Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (176)

Search Parameters:
Keywords = charging reservation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 3837 KiB  
Review
Recent Advances in the Application of VO2 for Electrochemical Energy Storage
by Yuxin He, Xinyu Gao, Jiaming Liu, Junxin Zhou, Jiayu Wang, Dan Li, Sha Zhao and Wei Feng
Nanomaterials 2025, 15(15), 1167; https://doi.org/10.3390/nano15151167 - 28 Jul 2025
Viewed by 202
Abstract
Energy storage technology is crucial for addressing the intermittency of renewable energy sources and plays a key role in power systems and electronic devices. In the field of energy storage systems, multivalent vanadium-based oxides have attracted widespread attention. Among these, vanadium dioxide (VO [...] Read more.
Energy storage technology is crucial for addressing the intermittency of renewable energy sources and plays a key role in power systems and electronic devices. In the field of energy storage systems, multivalent vanadium-based oxides have attracted widespread attention. Among these, vanadium dioxide (VO2) is distinguished by its key advantages, including high theoretical capacity, low cost, and strong structural designability. The diverse crystalline structures and plentiful natural reserves of VO2 offer a favorable foundation for facilitating charge transfer and regulating storage behavior during energy storage processes. This mini review provides an overview of the latest progress in VO2-based materials for energy storage applications, specifically highlighting their roles in lithium-ion batteries, zinc-ion batteries, photoassisted batteries, and supercapacitors. Particular attention is given to their electrochemical properties, structural integrity, and prospects for development. Additionally, it explores future development directions to offer theoretical insights and strategic guidance for ongoing research and industrial application of VO2. Full article
(This article belongs to the Special Issue Nanostructured Materials for Energy Storage)
Show Figures

Graphical abstract

9 pages, 920 KiB  
Article
Characterisation of Ventricular Nucleotide Metabolism and Clinical Predictors Associated with the Onset of Atrial Fibrillation Following Cardiac Surgery
by Daniel Paul Fudulu, Arnaldo Dimagli, Marco Moscarelli, Rahul Kota, Tim Dong, Marco Gemelli, Manraj Sandhu, Saadeh Suleiman and Gianni D. Angelini
J. Clin. Med. 2025, 14(13), 4777; https://doi.org/10.3390/jcm14134777 - 7 Jul 2025
Viewed by 386
Abstract
Introduction: Postoperative atrial fibrillation (POAF) is a common complication after heart surgery, adversely impacting clinical outcomes and healthcare costs. Little is known about the dynamics of nucleotide metabolism associated with the development of POAF at a ventricular level. We conducted a post hoc [...] Read more.
Introduction: Postoperative atrial fibrillation (POAF) is a common complication after heart surgery, adversely impacting clinical outcomes and healthcare costs. Little is known about the dynamics of nucleotide metabolism associated with the development of POAF at a ventricular level. We conducted a post hoc trial analysis to investigate the changes in ventricular adenine nucleotides and the clinical predictors associated with the development of AF. Methods: Using data from a randomised trial, we analysed ATP/ADP, ATP/AMP, and energy charges in left and right ventricular biopsies of patients who developed AF compared to non-AF patients. A logistic regression model was used to understand the predictors associated with the development of atrial fibrillation in this cohort. Results: We analysed adenine nucleotide levels available in 88 patients who underwent coronary artery bypass grafting (CABG) (n = 65) and aortic valve replacement (AVR) (n = 23), out of which 27 (31%) developed a new onset of AF. Seventeen (43.4%) patients in the CABG group and ten (26.15%) in the AVR group developed AF. The patients who developed postoperative AF had longer cross-clamp times for CABG (p = 0.013) and AVR (p = 0.002). The most significant predictors for AF development were age (p = 0.003) and cross-clamp time (p = 0.012). In patients undergoing CABG who developed AF, we found a significant drop in post-reperfusion ATP/ADP and ATP/AMP ratios compared to pre-reperfusion. This was not significant for the patients who underwent AVR. Furthermore, the patients who underwent CABG and developed AF had higher pre- and post-reperfusion ATP/ADP ratios and energy charges than non-AF patients, suggesting a higher reserve of cardiac nucleotides. Conclusions: The development of postoperative atrial fibrillation is associated with intraoperative changes in the ventricular adenine nucleotide metabolism of patients undergoing CABG. In the clinical analysis, age and cross-clamp time were significant predictors of AF development. Full article
Show Figures

Figure 1

27 pages, 9323 KiB  
Article
Dispersion Mechanism and Sensitivity Analysis of Coral Sand
by Xiang Cui, Ru Qu and Mingjian Hu
J. Mar. Sci. Eng. 2025, 13(7), 1249; https://doi.org/10.3390/jmse13071249 - 28 Jun 2025
Viewed by 305
Abstract
A lime–sand island–reef formation has a dual structure consisting of an overlying loose or weakly consolidated coral sand (CS) layer and an underlying reef limestone layer. The coral sand layer is the sole carrier of the underground freshwater lens in the lime–sand island–reef, [...] Read more.
A lime–sand island–reef formation has a dual structure consisting of an overlying loose or weakly consolidated coral sand (CS) layer and an underlying reef limestone layer. The coral sand layer is the sole carrier of the underground freshwater lens in the lime–sand island–reef, and it differs in terms of its hydraulic properties from common terrigenous quartz sand (QS). This study investigated the mechanism of freshwater lens formation, dominated by solute dispersion, combining multi-scale experiments and numerical simulations (GMS) to reveal the control mechanisms behind the dispersion properties of coral sand and their role in freshwater lens formation. Firstly, the dispersion test and microscopic characterization revealed the key differences in coral sand in terms of its roundness, roughness, particle charge, and surface hydrophilicity. Accordingly, a hierarchical conversion model for the coral sand–quartz sand coefficient of dispersion (COD) was established (R2 > 0.99). Further, combining this with numerical simulation in GMS revealed that the response pattern of the coefficient of dispersion to key parameters of freshwater lens development is as follows: freshwater appearance time > steady-state freshwater body thickness > steady-state freshwater reserve > lens stabilization time. These results clarify the development mechanism and formation process behind freshwater lenses on island reefs, from the micro to the macro scale, and provide a scientific basis for optimizing the protection of freshwater resources in coral islands and guiding the construction of artificial islands. Full article
(This article belongs to the Section Coastal Engineering)
Show Figures

Figure 1

15 pages, 3461 KiB  
Article
A Computational Approach for Graphene Doped with N,P,B Structures as Possible Electrode Materials for Potassium Ion Batteries (PIBs): A DFT Investigation
by A. Ahmad, A. A. M. Abahussain, M. H. Nazir and S. Z. J. Zaidi
Micromachines 2025, 16(7), 735; https://doi.org/10.3390/mi16070735 - 23 Jun 2025
Viewed by 330
Abstract
Although lithium-ion batteries are considered an ideal postulant for renewable energy harvesting, storage and applications, these batteries show promising performance; however, at the same time, these harvesting devices suffer from some major limitations, including scarce lithium resources, high cost, toxicity and safety concerns. [...] Read more.
Although lithium-ion batteries are considered an ideal postulant for renewable energy harvesting, storage and applications, these batteries show promising performance; however, at the same time, these harvesting devices suffer from some major limitations, including scarce lithium resources, high cost, toxicity and safety concerns. Potassium ion batteries (PIBs) can be proven a favorable alternative to metal ion batteries because of their widespread potassium reserves, low costs and enhanced protection against sparks. In this study, DFT simulations were employed using the B3LYP/6-311++g(d p) method to explore the application of graphene and its doped variants (N,B,P-graphene) as potential anode materials for PIBs. Various key parameters such as adsorption energy, Gibbs free energy, molecular orbital energies, non-covalent interactions, cell voltage, electron density distribution and density of states were computed as a means to evaluate the suitability of materials for PIB applications. Among the four structures, nitrogen- and phosphorus-doped graphene exhibited negative Gibbs free energy values of −0.020056 and −0.021117 hartree, indicating the thermodynamic favorability of charge transfer processes. Doping graphene with nitrogen and phosphorus decreases the HOMO-LUMO gap energy, facilitating efficient ion storage and charge transport. The doping of nitrogen and phosphorus increases the cell voltage from −1.05 V to 0.54 V and 0.57 V, respectively, while boron doping decreases the cell voltage. The cell voltage produced by graphene and its doped variants in potassium ion batteries has the following order: P-graphene (0.57 V) > N-graphene (0.54 V) > graphene (−1.05 V) > B-graphene (−1.54 V). This study illustrates how nitrogen- and phosphorus-doped graphene can be used as a propitious anode electrode for PIBs. Full article
(This article belongs to the Special Issue Nanotechnology in Li-Ion Batteries and Beyond)
Show Figures

Figure 1

27 pages, 5522 KiB  
Article
Integrated Vehicle-to-Building and Vehicle-to-Home Services for Residential and Worksite Microgrids
by Andrea Bonfiglio, Manuela Minetti, Riccardo Loggia, Lorenzo Frattale Mascioli, Andrea Golino, Cristina Moscatiello and Luigi Martirano
Smart Cities 2025, 8(3), 101; https://doi.org/10.3390/smartcities8030101 - 19 Jun 2025
Viewed by 443
Abstract
The development of electric mobility offers new perspectives in the energy sector and improves resource efficiency and sustainability. This paper proposes a new strategy for synchronizing the energy requirements of home, commercial, and vehicle mobility, with a focus on the batteries of electric [...] Read more.
The development of electric mobility offers new perspectives in the energy sector and improves resource efficiency and sustainability. This paper proposes a new strategy for synchronizing the energy requirements of home, commercial, and vehicle mobility, with a focus on the batteries of electric cars. In particular, this paper describes the coordination between a battery management algorithm that optimally assigns its capacity so that at least a part is reserved for mobility and a vehicle-to-building (V2B) service algorithm that uses a share of EV battery energy to improve user participation in renewable energy exploitation at home and at work. The system offers the user the choice of always maintaining a minimum charge for mobility or providing more flexible use of energy for business needs while maintaining established vehicle autonomy. Suitable management at home and at work allows always charging the vehicle to the required level of charge with renewable power excess, highlighting how the cooperation of home and work charging may provide novel frameworks for a smarter and more sustainable integration of electric mobility, reducing energy consumption and providing more effective energy management. The effectiveness of the proposed solution is demonstrated in a realistic configuration with real data and an experimental setup. Full article
Show Figures

Figure 1

15 pages, 5030 KiB  
Article
Decorating Ti3C2 MXene Nanosheets with Fe-Nx-C Nanoparticles for Efficient Oxygen Reduction Reaction
by Han Zheng, Fagang Wang and Weimeng Si
Inorganics 2025, 13(6), 188; https://doi.org/10.3390/inorganics13060188 - 6 Jun 2025
Viewed by 614
Abstract
Finding alternatives to platinum that exhibit high activity, stability, and abundant reserves as oxygen reduction electrocatalysts is crucial for the advancement of fuel cells. In this study, we first mixed FeCl2·4H2O, 1,10-phenanthroline, and Vulcan XC-72, followed by pyrolysis in [...] Read more.
Finding alternatives to platinum that exhibit high activity, stability, and abundant reserves as oxygen reduction electrocatalysts is crucial for the advancement of fuel cells. In this study, we first mixed FeCl2·4H2O, 1,10-phenanthroline, and Vulcan XC-72, followed by pyrolysis in a nitrogen atmosphere, to obtain FeNC. Subsequently, we combined FeNC with MXene produce FeNC/MXene composites. The FeNC/MXene catalyst achieved a half-wave potential of 0.857 V in an alkaline medium, exhibiting better oxygen reduction reaction (ORR) activity and durability than commercial Pt/C catalysts. The layered structure of MXene endows the material with a high specific surface area and facilitates efficient electron transfer pathways, thereby promoting rapid charge transfer and material diffusion. The cleavage of Ti-C bonds in Ti3C2 at elevated temperatures results in the transformation of MXene into TiO2, where the coexistence of anatase and rutile phases generates a synergistic effect that enhances both the mass transfer rate and the electrical conductivity of the catalytic layer. Additionally, the unique electronic structure of the FeNx sites simultaneously optimizes electrocatalytic activity and stability. Leveraging these structural advantages, the FeNC/MXene composite catalysts demonstrate exceptional catalytic activity and long-term stability in oxygen reduction reactions. Full article
Show Figures

Figure 1

25 pages, 1669 KiB  
Article
Two-Stage Collaborative Power Optimization for Off-Grid Wind–Solar Hydrogen Production Systems Considering Reserved Energy of Storage
by Yiwen Geng, Qi Liu, Hao Zheng and Shitong Yan
Energies 2025, 18(11), 2970; https://doi.org/10.3390/en18112970 - 4 Jun 2025
Viewed by 574
Abstract
Off-grid renewable energy hydrogen production is a crucial approach to enhancing renewable energy utilization and improving power system stability. However, the strong stochastic fluctuations of wind and solar power pose significant challenges to electrolyzer reliability. While hybrid energy storage systems (HESS) can mitigate [...] Read more.
Off-grid renewable energy hydrogen production is a crucial approach to enhancing renewable energy utilization and improving power system stability. However, the strong stochastic fluctuations of wind and solar power pose significant challenges to electrolyzer reliability. While hybrid energy storage systems (HESS) can mitigate power fluctuations, traditional power allocation rules based solely on electrolyzer power limits and HESS state of charge (SOC) boundaries result in insufficient energy supply capacity and unstable electrolyzer operation. To address this, this paper proposes a two-stage power optimization method integrating rule-based allocation with algorithmic optimization for wind–solar hydrogen production systems, considering reserved energy storage. In Stage I, hydrogen production power and HESS initial allocation are determined through the deep coupling of real-time electrolyzer operating conditions with reserved energy. Stage II employs an improved multi-objective particle swarm optimization (IMOPSO) algorithm to optimize HESS power allocation, minimizing unit hydrogen production cost and reducing average battery charge–discharge depth. The proposed method enhances hydrogen production stability and HESS supply capacity while reducing renewable curtailment rates and average production costs. Case studies demonstrate its superiority over three conventional rule-based power allocation methods. Full article
Show Figures

Figure 1

26 pages, 5460 KiB  
Article
Adaptive Recombination-Based Control Strategy for Cell Balancing in Lithium-Ion Battery Packs: Modeling and Simulation
by Khalid Hassan, Siaw Fei Lu and Thio Tzer Hwai Gilbert
Electronics 2025, 14(11), 2217; https://doi.org/10.3390/electronics14112217 - 29 May 2025
Viewed by 538
Abstract
This paper presents a novel adaptive cell recombination strategy for balancing lithium-ion battery packs, targeting electric vehicle (EV) applications. The proposed method dynamically adjusts the series–parallel configuration of individual cells based on instantaneous state of charge (SoC) and load demand, without relying on [...] Read more.
This paper presents a novel adaptive cell recombination strategy for balancing lithium-ion battery packs, targeting electric vehicle (EV) applications. The proposed method dynamically adjusts the series–parallel configuration of individual cells based on instantaneous state of charge (SoC) and load demand, without relying on conventional DC-DC converters or passive components. A hardware-efficient switching topology using SPDT (Single Pole Double Throw) switches enables flexible recombination and fault isolation with minimal complexity. The control algorithm, implemented in MATLAB/Simulink, evaluates multiple cell-grouping configurations to optimize balancing speed, energy retention, and operational safety. Simulation results under charging, discharging, and resting conditions demonstrate up to 80% faster balancing compared to sequential methods, with significantly lower component count and minimal energy loss. Validation using Panasonic NCR18650PF cells confirms the model’s real-world applicability. The method offers a scalable, high-speed, and energy-efficient solution for integration into next-generation battery management systems (BMS), achieving performance gains typically reserved for more complex converter-based architectures. Full article
(This article belongs to the Section Power Electronics)
Show Figures

Figure 1

14 pages, 6850 KiB  
Article
Improving Electrochemical Performance of Cobalt Hexacyanoferrate as Magnesium Ion Battery Cathode Material by Nickel Doping
by Jinxing Wang, Peiyang Zhang, Jiaxu Wang, Guangsheng Huang, Jingfeng Wang and Fusheng Pan
Batteries 2025, 11(6), 213; https://doi.org/10.3390/batteries11060213 - 29 May 2025
Viewed by 507
Abstract
Magnesium metal has a high theoretical volume capacity and abundant reserves. Magnesium ion battery is theoretically secure and eco-friendly. In recent years, magnesium ion battery has attracted wide attention and is expected to become a competitive energy storage candidate in the next generation. [...] Read more.
Magnesium metal has a high theoretical volume capacity and abundant reserves. Magnesium ion battery is theoretically secure and eco-friendly. In recent years, magnesium ion battery has attracted wide attention and is expected to become a competitive energy storage candidate in the next generation. However, due to the large polarization effect and slow migration kinetics of magnesium ions, magnesium ions are hard to insert/desert in cathode materials, resulting in a poor cycle and rate performance. CoHCF, a typical Prussian blue analog, has an open frame structure and double REDOX sites, and it is regarded as a candidate for rechargeable ion battery. Herein, a Ni-doping method was utilized to improve the performance of CoHCF. Compared with the original CoHCF, the maximum specific discharge capacity of the Ni-doped CoHCF at 50 mA/g charging and discharging current increased from 70 mAh/g to 89 mAh/g, and the cyclic performance and rate performance improved. These improvements result from the fact that the electrode reaction process of Ni-doped CoHCF changes from diffusion-driven to reaction-driven. The Ni-doped CoHCF is more stable, and the lattice changes during Mg2+ (de-)intercalation are smaller. This study can provide a reference for the development of Prussian blue analogs as cathode materials for magnesium ion batteries. Full article
Show Figures

Figure 1

29 pages, 3483 KiB  
Article
Impact of Coordinated Electric Ferry Charging on Distribution Network Using Metaheuristic Optimization
by Rajib Baran Roy, Sanath Alahakoon and Piet Janse Van Rensburg
Energies 2025, 18(11), 2805; https://doi.org/10.3390/en18112805 - 28 May 2025
Viewed by 471
Abstract
The maritime shipping sector is a major contributor to greenhouse gas emissions, particularly in coastal regions. In response, the adoption of electric ferries powered by renewable energy and supported by battery storage technologies has emerged as a viable decarbonization pathway. This study investigates [...] Read more.
The maritime shipping sector is a major contributor to greenhouse gas emissions, particularly in coastal regions. In response, the adoption of electric ferries powered by renewable energy and supported by battery storage technologies has emerged as a viable decarbonization pathway. This study investigates the operational impacts of coordinated electric ferry charging on a medium-voltage distribution network at Gladstone Marina, Queensland, Australia. Using DIgSILENT PowerFactory integrated with MATLAB Simulink and a Python-based control system, four proposed ferry terminals equipped with BESSs (Battery Energy Storage Systems) are simulated. A dynamic model of BESS operation is optimized using a balanced hybrid metaheuristic algorithm combining GA-PSO-BFO (Genetic Algorithm-Particle Swarm Optimization-Bacterial Foraging Optimization). Simulations under 50% and 80% transformer loading conditions assess the effects of charge-only versus charge–discharge strategies. Results indicate that coordinated charge–discharge control improves voltage stability by 1.0–1.5%, reduces transformer loading by 3–4%, and decreases feeder line loading by 2.5–3.5%. Conversely, charge-only coordination offers negligible benefits. Further, quasi-dynamic analyses validate the system’s enhanced stability under coordinated energy management. These findings highlight the potential of docked electric ferries, operating under intelligent control, to act as distributed energy reserves that enhance grid flexibility and operational efficiency. Full article
Show Figures

Figure 1

27 pages, 912 KiB  
Article
Optimizing State of Charge Estimation in Lithium–Ion Batteries via Wavelet Denoising and Regression-Based Machine Learning Approaches
by Mohammed Isam Al-Hiyali, Ramani Kannan and Hussein Shutari
World Electr. Veh. J. 2025, 16(6), 291; https://doi.org/10.3390/wevj16060291 - 24 May 2025
Viewed by 1049
Abstract
Accurate state of charge (SOC) estimation is key for the efficient management of lithium–ion (Li-ion) batteries, yet is often compromised by noise levels in measurement data. This study introduces a new approach that uses wavelet denoising with a machine learning regression model to [...] Read more.
Accurate state of charge (SOC) estimation is key for the efficient management of lithium–ion (Li-ion) batteries, yet is often compromised by noise levels in measurement data. This study introduces a new approach that uses wavelet denoising with a machine learning regression model to enhance SOC prediction accuracy. The application of wavelet transform in data pre-processing is investigated to assess the impact of denoising on SOC estimation accuracy. The efficacy of the proposed technique has been evaluated using various polynomial and ensemble regression models. For empirical validation, this study employs four Li-ion battery datasets from NASA’s prognostics center, implementing a holdout method wherein one cell is reserved for testing to ensure robustness. The results, optimized through wavelet-denoised data using polynomial regression models, demonstrate improved SOC estimation with RMSE values of 0.09, 0.25, 0.28, and 0.19 for the respective battery datasets. In particular, significant improvements (p-value < 0.05) with variations of 0.18, 0.20, 0.16, and 0.14 were observed between the original and wavelet-denoised SOC estimates. This study proves the effectiveness of wavelet-denoised input in minimizing prediction errors and establishes a new standard for reliable SOC estimation methods. Full article
Show Figures

Figure 1

18 pages, 773 KiB  
Article
Multi-Level Simulation Framework for Degradation-Aware Operation of a Large-Scale Battery Energy Storage Systems
by Leon Tadayon and Georg Frey
Energies 2025, 18(11), 2708; https://doi.org/10.3390/en18112708 - 23 May 2025
Viewed by 634
Abstract
The increasing integration of renewable energy sources necessitates efficient energy storage solutions, with large-scale battery energy storage systems (BESS) playing a key role in grid stabilization and time-shifting of energy. This study presents a multi-level simulation framework for optimizing BESS operation across multiple [...] Read more.
The increasing integration of renewable energy sources necessitates efficient energy storage solutions, with large-scale battery energy storage systems (BESS) playing a key role in grid stabilization and time-shifting of energy. This study presents a multi-level simulation framework for optimizing BESS operation across multiple markets while incorporating degradation-aware dispatch strategies. The framework integrates a day-ahead (DA) dispatch level, an intraday (ID) dispatch level, and a high-resolution simulation level to accurately model the impact of operational strategies on state of charge and battery degradation. A case study of BESS operation in the German electricity market is conducted, where frequency containment reserve provision is combined with DA and ID trading. The simulated revenue is validated by a battery revenue index. The study also compares full equivalent cycle (FEC)-based and state-of-health-based degradation models and discusses their application to cost estimation in dispatch optimization. The results emphasize the advantage of using FEC-based degradation costs for dispatch decision-making. Future research will include price forecasting and expanded market participation strategies to further improve and stabilize the profitability of BESS in multi-market environments. Full article
(This article belongs to the Special Issue Advances in Battery Energy Storage Systems)
Show Figures

Figure 1

31 pages, 9985 KiB  
Article
Additively Manufactured 316L Stainless Steel: Hydrogen Embrittlement Susceptibility and Electrochemical Gas Production
by Reham Reda, Sabbah Ataya, Mohamed Ayman, Khaled Saad, Shimaa Mostafa, Gehad Elnady, Rashid Khan and Yousef G. Y. Elshaghoul
Appl. Sci. 2025, 15(11), 5824; https://doi.org/10.3390/app15115824 - 22 May 2025
Viewed by 789
Abstract
Interest in hydrogen is rapidly growing due to rising greenhouse gas emissions and the depletion of fossil fuel reserves. Additive manufacturing (AM) is extensively employed to produce high-quality components, with a strong focus on enhancing mechanical properties. The efficiency and cost-effectiveness of AM [...] Read more.
Interest in hydrogen is rapidly growing due to rising greenhouse gas emissions and the depletion of fossil fuel reserves. Additive manufacturing (AM) is extensively employed to produce high-quality components, with a strong focus on enhancing mechanical properties. The efficiency and cost-effectiveness of AM have further increased interest in its application to manufacturing components capable of withstanding demanding conditions, such as those encountered in hydrogen technology. In this study, 316L stainless steel specimens were fabricated using AM via the selective laser melting (SLM) technique. The specimens then underwent various post-processing heat treatments (PPHT). A subset of these specimens, measuring 50 × 50 × 3 mm3, was tested as electrodes in a water electrolysis cell for oxyhydrogen (HHO) gas production. The HHO gas flow rate and electrolyzer efficiency were evaluated at 60 °C under varying currents. The remaining AM specimens were evaluated for their susceptibility to hydrogen embrittlement under various hydrogen storage conditions, including testing at both room and cryogenic temperatures. Tensile and Charpy impact specimens were fabricated and tested before and after hydrogen charging. The fracture surfaces were analyzed using scanning electron microscopy (SEM) to assess the influence of hydrogen on fracture characteristics. Additionally, as-rolled stainless-steel specimens were examined for comparison with AM and PPHT 316L stainless steel. The primary objective of this study is to determine the most efficient alloy processing condition for optimal performance in each application. Results indicate that PPHT 316L stainless steel exhibits superior performance both as electrodes for HHO gas production and as a material for hydrogen storage vessels, demonstrating high resistance to hydrogen embrittlement. Full article
(This article belongs to the Section Additive Manufacturing Technologies)
Show Figures

Figure 1

26 pages, 9960 KiB  
Article
Lanthanum Recovery from Aqueous Solutions by Adsorption onto Silica Xerogel with Iron Oxide and Zinc Oxide
by Ionuţ Bălescu, Mihaela Ciopec, Adina Negrea, Nicoleta Sorina Nemeş, Cătălin Ianăşi, Orsina Verdes, Mariana Suba, Paula Svera, Bogdan Pascu, Petru Negrea and Alina Ramona Buzatu
Gels 2025, 11(5), 314; https://doi.org/10.3390/gels11050314 - 23 Apr 2025
Viewed by 635
Abstract
From the lanthanide group, part of the rare earth elements (REEs), lanthanum is one of the most important elements given its application potential. Although it does not have severe toxicity to the environment, its increased usage in advanced technologies and medical fields and [...] Read more.
From the lanthanide group, part of the rare earth elements (REEs), lanthanum is one of the most important elements given its application potential. Although it does not have severe toxicity to the environment, its increased usage in advanced technologies and medical fields and scarce natural reserves point to the necessity also of recovering lanthanum from diluted solutions. Among the multiple methods for separation and purification, adsorption has been recognized as one of the most promising because of its simplicity, high efficiency, and large-scale availability. In this study, a xerogel based on silicon and iron oxides doped with zinc oxide and polymer (SiO2@Fe2O3@ZnO) (SFZ), obtained by the sol–gel method, was considered as an adsorbent material. Micrography indicates the existence of particles with irregular geometric shapes and sizes between 16 μm and 45 μm. Atomic force microscopy (AFM) reveals the presence of dimples on the top of the material. The specific surface area of the material, calculated by the Brunauer–Emmet–Teller (BET) method, indicates a value of 53 m2/g, with C constant at a value of 48. In addition, the Point of Zero Charge (pHpZc) of the material was determined to be 6.7. To establish the specific parameters of the La(III) adsorption process, static studies were performed. Based on experimental data, kinetic, thermodynamic, and equilibrium studies, the mechanism of the adsorption process was established. The maximum adsorption capacity was 6.7 mg/g, at a solid/liquid ratio = 0.1 g:25 mL, 4 < pH < 6, 298 K, after a contact time of 90 min. From a thermodynamic point of view, the adsorption process is spontaneous, endothermic, and occurs at the adsorbent–adsorbate interface. The Sips model is the most suitable for describing the observed adsorption process, indicating a complex interaction between La(III) ions and the adsorbent material. The material can be reused as an adsorbent material, having a regeneration capacity of more than 90% after the first cycle of regeneration. The material was reused 3 times with considerable efficiency. Full article
Show Figures

Graphical abstract

24 pages, 5964 KiB  
Article
A Privacy-Preserving Scheme for Charging Reservations and Subsequent Deviation Settlements for Electric Vehicles Based on a Consortium Blockchain
by Beibei Wang, Yikun Yang, Wenjie Liu and Lun Xu
World Electr. Veh. J. 2025, 16(5), 243; https://doi.org/10.3390/wevj16050243 - 22 Apr 2025
Viewed by 484
Abstract
Electric vehicles have garnered substantial attention as an environmentally sustainable transportation alternative amid escalating global concerns regarding ecological preservation and energy resource management. While the proliferation of electric vehicles necessitates the development of efficient and secure charging infrastructure, the inherent communication-intensive nature of [...] Read more.
Electric vehicles have garnered substantial attention as an environmentally sustainable transportation alternative amid escalating global concerns regarding ecological preservation and energy resource management. While the proliferation of electric vehicles necessitates the development of efficient and secure charging infrastructure, the inherent communication-intensive nature of the charging processes has raised concerns regarding potential privacy vulnerabilities. Our paper introduces a privacy protection scheme specifically designed for electric vehicle charging reservations to address this issue. The primary goal of this scheme is to protect user privacy while maintaining operational efficiency and economic viability for charging providers. Our proposed solution ensures a secure and private environment for charging reservation transactions and subsequent deviation settlements by incorporating advanced technologies, including zero-knowledge proof, a consortium blockchain, and homomorphic encryption. The scheme encrypts charging reservation information and securely transmits it via a consortium blockchain, effectively shielding the sensitive data of all participating parties. Notably, the experimental findings establish the robustness of our scheme in terms of its security and privacy protection, aligning with the stringent demands of electric vehicle charging operations. Full article
Show Figures

Figure 1

Back to TopTop