651 | 1.000 | 0.144 | 0.064 | 0.465 | 0.020 * | 1.000 | 0.511 | 1.000 | 0.504 | 0.463 |
AC | 1.000 | 0.391 | 1.000 | 0.209 | 0.253 | 1.000 | 0.465 | 0.465 | 0.052 | 1.000 | 0.511 | 1.000 | 0.210 | 0.463 |
BB | 0.407 | 0.283 | 0.061 | 0.331 | 0.027 * | 0.443 | 0.720 | 0.306 | 0.278 | 0.189 | 0.355 | 0.407 | 0.457 | 0.952 |
BC | 0.456 | 0.391 | 0.391 | 0.381 | 0.049 * | 1.000 | 0.465 | 0.465 | 0.152 | 1.000 | 0.511 | 0.456 | 1.000 | 0.708 |
CC | 0.407 | 0.089 | 0.776 | 0.477 | 0.562 | 0.443 | 0.306 | 0.306 | 0.702 | 0.006 * | 0.355 | 0.057 | 0.195 | 0.515 |
ANOVA (R2statistics) | ||||||||||||||
R2 | 72.36 | 79.57 | 77.86 | 72.36 | 82.95 | 66.91 | 82.35 | 62.50 | 86.47 | 98.42 | 84.11 | 90.60 | 86.87 | 49.25 |
R2 adjusted | - | - | - | - | 52.27 | - | 50.59 | - | 62.11 | 95.59 | 55.51 | 73.69 | 63.22 | - |
Optimal inhibition values | ||||||||||||||
A: Temperature | - | - | - | - | 8.0 | - | 8.0 | - | 8.4 | 16.6 | 15.9 | 16.9 | 16.2 | - |
B: aw | - | - | - | - | 0.87 | - | 0.84 | - | 0.84 | 0.87 | 0.88 | 0.84 | 0.87 | - |
C: pH | - | - | - | - | 4.50 | - | 5.50 | - | 4.50 | 5.00 | 4.98 | 4.80 | 5.20 | - |
Estimated value | - | - | - | - | 2.97 | - | 2.88 | - | 3.92 | 4.38 | 4.17 | 4.03 | 3.64 | - |
KL371 1 | KL874 | KL890 | KL904 | KL1098 | KL1351 | KL1507 | KM364 | KM1070 | PJ173 | PJ433 | PJ659 | PJ1008 | PJ1468 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
A: Temperature | 0.001 ** | 0.409 | 0.805 | 0.386 | 0.536 | 0.285 | 0.009 * | 0.045 * | 0.805 | 0.015 * | 0.000 ** | 0.005 * | 0.011 * | 0.014 * |
B: aw | 0.025 * | 0.409 | 0.471 | 0.555 | 0.536 | 0.706 | 0.447 | 0.650 | 0.035 * | 0.015 * | 0.148 | 0.140 | 0.213 | 0.232 |
C: pH | 0.175 | 0.574 | 0.346 | 0.175 | 1.000 | 1.000 | 0.1596 | 0.819 | 0.346 | 1.000 | 0.256 | 0.245 | 0.334 | 0.748 |
AA | 0.001 ** | 0.326 | 0.619 | 0.084 | 0.018 * | 0.020 * | 0.005 * | 0.644 | 0.070 | 0.153 | 0.001 ** | 0.002 ** | 0.021 * | 0.331 |
AB | 0.076 | 1.000 | 0.728 | 0.237 | 0.391 | 0.151 | 1.000 | 0.526 | 0.005 * | 0.817 | 0.572 | 1.000 | 0.100 | 0.651 |
AC | 1.000 | 0.688 | 0.201 | 0.134 | 1.000 | 1.000 | 0.296 | 0.747 | 1.000 | 0.202 | 0.281 | 0.562 | 0.636 | 1.000 |
BB | 0.008 * | 0.609 | 0.418 | 0.429 | 0.886 | 0.365 | 0.009 * | 0.303 | 0.014 * | 0.853 | 0.086 | 0.412 | 0.939 | 0.084 |
BC | 0.076 | 0.688 | 1.000 | 0.673 | 1.000 | 1.000 | 0.296 | 0.231 | 1.000 | 0.202 | 0.029 * | 1.000 | 1.000 | 0.651 |
CC | 0.084 | 0.384 | 0.619 | 0.685 | 0.486 | 0.670 | 0.488 | 0.876 | 0.418 | 0.970 | 0.042 * | 0.778 | 0.228 | 0.477 |
ANOVA (R2statistics) | ||||||||||||||
R2 | 96.88 | 49.64 | 52.16 | 74.93 | 73.93 | 77.91 | 93.13 | 69.58 | 91.18 | 87.07 | 97.84 | 92.61 | 87.58 | 82.18 |
R2 adjusted | 91.25 | - | - | - | - | - | 80.75 | - | 75.32 | 63.79 | 93.95 | 79.32 | 65.24 | 50.11 |
Optimal inhibition values | ||||||||||||||
A: Temperature | 10.5 | - | - | - | - | - | 11.6 | - | 8.0 | 15.5 | 17.3 | 16.0 | 14.5 | 19.8 |
B:aw | 0.84 | - | - | - | - | - | 0.97 | - | 0.84 | 0.97 | 0.97 | 0.97 | 0.97 | 0.97 |
C: pH | 4.50 | - | - | - | - | - | 5.50 | - | 4.80 | 4.50 | 5.50 | 5.50 | 4.81 | 5.50 |
Estimated value | 3.38 | - | - | - | - | - | 3.30 | - | 4.42 | 5.87 | 5.56 | 5.65 | 5.28 | 4.67 |
Strains | Enzymatic Activities | Biofilm Formation | Antibiosis | Parasitism | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Pectinase | β-Glucanase | Quitinase | Protease 25 °C | Protease 15 °C | PC | FV | MP/R | |||
GC663 1 | +++ 2 | +++ | − | − | − | − | − | +3 | + | + |
KL371 | − | − | − | − | + | − | − | − | − | − |
KL874 | − | − | − | − | ++ | − | − | − | − | − |
KL1098 | − | − | − | ++ | + | − | − | − | − | − |
KL890 | − | − | − | − | ++ | − | − | − | − | − |
KL904 | − | − | − | − | + | − | − | − | − | + |
KL1351 | − | − | − | ++ | ++ | − | − | − | − | − |
KL1507 | − | − | − | ++ | +++ | − | − | + | − | − |
KM364 | + | − | − | − | − | − | − | − | − | − |
KM1070 | − | − | − | − | − | ++ | − | − | − | − |
PJ173 | − | + | − | − | − | − | − | − | − | + |
PJ433 | − | ++ | − | ++ | ++ | − | − | + | + | − |
PJ659 | − | ++ | − | − | − | − | − | − | − | − |
PJ1008 | ++ | ++ | − | − | − | − | − | − | + | − |
PJ1468 | − | + | − | + | + | − | − | − | + | − |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cabañas, C.M.; Hernández León, A.; Ruiz-Moyano, S.; Merchán, A.V.; Martínez Torres, J.M.; Martín, A. Biocontrol of Cheese Spoilage Moulds Using Native Yeasts. Foods 2025, 14, 2446. https://doi.org/10.3390/foods14142446
Cabañas CM, Hernández León A, Ruiz-Moyano S, Merchán AV, Martínez Torres JM, Martín A. Biocontrol of Cheese Spoilage Moulds Using Native Yeasts. Foods. 2025; 14(14):2446. https://doi.org/10.3390/foods14142446
Chicago/Turabian StyleCabañas, Catalina M., Alejandro Hernández León, Santiago Ruiz-Moyano, Almudena V. Merchán, José Manuel Martínez Torres, and Alberto Martín. 2025. "Biocontrol of Cheese Spoilage Moulds Using Native Yeasts" Foods 14, no. 14: 2446. https://doi.org/10.3390/foods14142446
APA StyleCabañas, C. M., Hernández León, A., Ruiz-Moyano, S., Merchán, A. V., Martínez Torres, J. M., & Martín, A. (2025). Biocontrol of Cheese Spoilage Moulds Using Native Yeasts. Foods, 14(14), 2446. https://doi.org/10.3390/foods14142446