Cheese Analogues, an Alternative to Dietary Restrictions and Choices: The Current Scenario and Future
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Badem, A.; Ucar, G. Cheese Analogues. Res. Rev. J. Food Dairy Technol. 2016, 4, 44–48. [Google Scholar]
- Chavan, R.S.; Jana, A.H. Cheese Substitutes: An Alternative to Natural Cheese—A Review. Agric. Food Sci. 2007, 2, 25–39. [Google Scholar]
- Kamath, R.; Basak, S.; Gokhale, J. Recent Trends in the Development of Healthy and Functional Cheese Analogues-a Review. LWT 2022, 155, 112991. [Google Scholar] [CrossRef]
- Judge, M.; Fernando, J.W.; Begeny, C.T. Dietary Behaviour as a Form of Collective Action: A Social Identity Model of Vegan Activism. Appetite 2022, 168, 105730. [Google Scholar] [CrossRef] [PubMed]
- Masotti, F.; Cattaneo, S.; Stuknytė, M.; De Noni, I. Status and Developments in Analogue Cheese Formulations and Functionalities. Trends Food Sci. Technol. 2018, 74, 158–169. [Google Scholar] [CrossRef]
- Taufik, D.; Verain, M.C.D.; Bouwman, E.P.; Reinders, M.J. Determinants of Real-Life Behavioural Interventions to Stimulate More Plant-Based and Less Animal-Based Diets: A Systematic Review. Trends Food Sci. Technol. 2019, 93, 281–303. [Google Scholar] [CrossRef]
- Edenbrandt, A.K.; Lagerkvist, C.J. Consumer Perceptions and Attitudes towards Climate Information on Food. J. Clean. Prod. 2022, 370, 133441. [Google Scholar] [CrossRef]
- Hassoun, A.; Boukid, F.; Pasqualone, A.; Bryant, C.J.; García, G.G.; Parra-López, C.; Jagtap, S.; Trollman, H.; Cropotova, J.; Barba, F.J. Emerging Trends in the Agri-Food Sector: Digitalisation and Shift to Plant-Based Diets. Curr. Res. Food Sci. 2022, 5, 2261–2269. [Google Scholar] [CrossRef]
- Possidónio, C.; Prada, M.; Graça, J.; Piazza, J. Consumer Perceptions of Conventional and Alternative Protein Sources: A Mixed-Methods Approach with Meal and Product Framing. Appetite 2021, 156, 104860. [Google Scholar] [CrossRef]
- N.U.B. Os Objetivos de Desenvolvimento Sustentável No Brasil. 2022. Available online: https://brasil.un.org/pt-br/sdgs (accessed on 15 February 2025).
- Muthukumar, J.; Selvasekaran, P.; Lokanadham, M.; Chidambaram, R. Food and Food Products Associated with Food Allergy and Food Intolerance—An Overview. Food Res. Int. 2020, 138, 109780. [Google Scholar] [CrossRef]
- Bianchi, M.; Bryngelsson, S.; Moshtaghian, H.; Hallstr, E. Current Research in Food Science Nutritional Profile of Plant-Based Dairy Alternatives in the Swedish Market. Curr. Res. Food Sci. 2024, 8, 100712. [Google Scholar] [CrossRef]
- Clegg, M.E.; Ribes, A.T.; Reynolds, R.; Kliem, K.; Stergiadis, S. A Comparative Assessment of the Nutritional Composition of Dairy and Plant-Based Dairy Alternatives Available for Sale in the {UK} and the Implications for Consumers’ Dietary Intakes. Food Res. Int. 2021, 148, 110586. [Google Scholar] [CrossRef] [PubMed]
- Fresán, U.; Rippin, H. Nutritional Quality of Plant-Based Cheese Available in Spanish Supermarkets: How Do They Compare to Dairy Cheese? Nutrients 2021, 13, 3291. [Google Scholar] [CrossRef] [PubMed]
- Walther, B.; Schmid, A.; Sieber, R.; Wehrmüller, K. Cheese in Nutrition and Health. Dairy Sci. Technol. 2008, 88, 389–405. [Google Scholar] [CrossRef]
- Atik, D.S.; Huppertz, T. Melting of Natural Cheese: A Review. Int. Dairy J. 2023, 142, 105648. [Google Scholar] [CrossRef]
- Santiago-López, L.; Aguilar-Toalá, J.E.; Hernández-Mendoza, A.; Vallejo-Cordoba, B.; Liceaga, A.M.; González-Córdova, A.F. Invited Review: Bioactive Compounds Produced during Cheese Ripening and Health Effects Associated with Aged Cheese Consumption. J. Dairy Sci. 2018, 101, 3742–3757. [Google Scholar] [CrossRef]
- Bachmann, H.-P. Cheese Analogues: A Review. Int. Dairy J. 2001, 11, 505–515. [Google Scholar] [CrossRef]
- Grossmann, L.; McClements, D.J. The Science of Plant-Based Foods: Approaches to Create Nutritious and Sustainable Plant-Based Cheese Analogs. Trends Food Sci. Technol. 2021, 118, 207–229. [Google Scholar] [CrossRef]
- Butt, N.A.; Ali, T.M.; Hasnain, A. Development of Rice Starch-Based Casein and Fat Mimetics and Its Application in Imitation Mozzarella Cheese. J. Food Process. Preserv. 2020, 44, e14928. [Google Scholar] [CrossRef]
- Shahbazi, M.; Jäger, H.; Ettelaie, R. Application of Pickering Emulsions in 3D Printing of Personalized Nutrition. Part II: Functional Properties of Reduced-Fat 3D Printed Cheese Analogues. Colloids Surf. A Physicochem. Eng. Asp. 2021, 624, 126760. [Google Scholar] [CrossRef]
- Sołowiej, B.; Dylewska, A.; Kowalczyk, D.; Sujka, M.; Tomczyńska-Mleko, M.; Mleko, S. The Effect of PH and Modified Maize Starches on Texture, Rheological Properties and Meltability of Acid Casein Processed Cheese Analogues. Eur. Food Res. Technol. 2016, 242, 1577–1585. [Google Scholar] [CrossRef]
- Leong, T.S.H.; Ong, L.; Gamlath, C.J.; Gras, S.L.; Ashokkumar, M.; Martin, G.J.O. Formation of Cheddar Cheese Analogues Using Canola Oil and Ultrasonication—A Comparison between Single and Double Emulsion Systems. Int. Dairy J. 2020, 105, 104683. [Google Scholar] [CrossRef]
- O’Toole, D. Soybean|Soymilk, Tofu, and Okara. In Reference Module in Food Science; Elsevier: Amsterdam, The Netherlands, 2016; ISBN 978-0-08-100596-5. [Google Scholar]
- Ono, T. Soy (Soya) Cheese. In Encyclopedia of Food Sciences and Nutrition, 2nd ed.; Caballero, B., Ed.; Academic Press: Oxford, UK, 2003; pp. 5398–5402. ISBN 978-0-12-227055-0. [Google Scholar]
- Adedeji, B.S.; Ezeokoli, O.T.; Ezekiel, C.N.; Obadina, A.O.; Somorin, Y.M.; Sulyok, M.; Adeleke, R.A.; Warth, B.; Nwangburuka, C.C.; Omemu, A.M.; et al. International Journal of Food Microbiology Bacterial Species and Mycotoxin Contamination Associated with Locust Bean, Melon and Their Fermented Products in South-Western Nigeria. Int. J. Food Microbiol. 2017, 258, 73–80. [Google Scholar] [CrossRef]
- Serra-Mallol, C. Nourritures, Abondance et Identité: Une Socio-Anthropologie de L’alimentation à Tahiti; Au Vent des Îles: Pirae, France, 2010; ISBN 978-2-9156-5467-7. (In French) [Google Scholar]
- Drigon, V.; Nicolle, L.; Guyomarc’H, F.; Gagnaire, V.; Arvisenet, G. Attitudes and Beliefs of French Consumers towards Innovative Food Products That Mix Dairy and Plant-Based Components. Int. J. Gastron. Food Sci. 2023, 32, 100725. [Google Scholar] [CrossRef]
- Palmieri, N.; Nervo, C.; Torri, L. Consumers’ Attitudes towards Sustainable Alternative Protein Sources: Comparing Seaweed, Insects and Jellyfish in Italy. Food Qual. Prefer. 2023, 104, 104735. [Google Scholar] [CrossRef]
- Mordor Intelligence. Plant-Based Food & Beverages Market Research Report: Global Industry Analysis & Trends 2020–2027; Mordor Intelligence: Hyderabad, India, 2021. [Google Scholar]
- Patel, N.F.; Pezoti, A.R.; Fernandes, D.Z.; Malfatti, C.R.M.; Crisostimo, C.; Savighago, V.K. Prospecção Tecnológica Sobre Atividades Biológicas e Processos Tecnológicos Do Gênero Baccharis Com Base No Depósito de Patentes. Cad. Prospecção 2018, 11, 628. [Google Scholar] [CrossRef]
- Teixeira, L.P. Prospecção Tecnológica_ Importância, Métodos e Experiências Da Embrapa Cerrados. Documentos 2013, 34. [Google Scholar]
- Craig, W.J.; Mangels, A.R.; Brothers, C.J. Nutritional Profiles of Non-Dairy Plant-Based Cheese Alternatives. Nutrients 2022, 14, 1247. [Google Scholar] [CrossRef] [PubMed]
- Short, E.C.; Kinchla, A.J.; Nolden, A.A. Plant-Based Cheeses: A Systematic Review of Sensory Consumer Acceptance. Foods 2021, 10, 725. [Google Scholar] [CrossRef]
- Di Costanzo, M.; Biasucci, G.; Maddalena, Y. Lactose Intolerance in Pediatric Patients and Common Misunderstandings About Cow’s Milk Allergy. Pediatr. Ann. 2021, 50, e178–e185. [Google Scholar] [CrossRef]
- Zeng, J.; Wang, Q.; Yi, H.; Chen, C.; Du, C.; Xiong, G.; Wang, B.; Zhao, J.; Zhang, L.; Gong, P. Recent Insights in Cow’s Milk Protein Allergy: Clinical Relevance, Allergen Features, and Influences of Food Processing. Trends Food Sci. Technol. 2025, 156, 104830. [Google Scholar] [CrossRef]
- Catanzaro, R.; Sciuto, M.; Marotta, F. Lactose Intolerance: An Update on Its Pathogenesis, Diagnosis, and Treatment. Nutr. Res. 2021, 89, 23–34. [Google Scholar] [CrossRef] [PubMed]
- Dewiasty, E.; Setiati, S.; Agustina, R.; Roosheroe, A.G.; Abdullah, M.; Istanti, R.; de Groot, L.C. Prevalence of Lactose Intolerance and Nutrients Intake in an Older Population Regarded as Lactase Non-Persistent. Clin. Nutr. ESPEN 2021, 43, 317–321. [Google Scholar] [CrossRef] [PubMed]
- Jansson-Knodell, C.L.; Krajicek, E.J.; Savaiano, D.A.; Shin, A.S. Lactose Intolerance: A Concise Review to Skim the Surface. Mayo Clin. Proc. 2020, 95, 1499–1505. [Google Scholar] [CrossRef] [PubMed]
- Dobson, S.; Marangoni, A.G. Methodology and Development of a High-Protein Plant-Based Cheese Alternative. Curr. Res. Food Sci. 2023, 7, 100632. [Google Scholar] [CrossRef]
- Andersson, I.; Arbab, O.; Forslund, A.; Ehlde, S.; Petersson, K. Vegetable Cheese Analogue. U.S. Patent 0,225,026 A9, 2024. [Google Scholar]
- Yoo, R.; Kim, S.Y.; Kim, D.H.; Kim, J.; Jeon, Y.J.; Park, J.H.Y.; Lee, K.W.; Yang, H. Exploring the Nexus between Food and Veg*n Lifestyle via Text Mining-Based Online Community Analytics. Food Qual. Prefer. 2023, 104, 104714. [Google Scholar] [CrossRef]
- Ruby, M.B.; Graça, J.; Olli, E. Vegetarian, Vegan, or Plant-Based? Comparing How Different Labels Influence Consumer Evaluations of Plant-Based Foods. Appetite 2024, 197, 107288. [Google Scholar] [CrossRef]
- Guo, X.; Xie, Z.; Wang, G.; Zou, Q.; Tang, R. Effect on Nutritional, Sensory, Textural and Microbiological Properties of Low-Fat Yoghurt Supplemented with {Jerusalem} Artichoke Powder. Int. J. Dairy Technol. 2018, 71, 167–174. [Google Scholar] [CrossRef]
- Bittante, G.; Cecchinato, A.; Schiavon, S. Dairy System, Parity, and Lactation Stage Affect Enteric Methane Production, Yield, and Intensity per Kilogram of Milk and Cheese Predicted from Gas Chromatography Fatty Acids. J. Dairy Sci. 2018, 101, 1752–1766. [Google Scholar] [CrossRef]
- Pitesky, M.E.; Stackhouse, K.R.; Mitloehner, F.M. Chapter 1—Clearing the Air: Livestock’s Contribution to Climate Change. In Advances in Agronomy; Sparks, D.L., Ed.; Academic Press: Cambridge, MA, USA, 2009; Volume 103, pp. 1–40. ISBN 0065-2113. [Google Scholar]
- Knapp, J.R.; Laur, G.L.; Vadas, P.A.; Weiss, W.P.; Tricarico, J.M. Invited Review: Enteric Methane in Dairy Cattle Production: Quantifying the Opportunities and Impact of Reducing Emissions. J. Dairy Sci. 2014, 97, 3231–3261. [Google Scholar] [CrossRef]
- Food and Agriculture Organization of the United Nations. Climate Change and the Global Dairy Cattle Sector: The Role of the Dairy Sector in a Low-Carbon Future; Food and Agriculture Organization of the United Nations: Quebec, QC, Canada, 2023. [Google Scholar]
- Comak Gocer, E.M.; Koptagel, E. Production of Milks and Kefir Beverages from Nuts and Certain Physicochemical Analysis. Food Chem. 2023, 402, 134252. [Google Scholar] [CrossRef]
- Zeltzer, P.; Moyer, D.; Philibeck, T. Graduate Student Literature Review: Labeling Challenges of Plant-Based Dairy-like Products for Consumers and Dairy Manufacturers. J. Dairy Sci. 2022, 105, 9488–9495. [Google Scholar] [CrossRef] [PubMed]
- Leialohilani, A.; de Boer, A. EU Food Legislation Impacts Innovation in the Area of Plant-Based Dairy Alternatives. Trends Food Sci. Technol. 2020, 104, 262–267. [Google Scholar] [CrossRef]
- Pereira, C.G.; Moreira, R.E.d.C.; Afonso, P.A.; Silva, A.R.C.S.; Palhares, M.d.P.P.e.; Souza, S.V.C.d.; Anastácio, L.R. Plant-Based Products: Analysis of International Regulations and Strategies Used for Designation and Labeling in Brazil. LWT 2024, 200, 115980. [Google Scholar] [CrossRef]
- Estabelece Os Requisitos Mínimos de Identidade e Qualidade Para Produtos Análogos de Origem Vegetal e as Regras de Identidade Visual e Rotulagem Desses Produtos; Ministério da Agricultura, P. e A. Portaria SDA/MAPA No 831; Ministério da Agricultura: Brasília, Brasil, 2023.
- Moon, K.; Choi, K.O.; Jeong, S.; Kim, Y.W.; Lee, S. Solid Fat Replacement with Canola Oil-Carnauba Wax Oleogels for Dairy-Free Imitation Cheese Low in Saturated Fat. Foods 2021, 10, 1351. [Google Scholar] [CrossRef]
- Kumar, R.; Kumar, P.; Gaur, A.; Singh, L.; Hossain, S.; Alsulami, T.; Rafiq, S.M.; Nayik, G.A. Microbial Transglutaminase in Cashew-Based Vegan Cheese: An Innovative Approach in Achieving Ideal Texture and Meltability. Int. J. Food Sci. Technol. 2024, 59, 8290–8297. [Google Scholar] [CrossRef]
- Henricus, P.C.L.; Johannes, M.C.H.; Maria, M.C.A.J.; Eelko, V.T.; Maria, K.A.L.A.; Yolanda, L.B.; Beatrice, V.A. Potato-Based Cheese Analogue. WO 2022/161988 A1, 2022. [Google Scholar]
- Satija, A.; Hu, F.B. Plant-Based Diets and Cardiovascular Health. Trends Cardiovasc. Med. 2018, 28, 437–441. [Google Scholar] [CrossRef]
- Santos-Buelga, C.; González-Paramás, A.M.; Oludemi, T.; Ayuda-Durán, B.; González-Manzano, S. Plant Phenolics as Functional Food Ingredients. Adv. Food Nutr. Res. 2019, 90, 183–257. [Google Scholar] [CrossRef]
- Souza, V.C.; Lorenzi, H. Botânica Sistemática: Guia Ilustrado Para Identificação Das Famílias de Fanerógamas Nativas e Exóticas No Brasil, Baseado Em APG II; Instituto Plantarum de Estudos da Flora: Nova Odessa, Brazil, 2008. [Google Scholar]
- Wang, Y.; Hu, Y.; Zhu, L.; Sun, Q. Abstract 13268: Associations Between Plant-Based Dietary Patterns and Risks of Type 2 Diabetes, Cardiovascular Disease, Cancer, and Mortality—A Systematic Review and Meta-Analysis. Circulation 2022, 146, A13268. [Google Scholar] [CrossRef]
- Walsh, M.C.; Gunn, C. Non-Dairy Milk Substitutes: Are They of Adequate Nutritional Composition? Milk Dairy Foods Their Funct. Hum. Heal. Dis. 2020, 01, 347–369. [Google Scholar] [CrossRef]
- Łuszczki, E.; Boakye, F.; Zielińska, M.; Dereń, K.; Bartosiewicz, A.; Oleksy, Ł.; Stolarczyk, A. Vegan Diet: Nutritional Components, Implementation, and Effects on Adults’ Health. Front. Nutr. 2023, 10, 1294497. [Google Scholar] [CrossRef]
- Ahmad, A.; Anwar, S.; Altaf, U.; Batool, S.M.; Abubakar, M.; Khan, T. Assessing the Efficacy of Plant-Based Diets in Managing Type 2 Diabetes and Cardiovascular Health. Innov. Res. Appl. Biol. Chem. Sci. 2024, 2, 248–253. [Google Scholar] [CrossRef]
- Lacour, C.; Seconda, L.; Benjamin, A.; Hercberg, S.; Langevin, B.; Pointereau, P.; Lairon, D.; Baudry, J.; Kesse-Guyot, E. Environmental Impacts of Plant-Based Diets: How Does Organic Food Consumption Contribute to Environmental Sustainability? Front. Nutr. 2018, 5, 8. [Google Scholar] [CrossRef] [PubMed]
- Sharma, P.; Sharma, D.; Amin, A. Development of a Functional Fermented Peanut-Based Cheese Analog Using Probiotic Bacteria. Biotechnol. J. Biotechnol. Comput. Biol. Bionanotechnol. 2018, 99, 435–441. [Google Scholar] [CrossRef]
- Boukid, F.; Hassoun, A.; Zouari, A.; Ça, M. Fermentation for Designing Innovative Plant-Based Meat and Dairy Alternatives. Foods 2023, 12, 1005. [Google Scholar] [CrossRef]
- Jeewanthi, R.K.C.; Paik, H.-D. Modifications of Nutritional, Structural, and Sensory Characteristics of Non-Dairy Soy Cheese Analogs to Improve Their Quality Attributes. J. Food Sci. Technol. 2018, 55, 4384–4394. [Google Scholar] [CrossRef]
- Li, Q.; Xia, Y.; Zhou, L.; Xie, J. Evaluation of the Rheological, Textural, Microstructural and Sensory Properties of Soy Cheese Spreads. Food Bioprod. Process. 2013, 91, 429–439. [Google Scholar] [CrossRef]
- Choi, H.-J.; Lee, N.-K.; Paik, H.-D. Health Benefits of Lactic Acid Bacteria Isolated from Kimchi, with Respect to Immunomodulatory Effects. Food Sci. Biotechnol. 2015, 24, 783–789. [Google Scholar] [CrossRef]
- Hati, S.; Vij, S.; Mandal, S.; Malik, R.K.; Kumari, V.; Khetra, Y. α-Galactosidase Activity and Oligosaccharides Utilization by Lactobacilli during Fermentation of Soy Milk. J. Food Process. Preserv. 2014, 38, 1065–1071. [Google Scholar] [CrossRef]
- Tekin, A.; Hayaloğlu, A.A. Overcoming the Flavour and Textural/Rheological Problems of Plant-Based Cheese Alternatives: Challenges and Solution Strategies. Futur. Foods 2025, 11, 100531. [Google Scholar] [CrossRef]
- Rassenfosse, G.; Kozák, J.; Seliger, F. Geocoding of Worldwide Patent Data. Sci. Data 2019, 6, 260. [Google Scholar] [CrossRef]
- USAFacts Are Americans Moving on from Dairy? Available online: https://usafacts.org/articles/are-americans-moving-on-from-dairy/ (accessed on 28 January 2025).
- Swinehart, M.; Harris, L.J.; Anderson, N.M.; Feng, Y.U.S. Consumer Practices of Homemade Nut-Based Dairy Analogs and Soaked Nuts. J. Food Prot. 2023, 86, 100132. [Google Scholar] [CrossRef]
- Mordor Intelligence. Non-Dairy Cheese Market Size and Share Analysis—Growth Trends and Forecast (2024–2029). Available online: https://www.mordorintelligence.com/pt/industry-reports/non-dairy-cheese-market (accessed on 28 January 2025).
- Mordor Intelligence. North America Non-Dairy Cheese Market Size Share Analysis—Growth Trends and Forecasts till 2029. Available online: https://www.mordorintelligence.com/pt/industry-reports/north-america-non-dairy-cheese-market (accessed on 28 January 2025).
- Elhini, M.; Hassaballa, H.; Simpson, N.P.; Balbaa, M.; Ibrahim, R.; Mansour, S.; Abou-Kota, M.E.; Ganzour, S. The Land Degradation and Desertification-Socioeconomic Nexus in Egypt’s Delta Region: A Case Study on Alexandria and Beheira. Heliyon 2024, 10, e31165. [Google Scholar] [CrossRef]
- Pointke, M.; Pawelzik, E. Chapter 9—Plant-Based Milk Alternatives. In Handbook of Plant-Based Food and Drinks Design; Boukid, F., Rosell, C.M., Gasparre, N., Eds.; Academic Press: Cambridge, MA, USA, 2024; pp. 133–153. ISBN 978-0-443-16017-2. [Google Scholar]
- Groot, M.J.; van’t Hooft, K.E. The Hidden Effects of Dairy Farming on Public and Environmental Health in the Netherlands, India, Ethiopia, and Uganda, Considering the Use of Antibiotics and Other Agro-Chemicals. Front. Public Heal. 2016, 4, 12. [Google Scholar] [CrossRef]
- Kasprzak, M.M.; Macnaughtan, W.; Harding, S.; Wilde, P.; Wolf, B. Stabilisation of Oil-in-Water Emulsions with Non-Chemical Modified Gelatinised Starch. Food Hydrocoll. 2018, 81, 409–418. [Google Scholar] [CrossRef]
- Schirmer, M.; Jekle, M.; Becker, T. Starch Gelatinization and Its Complexity for Analysis. Starch—Stärke 2015, 67, 30–41. [Google Scholar] [CrossRef]
- Schirmer, M.; Höchstötter, A.; Jekle, M.; Arendt, E.; Becker, T. Physicochemical and Morphological Characterization of Different Starches with Variable Amylose/Amylopectin Ratio. Food Hydrocoll. 2013, 32, 52–63. [Google Scholar] [CrossRef]
- Mattice, K.D.; Marangoni, A.G. Physical Properties of Plant-Based Cheese Products Produced with Zein. Food Hydrocoll. 2020, 105, 105746. [Google Scholar] [CrossRef]
- Bergsma, J. Vegan Cheese Analogue. WO2017150973A1, 2021. [Google Scholar]
- Day, L. Proteins from Land Plants—Potential Resources for Human Nutrition and Food Security. Trends Food Sci. Technol. 2013, 32, 25–42. [Google Scholar] [CrossRef]
- McClements, D.J.; Grossmann, L. The Science of Plant-Based Foods: Constructing next-Generation Meat, Fish, Milk, and Egg Analogs. Compr. Rev. food Sci. food Saf. 2021, 20, 4049–4100. [Google Scholar] [CrossRef]
- Gui, Y.; Li, J.; Zhu, Y.; Guo, L. Roles of Four Enzyme Crosslinks on Structural, Thermal and Gel Properties of Potato Proteins. LWT 2020, 123, 109116. [Google Scholar] [CrossRef]
- Grossmann, L.; Weiss, J. Alternative Protein Sources as Functional Food Ingredients. Annu. Rev. Food Sci. Technol. 2023, 12, 93–117. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.Q.; Mu, T.H.; Sun, H.N.; Chen, J.W.; Zhang, M. Comparative Study of Potato Protein Concentrates Extracted Using Ammonium Sulfate and Isoelectric Precipitation. Int. J. Food Prop. 2017, 20, 2113–2127. [Google Scholar] [CrossRef]
- Li, S.; McClements, D.J. Controlling Textural Attributes of Plant-Based Emulsions Using Heteroaggregation of Cationic and Anionic Potato Protein-Coated Oil Droplets. Food Hydrocoll. 2023, 145, 109126. [Google Scholar] [CrossRef]
- Masiá, C.; Keshanidokht, S.; Due Preisler, L.; Risbo, J.; Jensen, P.E. Plant Lipid Sources in Fermented Pea Protein Gels: Emulsion Stability and Gel Microstructure. Lwt 2023, 182, 114890. [Google Scholar] [CrossRef]
- Raak, N.; Struck, S.; Jaros, D.; Hernando, I.; Gülseren, İ.; Michalska-Ciechanowska, A.; Foschino, R.; Corredig, M.; Rohm, H. Blending Side Streams. {A} Potential Solution to Reach a Resource Efficient, Circular, Zero-Waste Food System. Futur. Foods 2022, 6, 100207. [Google Scholar] [CrossRef]
- Hu, F.B.; Manson, J.E.; Willett, W.C. Types of Dietary Fat and Risk of Coronary Heart Disease: A Critical Review. J. Am. Coll. Nutr. 2001, 20, 5–19. [Google Scholar] [CrossRef]
- Ludwig, D.S.; Willett, W.C.; Volek, J.S.; Neuhouser, M.L. Dietary Fat: From Foe to Friend? Science 2018, 362, 764–770. [Google Scholar] [CrossRef]
- Arab-Tehrany, E.; Jacquot, M.; Gaiani, C.; Imran, M.; Desobry, S.; Linder, M. Beneficial Effects and Oxidative Stability of Omega-3 Long-Chain Polyunsaturated Fatty Acids. Trends Food Sci. Technol. 2012, 25, 24–33. [Google Scholar] [CrossRef]
- McClements, D.J.; Decker, E. Interfacial Antioxidants: A Review of Natural and Synthetic Emulsifiers and Coemulsifiers That Can Inhibit Lipid Oxidation. J. Agric. Food Chem. 2018, 66, 20–35. [Google Scholar] [CrossRef]
- Ferawati, F.; Hefni, M.; Östbring, K.; Witthöft, C. The Application of Pulse Flours in the Development of Plant-based Cheese Analogues: Proximate Composition, Color, and Texture Properties. Foods 2021, 10, 2208. [Google Scholar] [CrossRef]
- Esen, B.N.; Güneser, O.; Akyüz, S. Evaluation of Physico-Chemical, Microbiological and Sensory Properties with Aroma Profile of Analogue Cheeses Produced from Plant and Dairy Based Protein Sources. Pamukkale Univ. J. Eng. Sci. Bitkisel 2020, 26, 1214–1222. [Google Scholar] [CrossRef]
- Golchin, N.; Jafarian, S.; Hossein, S.; Ghaboos, H.; Nasiraie, L.R. Optimization of Cheese Analogue Formulation with Rice Milk, Chia Seed and Hazelnut Oil Applying Response Surface Methodology. Res. Innov. Food Sci. Technol. 2023, 11, 423–436. [Google Scholar]
- Oyeyinka, A.T.; Odukoya, J.O.; Adebayo, Y.S. Nutritional Composition and Consumer Acceptability of Cheese Analog from Soy and Cashew Nut Milk. J. Food Process. Preserv. 2019, 43, e14285. [Google Scholar] [CrossRef]
- Shelke, G.N.; Phule, M.; Vidyapeeth, K. Preparation of Non Dairy Cheese Analogue Enriched with Coconut Milk. Pharma Innov. 2019, 8, 56–60. [Google Scholar]
- Garcia-Fontanals, L.; Llorente, R.; Valderrama, J.; Bravo, S.; Talens, C. Hybrid Spreadable Cheese Analogues with Faba Bean and Desirability-Based Mixture Design. Foods 2023, 12, 1522. [Google Scholar] [CrossRef]
- Schelle, M.; Cowperthwaite, S.; Kizer, L.; Renninger, N. Compreessible Non-Dairy Cheese Analogs, Formulations and Processes for Making Same. U.S. Patent 0,323,231 A1, 15 October 2020. [Google Scholar]
- Taggart, P.; Mitchell, J.R. 5—Starch**. In Woodhead Publishing Series in Food Science, Technology and Nutrition, 2nd ed.; Phillips, G.O., Williams, P.A., Eds.; Woodhead Publishing: Cambridge, UK, 2009; pp. 108–141. ISBN 978-1-84569-414-2. [Google Scholar]
- Atapattu, C.; Fannon, J. Improved Dry Blend for Making Cheese Analogue. WO2014085250, 2013. [Google Scholar]
- McClements, D.J.; Newman, E.; McClements, I.F. Plant-Based Milks: A Review of the Science Underpinning Their Design, Fabrication, and Performance. Compr. Rev. Food Sci. Food Saf. 2019, 18, 2047–2067. [Google Scholar] [CrossRef]
- Zhang, Q.; Wang, C.; Li, B.; Li, L.; Lin, D.; Chen, H.; Liu, Y.; Li, S.; Qin, W.; Liu, J.; et al. Research Progress in Tofu Processing: From Raw Materials to Processing Conditions. Crit. Rev. Food Sci. Nutr. 2018, 58, 1448–1467. [Google Scholar] [CrossRef]
- Zheng, L.; Regenstein, J.M.; Teng, F.; Li, Y. Tofu Products: A Review of Their Raw Materials, Processing Conditions, and Packaging. Compr. Rev. Food Sci. Food Saf. 2020, 19, 3683–3714. [Google Scholar] [CrossRef] [PubMed]
- Matias, N.S.; Bedani, R.; Castro, I.A.; Saad, S.M.I. A Probiotic Soy-Based Innovative Product as an Alternative to Petit-Suisse Cheese. LWT—Food Sci. Technol. 2014, 59, 411–417. [Google Scholar] [CrossRef]
- Chumchuere, S.; MacDougall, D.B.; Robinson, R.K. Production and Properties of a Semi-Hard Cheese Made from Soya Milk. Int. J. Food Sci. Technol. 2000, 35, 577–581. [Google Scholar] [CrossRef]
- Giri, S.K.; Tripathi, M.K.; Kotwaliwale, N. Effect of Composition and Storage Time on Some Physico-Chemical and Rheological Properties of Probiotic Soy-Cheese Spread. J. Food Sci. Technol. 2018, 55, 1667–1674. [Google Scholar] [CrossRef]
- Liu, D.-M.; Li, L.; Yang, X.-Q.; Liang, S.-Z.; Wang, J.-S. Survivability of Lactobacillus Rhamnosus during the Preparation of Soy Cheese. Food Technol. Biotechnol. 2006, 44, 417–422. [Google Scholar]
- Canon, F.; Mariadassou, M.; Maillard, M.B.; Falentin, H.; Parayre, S.; Madec, M.N.; Valence, F.; Henry, G.; Laroute, V.; Daveran-Mingot, M.L.; et al. Function-Driven Design of Lactic Acid Bacteria Co-Cultures to Produce New Fermented Food Associating Milk and Lupin. Front. Microbiol. 2020, 11, 584163. [Google Scholar] [CrossRef]
- Tangyu, M.; Muller, J.; Bolten, C.J.; Wittmann, C. Fermentation of Plant-Based Milk Alternatives for Improved Flavour and Nutritional Value. Appl. Microbiol. Biotechnol. 2019, 103, 9263–9275. [Google Scholar] [CrossRef]
- Ndife, J.; Itohan, I.; James, S. Production and Quality Evaluation of Soy Cheese (Tofu) Using Various Coagulants. Croat. J. Food Sci. Technol. 2021, 13, 36–42. [Google Scholar] [CrossRef]
- Agência Nacional de Vigilância Sanitária—Anvisa. Proibidos Alimentos Com Moringa Oleifera. In Decisão Baseia-se no Fato não Haver Avaliação e Comprovação Segurança do uso da Espécie Moringa Oleifera em Alimentos; Agência Nacional de Vigilância Sanitária—Anvisa: Brasília, Brazil, 2022. Available online: https://www.gov.br/anvisa/pt-br/assuntos/noticias-anvisa/2019/proibidos-alimentos-com-moringa-oleifera (accessed on 3 March 2025).
- Xie, J.; Yap, G.; Simpson, D.; Gänzle, M.; Xie, J.; Yap, G.; Simpson, D.; Gänzle, M.; Xie, J.; Yap, G.; et al. The Effect of Seed Germination and Bacillus Spp. on the Ripening of of Plant Cheese Analogs. Appl. Environ. Microbiol. 2024, 90, e02276-23. [Google Scholar] [CrossRef]
- Niko, N.; Päivi, M. Heat Stable Milk Protein Product and Method for Its Manufacturing. U.S. Patent 17,982,558 A, 19 November 2024. [Google Scholar]
- Niko, N.; Päivi, M. Method For Manufacturing An Acidified Protein Product From Casein And A Product Obtained Thereby. U.S. Patent 11,350,647, 7 June 2022. [Google Scholar]
- Niko, N.; Päivi, M. Heat-Stable Plant-Based Protein-Product. FI 20166018A, 31 March.
- Mercedes, B.; Joachim, C. Cheese Analogue Product Including Corn Protein Isolate. U.S. Patent 63,274,690, 21 June 2023. [Google Scholar]
- Bouron, F.; Fonteyn, D.; Klemaszewski, J.L.; Lemonnier, L. Cheese Product With Modified Starches. U.S. Patent 15,575,900 A, 28 February 2019. [Google Scholar]
- Marie, B.P.C.M.; Fabien, B. Emulsion-like Compositions. EP 09001812A, 14 June.
- John, H.; Joseph, K. Cheese Products With Added Modified Pyrodextrins. U.S. Patent 62,212,271, 9 March 2017. [Google Scholar]
- Keisuke, H.; Mai, M.; Yuko, F. Methods Respectively for Producing Cheese and Cheese Analogue Using Enzyme. U.S. Patent 18,449,377, 30 November 2023. [Google Scholar]
- Jing, L.I.; Zeyuan, D.; Mengmeng, F.A.N. Plant Cheese Analogue and Product Quality Comprehensive Evaluation Method Thereof. CN 202211403419A, 30 May.
- Jochen, E. Plant-Based Cheese of the Half-Hard Type. WO2024074589A1, 11 April 2024. [Google Scholar]
- Zou, Y.; Chen, D.; Zhen, Q.; Guo, L.; Lin, J. Soybean and Nut Plant Cheese Produced by Utilizing Composite Leavening Agent as Well as Preparation Method and Application of Soybean and Nut Plant Cheese. CN117652574A, 8 March 2024. [Google Scholar]
- Mefleh, M.; Pasqualone, A.; Caponio, F.; De Angelis, D.; Natrella, G.; Summo, C.; Faccia, M. Spreadable Plant-Based Cheese Analogue with Dry-Fractioned Pea Protein and Inulin–Olive Oil Emulsion-Filled Gel. J. Sci. Food Agric. 2022, 102, 5478–5487. [Google Scholar] [CrossRef] [PubMed]
- Bocker, R.; Silva, E.K. Innovative Technologies for Manufacturing Plant-Based Non-Dairy Alternative Milk and Their Impact on Nutritional, Sensory and Safety Aspects. Futur. Foods 2022, 5, 100098. [Google Scholar] [CrossRef]
- Masiá, C.; Fernández-Varela, R.; Jensen, P.E.; Rahimi Yazdi, S. The Impact of Different Bacterial Blends on Texture and Flavour Development in Plant-Based Cheese. Futur. Foods 2023, 8, 100250. [Google Scholar] [CrossRef]
- Levy, R.; Okun, Z.; Davidovich-Pinhas, M.; Shpigelman, A. Utilization of High-Pressure Homogenization of Potato Protein Isolate for the Production of Dairy-Free Yogurt-like Fermented Product. Food Hydrocoll. 2021, 113, 106442. [Google Scholar] [CrossRef]
- Jaeger, I.; Köhn, C.R.; Evans, J.D.; Frazzon, J.; Renault, P.; Kothe, C.I. Nutritional and Microbial Profiles of Ripened Plant-Based Cheese Analogs Collected from the European Market. Food Res. Int. 2024, 191, 114724. [Google Scholar] [CrossRef]
- Sutter, R.; Assad-Bustillos, M.; Windhab, E. Zein Improves Desirable Melt-Stretch Properties in Plant-Based Cheeses Made from Pea Protein. Food Hydrocoll. 2023, 144, 108981. [Google Scholar] [CrossRef]
- Grasso, N.; Bot, F.; Roos, Y.H.; Crowley, S.V.; Arendt, E.K.; O’Mahony, J.A. Plant-Based Alternatives to Cheese Formulated Using Blends of Zein and Chickpea Protein Ingredients. Foods 2023, 12, 1492. [Google Scholar] [CrossRef]
- Tojan, S.; Kaur, L.; Singh, J. Hybrid Paneer: Influence of Mung Bean Protein Isolate (Vigna radiata L.) on the Texture, Microstructure, and in Vitro Gastro-Small Intestinal Digestion. Food Chem. 2024, 434, 137434. [Google Scholar] [CrossRef] [PubMed]
- Ghamgui, H.; Bouaziz, F.; Frikha, F.; Châari, F.; Ellouze-Chaâbouni, S. Production and Characterization of Soft {Sardaigne}-Type Cheese by Using Almond Gum as a Functional Additive. Food Sci. Nutr. 2021, 9, 2032–2041. [Google Scholar] [CrossRef] [PubMed]
- Urbach, G. The Flavour of Milk and Dairy Products: II. Cheese: Contribution of Volatile Compounds. Int. J. Dairy Technol. 1997, 50, 79–89. [Google Scholar] [CrossRef]
- Ojochogu, D.; Ajibola, O.R.; Orewere, E.; Ubong, H.M.; Ime, H.U.; Zacheaus, L.S.; Andrew, J.E. Comparative Analysis of the Proximate Composition of Local Cheese Made from Soybean Milk and Cowmilk Using Different Coagulants. UMYU Sci. 2022, 1, 280–285. [Google Scholar] [CrossRef]
- Mohsin, A.Z.; Norsah, E.; Marzlan, A.A.; Abd Rahim, M.H.; Meor Hussin, A.S. Exploring the Applications of Plant-Based Coagulants in Cheese Production: {A} Review. Int. Dairy J. 2024, 148, 105792. [Google Scholar] [CrossRef]
- Raquib, M.; Borpuzari, T.; Hazarika, M.; Laskar, S.K.; Saikia, G.K.; Hazarika, R.A. Effect of Coagulating Enzymes and Types of Milk on the Physico-Chemical, Proximate Composition and Sensory Attributes of Iron Fortified {Mozzarella} Cheese. Emir. J. Food Agric. 2022, 34, 180–187. [Google Scholar] [CrossRef]
- Wardhani, D.H.; Jos, B.; Abdullah, A.Y.; Suherman, S.; Cahyono, H. Effect of Coagulants in Curd Forming in Cheese Making. J. Rekayasa Kim. Lingkung. 2018, 13, 209–216. [Google Scholar] [CrossRef]
- Stefanou, C.R.; Bartodziejska, B.; Gajewska, M.; Szosland-Fałtyn, A. Microbiological Quality and Safety of Traditional Raw Milk Cheeses Manufactured on a Small Scale by Polish Dairy Farms. Foods 2022, 11, 3910. [Google Scholar] [CrossRef] [PubMed]
Empresa | Patents |
---|---|
Valio Ltd. | 9 |
Cargill Inc. | 8 |
Leprino Foods Co. | 7 |
Papadakis Peter | 6 |
New Culture Inc. | 6 |
Damazakis Emmanouil | 5 |
Wofford Miles D | 4 |
Netle As | 4 |
Mevgal S a Dairy Products Industry Trad | 4 |
Creta Farms As Ind. | 4 |
Arla Foods Amba | 4 |
Allied Blending & Ingredient Inc. | 4 |
Eat Just Inc. | 3 |
Dow Global Technologies Llc. | 3 |
Oatly Ab | 3 |
Description | Product or Process | Reference |
---|---|---|
Consisting of an oat base (2–8% dry matter), vegetable fat (20–30%), starch (20–30%), native or modified, such as potato starch, vegetable protein (1–4%), potatoes, peas, or legumes, stabilizer (0.2–1%), and water (35–45%). | Product | [41] |
Methods for producing cheese analogues with improved meltability and stretchability during heating have been developed. These methods involve using enzymes such as glucose oxidase, α-glucosidase, and transglutaminase on raw cheese or mixtures containing plant-derived oil and starch. The processes aim to suppress the decrease in texture and stretchability of cheese during heating. This innovative approach applies to various cheeses, including mozzarella, Gouda, and Cheddar, and offers a way to enhance the quality and performance of cheese analogues in culinary applications. | Process | [125] |
The plant cheese analogue comprises the following raw materials: a starch raw material, a protein raw material, and a grease raw material. | Product | [126] |
Describes a plant-based half-hard cheese comprising 5–35% vegetable fat, 1–45% starches and/or modified starches, 1–7% lecithin (such as soy, sunflower, cottonseed, or rapeseed lecithin), with the remainder being water. It may also include 0.1–20% plant proteins, such as lentil, fava, or pea protein. The vegetable fat can be coconut fat, preferably non-hydrogenated and palm-oil-free. The preparation method involves mixing the ingredients under shear to form a homogeneous emulsion. | Product and process | [127] |
Describes a soybean and nut plant cheese made using a composite leavening agent (probiotics and lactic acid bacteria). | Product | [128] |
The patent protects both the formulation of the dry blend and the process for manufacturing the cheese analogue. The main focus is the partial or complete replacement of casein with starches and stabilizers, creating a more affordable, healthier, and versatile cheese. This allows for catering to vegan markets, reducing production costs, and offering a product with sensory characteristics very similar to conventional cheese. | Product and process | [105] |
Aspect | Dairy Cheese | Plant-Based Cheese Analogues | Reference |
---|---|---|---|
Main protein source | Casein (animal milk) | Soy, cashew, almond, pea, potato, rice proteins | [56,67,70,99,137] |
Coagulation agent | Rennet; acidification | Hydrocolloids, emulsifiers, starches | [140,141,142] |
Texture development | Enzymatic coagulation + aging | Texturization via hydrocolloids, starches, oils, sometimes extrusion or gelling agents | [16,22,129,131] |
Flavor development | Fermentation and ripening (microbial, enzymatic) | Added flavorings; limited fermentation | [117,131,138] |
Nutritional profile | High in complete protein, calcium, B12, iodine | Often lower in protein and micronutrients; may be fortified; higher fiber or protein content | [12,13,40,139] |
Lipid profile | High in saturated fat and cholesterol | Lower saturated fat and no cholesterol (except with coconut oil) | [12,54,99,129] |
Processing complexity | Traditional processes (milk treatment, curdling, ripening) | Requires ingredient functionalization and texture engineering | [21,143] |
Cost–benefit | High yield from dairy; established supply chain | Ingredient cost varies; may be higher in clean-label or nut-based formulations | \ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Leal, I.; Correia, P.; Lima, M.; Machado, B.; Souza, C.d. Cheese Analogues, an Alternative to Dietary Restrictions and Choices: The Current Scenario and Future. Foods 2025, 14, 2522. https://doi.org/10.3390/foods14142522
Leal I, Correia P, Lima M, Machado B, Souza Cd. Cheese Analogues, an Alternative to Dietary Restrictions and Choices: The Current Scenario and Future. Foods. 2025; 14(14):2522. https://doi.org/10.3390/foods14142522
Chicago/Turabian StyleLeal, Ingrid, Paulo Correia, Marina Lima, Bruna Machado, and Carolina de Souza. 2025. "Cheese Analogues, an Alternative to Dietary Restrictions and Choices: The Current Scenario and Future" Foods 14, no. 14: 2522. https://doi.org/10.3390/foods14142522
APA StyleLeal, I., Correia, P., Lima, M., Machado, B., & Souza, C. d. (2025). Cheese Analogues, an Alternative to Dietary Restrictions and Choices: The Current Scenario and Future. Foods, 14(14), 2522. https://doi.org/10.3390/foods14142522