Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,814)

Search Parameters:
Keywords = channel diversity

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 1029 KiB  
Review
Inter-Organellar Ca2+ Homeostasis in Plant and Animal Systems
by Philip Steiner and Susanna Zierler
Cells 2025, 14(15), 1204; https://doi.org/10.3390/cells14151204 - 6 Aug 2025
Abstract
The regulation of calcium (Ca2+) homeostasis is a critical process in both plant and animal systems, involving complex interplay between various organelles and a diverse network of channels, pumps, and transporters. This review provides a concise overview of inter-organellar Ca2+ [...] Read more.
The regulation of calcium (Ca2+) homeostasis is a critical process in both plant and animal systems, involving complex interplay between various organelles and a diverse network of channels, pumps, and transporters. This review provides a concise overview of inter-organellar Ca2+ homeostasis, highlighting key regulators and mechanisms in plant and animal cells. We discuss the roles of key Ca2+ channels and transporters, including IP3Rs, RyRs, TPCs, MCUs, TRPMLs, and P2XRs in animals, as well as their plant counterparts. Here, we explore recent innovations in structural biology and advanced microscopic techniques that have enhanced our understanding of these proteins’ structure, functions, and regulations. We examine the importance of membrane contact sites in facilitating Ca2+ transfer between organelles and the specific expression patterns of Ca2+ channels and transporters. Furthermore, we address the physiological implications of inter-organellar Ca2+ homeostasis and its relevance in various pathological conditions. For extended comparability, a brief excursus into bacterial intracellular Ca2+ homeostasis is also made. This meta-analysis aims to bridge the gap between plant and animal Ca2+ signaling research, identifying common themes and unique adaptations in these diverse biological systems. Full article
Show Figures

Figure 1

26 pages, 1203 KiB  
Review
Deciphering the Role of Functional Ion Channels in Cancer Stem Cells (CSCs) and Their Therapeutic Implications
by Krishna Samanta, Gali Sri Venkata Sai Rishma Reddy, Neeraj Kumar Sharma and Pulak Kar
Int. J. Mol. Sci. 2025, 26(15), 7595; https://doi.org/10.3390/ijms26157595 - 6 Aug 2025
Abstract
Despite advances in medicine, cancer remains one of the foremost global health concerns. Conventional treatments like surgery, radiotherapy, and chemotherapy have advanced with the emergence of targeted and immunotherapy approaches. However, therapeutic resistance and relapse remain major barriers to long-term success in cancer [...] Read more.
Despite advances in medicine, cancer remains one of the foremost global health concerns. Conventional treatments like surgery, radiotherapy, and chemotherapy have advanced with the emergence of targeted and immunotherapy approaches. However, therapeutic resistance and relapse remain major barriers to long-term success in cancer treatment, often driven by cancer stem cells (CSCs). These rare, resilient cells can survive therapy and drive tumour regrowth, urging deeper investigation into the mechanisms underlying their persistence. CSCs express ion channels typical of excitable tissues, which, beyond electrophysiology, critically regulate CSC fate. However, the underlying regulatory mechanisms of these channels in CSCs remain largely unexplored and poorly understood. Nevertheless, the therapeutic potential of targeting CSC ion channels is immense, as it offers a powerful strategy to disrupt vital signalling pathways involved in numerous pathological conditions. In this review, we explore the diverse repertoire of ion channels expressed in CSCs and highlight recent mechanistic insights into how these channels modulate CSC behaviours, dynamics, and functions. We present a concise overview of ion channel-mediated CSC regulation, emphasizing their potential as novel diagnostic markers and therapeutic targets, and identifying key areas for future research. Full article
(This article belongs to the Special Issue Ion Channels as a Potential Target in Pharmaceutical Designs 2.0)
Show Figures

Figure 1

21 pages, 49475 KiB  
Article
NRGS-Net: A Lightweight Uformer with Gated Positional and Local Context Attention for Nighttime Road Glare Suppression
by Ruoyu Yang, Huaixin Chen, Sijie Luo and Zhixi Wang
Appl. Sci. 2025, 15(15), 8686; https://doi.org/10.3390/app15158686 (registering DOI) - 6 Aug 2025
Abstract
Existing nighttime visibility enhancement methods primarily focus on improving overall brightness under low-light conditions. However, nighttime road images are also affected by glare, glow, and flare from complex light sources such as streetlights and headlights, making it challenging to suppress locally overexposed regions [...] Read more.
Existing nighttime visibility enhancement methods primarily focus on improving overall brightness under low-light conditions. However, nighttime road images are also affected by glare, glow, and flare from complex light sources such as streetlights and headlights, making it challenging to suppress locally overexposed regions and recover fine details. To address these challenges, we propose a Nighttime Road Glare Suppression Network (NRGS-Net) for glare removal and detail restoration. Specifically, to handle diverse glare disturbances caused by the uncertainty in light source positions and shapes, we designed a gated positional attention (GPA) module that integrates positional encoding with local contextual information to guide the network in accurately locating and suppressing glare regions, thereby enhancing the visibility of affected areas. Furthermore, we introduced an improved Uformer backbone named LCAtransformer, in which the downsampling layers adopt efficient depthwise separable convolutions to reduce computational cost while preserving critical spatial information. The upsampling layers incorporate a residual PixelShuffle module to achieve effective restoration in glare-affected regions. Additionally, channel attention is introduced within the Local Context-Aware Feed-Forward Network (LCA-FFN) to enable adaptive adjustment of feature weights, effectively suppressing irrelevant and interfering features. To advance the research in nighttime glare suppression, we constructed and publicly released the Night Road Glare Dataset (NRGD) captured in real nighttime road scenarios, enriching the evaluation system for this task. Experiments conducted on the Flare7K++ and NRGD, using five evaluation metrics and comparing six state-of-the-art methods, demonstrate that our method achieves superior performance in both subjective and objective metrics compared to existing advanced methods. Full article
(This article belongs to the Special Issue Computational Imaging: Algorithms, Technologies, and Applications)
Show Figures

Figure 1

25 pages, 13175 KiB  
Article
Fault Diagnosis for CNC Machine Tool Feed Systems Based on Enhanced Multi-Scale Feature Network
by Peng Zhang, Min Huang and Weiwei Sun
Lubricants 2025, 13(8), 350; https://doi.org/10.3390/lubricants13080350 - 5 Aug 2025
Abstract
Despite advances in Convolutional Neural Networks (CNNs) for intelligent fault diagnosis in CNC machine tools, bearing fault diagnosis in CNC feed systems remains challenging, particularly in multi-scale feature extraction and generalization across operating conditions. This study introduces an enhanced multi-scale feature network (MSFN) [...] Read more.
Despite advances in Convolutional Neural Networks (CNNs) for intelligent fault diagnosis in CNC machine tools, bearing fault diagnosis in CNC feed systems remains challenging, particularly in multi-scale feature extraction and generalization across operating conditions. This study introduces an enhanced multi-scale feature network (MSFN) that addresses these limitations through three integrated modules designed to extract critical fault features from vibration signals. First, a Soft-Scale Denoising (S2D) module forms the backbone of the MSFN, capturing multi-scale fault features from input signals. Second, a Multi-Scale Adaptive Feature Enhancement (MS-AFE) module based on long-range weighting mechanisms is developed to enhance the extraction of periodic fault features. Third, a Dynamic Sequence–Channel Attention (DSCA) module is incorporated to improve feature representation across channel and sequence dimensions. Experimental results on two datasets demonstrate that the proposed MSFN achieves high diagnostic accuracy and exhibits robust generalization across diverse operating conditions. Moreover, ablation studies validate the effectiveness and contributions of each module. Full article
(This article belongs to the Special Issue Advances in Tool Wear Monitoring 2025)
Show Figures

Figure 1

15 pages, 1241 KiB  
Article
Triplet Spatial Reconstruction Attention-Based Lightweight Ship Component Detection for Intelligent Manufacturing
by Bocheng Feng, Zhenqiu Yao and Chuanpu Feng
Appl. Sci. 2025, 15(15), 8676; https://doi.org/10.3390/app15158676 (registering DOI) - 5 Aug 2025
Abstract
Automatic component recognition plays a crucial role in intelligent ship manufacturing, but existing methods suffer from low recognition accuracy and high computational cost in industrial scenarios involving small samples, component stacking, and diverse categories. To address the requirements of shipbuilding industrial applications, a [...] Read more.
Automatic component recognition plays a crucial role in intelligent ship manufacturing, but existing methods suffer from low recognition accuracy and high computational cost in industrial scenarios involving small samples, component stacking, and diverse categories. To address the requirements of shipbuilding industrial applications, a Triplet Spatial Reconstruction Attention (TSA) mechanism that combines threshold-based feature separation with triplet parallel processing is proposed, and a lightweight You Only Look Once Ship (YOLO-Ship) detection network is constructed. Unlike existing attention mechanisms that focus on either spatial reconstruction or channel attention independently, the proposed TSA integrates triplet parallel processing with spatial feature separation–reconstruction techniques to achieve enhanced target feature representation while significantly reducing parameter count and computational overhead. Experimental validation on a small-scale actual ship component dataset demonstrates that the improved network achieves 88.7% mean Average Precision (mAP), 84.2% precision, and 87.1% recall, representing improvements of 3.5%, 2.2%, and 3.8%, respectively, compared to the original YOLOv8n algorithm, requiring only 2.6 M parameters and 7.5 Giga Floating-point Operations per Second (GFLOPs) computational cost, achieving a good balance between detection accuracy and lightweight model design. Future research directions include developing adaptive threshold learning mechanisms for varying industrial conditions and integration with surface defect detection capabilities to enhance comprehensive quality control in intelligent manufacturing systems. Full article
(This article belongs to the Special Issue Artificial Intelligence on the Edge for Industry 4.0)
Show Figures

Figure 1

23 pages, 85184 KiB  
Article
MB-MSTFNet: A Multi-Band Spatio-Temporal Attention Network for EEG Sensor-Based Emotion Recognition
by Cheng Fang, Sitong Liu and Bing Gao
Sensors 2025, 25(15), 4819; https://doi.org/10.3390/s25154819 - 5 Aug 2025
Abstract
Emotion analysis based on electroencephalogram (EEG) sensors is pivotal for human–machine interaction yet faces key challenges in spatio-temporal feature fusion and cross-band and brain-region integration from multi-channel sensor-derived signals. This paper proposes MB-MSTFNet, a novel framework for EEG emotion recognition. The model constructs [...] Read more.
Emotion analysis based on electroencephalogram (EEG) sensors is pivotal for human–machine interaction yet faces key challenges in spatio-temporal feature fusion and cross-band and brain-region integration from multi-channel sensor-derived signals. This paper proposes MB-MSTFNet, a novel framework for EEG emotion recognition. The model constructs a 3D tensor to encode band–space–time correlations of sensor data, explicitly modeling frequency-domain dynamics and spatial distributions of EEG sensors across brain regions. A multi-scale CNN-Inception module extracts hierarchical spatial features via diverse convolutional kernels and pooling operations, capturing localized sensor activations and global brain network interactions. Bi-directional GRUs (BiGRUs) model temporal dependencies in sensor time-series, adept at capturing long-range dynamic patterns. Multi-head self-attention highlights critical time windows and brain regions by assigning adaptive weights to relevant sensor channels, suppressing noise from non-contributory electrodes. Experiments on the DEAP dataset, containing multi-channel EEG sensor recordings, show that MB-MSTFNet achieves 96.80 ± 0.92% valence accuracy, 98.02 ± 0.76% arousal accuracy for binary classification tasks, and 92.85 ± 1.45% accuracy for four-class classification. Ablation studies validate that feature fusion, bidirectional temporal modeling, and multi-scale mechanisms significantly enhance performance by improving feature complementarity. This sensor-driven framework advances affective computing by integrating spatio-temporal dynamics and multi-band interactions of EEG sensor signals, enabling efficient real-time emotion recognition. Full article
(This article belongs to the Section Intelligent Sensors)
Show Figures

Figure 1

17 pages, 4371 KiB  
Article
Adaptive Filtered-x Least Mean Square Algorithm to Improve the Performance of Multi-Channel Noise Control Systems
by Maha Yousif Hasan, Ahmed Sabah Alaraji, Amjad J. Humaidi and Huthaifa Al-Khazraji
Math. Comput. Appl. 2025, 30(4), 84; https://doi.org/10.3390/mca30040084 (registering DOI) - 5 Aug 2025
Abstract
This paper proposes an optimized control filter (OCF) based on the Filtered-x Least Mean Square (FxLMS) algorithm for multi-channel active noise control (ANC) systems. The proposed OCF-McFxLMS algorithm delivers three key contributions. Firstly, even in difficult noise situations such as White Gaussian, Brownian, [...] Read more.
This paper proposes an optimized control filter (OCF) based on the Filtered-x Least Mean Square (FxLMS) algorithm for multi-channel active noise control (ANC) systems. The proposed OCF-McFxLMS algorithm delivers three key contributions. Firstly, even in difficult noise situations such as White Gaussian, Brownian, and pink noise, it greatly reduces error, reaching nearly zero mean squared error (MSE) values across all Microphone (Mic) channels. Secondly, it improves computational efficiency by drastically reducing execution time from 58.17 s in the standard McFxLMS algorithm to just 0.0436 s under White Gaussian noise, enabling real-time noise control without compromising accuracy. Finally, the OCF-McFxLMS demonstrates robust noise attenuation, achieving signal-to-noise ratio (SNR) values of 137.41 dB under White Gaussian noise and over 100 dB for Brownian and pink noise, consistently outperforming traditional approaches. These contributions collectively establish the OCF-McFxLMS algorithm as an efficient and effective solution for real-time ANC systems, delivering superior noise reduction and computational speed performance across diverse noise environments. Full article
Show Figures

Figure 1

27 pages, 18859 KiB  
Article
Application of a Hierarchical Approach for Architectural Classification and Stratigraphic Evolution in Braided River Systems, Quaternary Strata, Songliao Basin, NE China
by Zhiwen Dong, Zongbao Liu, Yanjia Wu, Yiyao Zhang, Jiacheng Huang and Zekun Li
Appl. Sci. 2025, 15(15), 8597; https://doi.org/10.3390/app15158597 (registering DOI) - 2 Aug 2025
Viewed by 160
Abstract
The description and assessment of braided river architecture are usually limited by the paucity of real geological datasets from field observations; due to the complexity and diversity of rivers, traditional evaluation models are difficult to apply to braided river systems in different climatic [...] Read more.
The description and assessment of braided river architecture are usually limited by the paucity of real geological datasets from field observations; due to the complexity and diversity of rivers, traditional evaluation models are difficult to apply to braided river systems in different climatic and tectonic settings. This study aims to establish an architectural model suitable for the study area setting by introducing a hierarchical analysis approach through well-exposed three-dimensional outcrops along the Second Songhua River. A micro–macro four-level hierarchical framework is adopted to obtain a detailed anatomy of sedimentary outcrops: lithofacies, elements, element associations, and archetypes. Fourteen lithofacies are identified: three conglomerates, seven sandstones, and four mudstones. Five elements provide the basic components of the river system framework: fluvial channel, laterally accreting bar, downstream accreting bar, abandoned channel, and floodplain. Four combinations of adjacent elements are determined: fluvial channel and downstream accreting bar, fluvial channel and laterally accreting bar, erosionally based fluvial channel and laterally accreting bar, and abandoned channel and floodplain. Considering the sedimentary evolution process, the braided river prototype, which is an element-based channel filling unit, is established by documenting three contact combinations between different elements and six types of fine-grained deposits’ preservation positions in the elements. Empirical relationships are developed among the bankfull channel depth, mean bankfull channel depth, and bankfull channel width. For the braided river systems, the establishment of the model promotes understanding of the architecture and evolution, and the application of the hierarchical analysis approach provides a basis for outcrop, underground reservoir, and tank experiments. Full article
(This article belongs to the Section Earth Sciences)
Show Figures

Figure 1

13 pages, 3187 KiB  
Article
An Approach to Improve Land–Water Salt Flux Modeling in the San Francisco Estuary
by John S. Rath, Paul H. Hutton and Sujoy B. Roy
Water 2025, 17(15), 2278; https://doi.org/10.3390/w17152278 - 31 Jul 2025
Viewed by 229
Abstract
In this case study, we used the Delta Simulation Model II (DSM2) to study the salt balance at the land–water interface in the river delta of California’s San Francisco Estuary. Drainage, a source of water and salt for adjacent channels in the study [...] Read more.
In this case study, we used the Delta Simulation Model II (DSM2) to study the salt balance at the land–water interface in the river delta of California’s San Francisco Estuary. Drainage, a source of water and salt for adjacent channels in the study area, is affected by channel salinity. The DSM2 approach has been adopted by several hydrodynamic models of the estuary to enforce water volume balance between diversions, evapotranspiration and drainage at the land–water interface, but does not explicitly enforce salt balance. We found deviations from salt balance to be quite large, albeit variable in magnitude due to the heterogeneity of hydrodynamic and salinity conditions across the study area. We implemented a procedure that approximately enforces salt balance through iterative updates of the baseline drain salinity boundary conditions (termed loose coupling). We found a reasonable comparison with field measurements of drainage salinity. In particular, the adjusted boundary conditions appear to capture the range of observed interannual variability better than the baseline periodic estimates. The effect of the iterative adjustment procedure on channel salinity showed substantial spatial variability: locations dominated by large flows were minimally impacted, and in lower flow channels, deviations between baseline and adjusted channel salinity series were notable, particularly during the irrigation season. This approach, which has the potential to enhance the simulation of extreme salinity intrusion events (when high channel salinity significantly impacts drainage salinity), is essential for robustly modeling hydrodynamic conditions that pre-date contemporary water management infrastructure. We discuss limitations associated with this approach and recommend that—for this case study—further improvements could best be accomplished through code modification rather than coupling of transport and island water balance models. Full article
(This article belongs to the Special Issue Advances in Coastal Hydrological and Geological Processes)
Show Figures

Figure 1

18 pages, 7509 KiB  
Article
A New Kv1.3 Channel Blocker from the Venom of the Ant Tetramorium bicarinatum
by Guillaume Boy, Laurence Jouvensal, Nathan Téné, Jean-Luc Carayon, Elsa Bonnafé, Françoise Paquet, Michel Treilhou, Karine Loth and Arnaud Billet
Toxins 2025, 17(8), 379; https://doi.org/10.3390/toxins17080379 - 30 Jul 2025
Viewed by 283
Abstract
Ant venoms are rich sources of bioactive molecules, including peptide toxins with potent and selective activity on ion channels, which makes them valuable for pharmacological research and therapeutic development. Voltage-dependent potassium (Kv) channels, critical for regulating cellular excitability or cell cycle progression control, [...] Read more.
Ant venoms are rich sources of bioactive molecules, including peptide toxins with potent and selective activity on ion channels, which makes them valuable for pharmacological research and therapeutic development. Voltage-dependent potassium (Kv) channels, critical for regulating cellular excitability or cell cycle progression control, are targeted by a diverse array of venom-derived peptides. This study focuses on MYRTXA4-Tb11a, a peptide from Tetramorium bicarinatum venom, which was previously shown to have a strong paralytic effect on dipteran species without cytotoxicity on insect cells. In the present study, we show that Tb11a exhibited no or low cytotoxicity toward mammalian cells either, even at high concentrations, while electrophysiological studies revealed a blockade of hKv1.3 activity. Additionally, Ta11a, an analog of Tb11a from the ant Tetramorium africanum, demonstrated similar Kv1.3 inhibitory properties. Structural analysis supports that the peptide acts on Kv1.3 channels through the functional dyad Y21-K25 and that the disulfide bridge is essential for biological activity, as reduction seems to disrupt the peptide conformation and impair the dyad. These findings highlight the importance of three-dimensional structure in channel modulation and establish Tb11a and Ta11a as promising Kv1.3 inhibitors. Future research should investigate their selectivity across additional ion channels and employ structure-function studies to further enhance their pharmacological potential. Full article
(This article belongs to the Special Issue Unlocking the Deep Secrets of Toxins)
Show Figures

Figure 1

14 pages, 3999 KiB  
Article
The Fabrication of Porous Al2O3 Ceramics with Ultra-High Mechanical Strength and Oil Conductivity via Reaction Bonding and the Addition of Pore-Forming Agents
by Ye Dong, Xiaonan Yang, Hao Li, Zun Xia and Jinlong Yang
Materials 2025, 18(15), 3574; https://doi.org/10.3390/ma18153574 - 30 Jul 2025
Viewed by 186
Abstract
Reaction bonding (RB) using Al powder is an effective method for preparing porous ceramics with low shrinkage, high porosity, and high strength. However, it remains challenging to optimize mechanical strength and oil conductivity simultaneously for atomizer applications. Herein, aiming at addressing this issue, [...] Read more.
Reaction bonding (RB) using Al powder is an effective method for preparing porous ceramics with low shrinkage, high porosity, and high strength. However, it remains challenging to optimize mechanical strength and oil conductivity simultaneously for atomizer applications. Herein, aiming at addressing this issue, porous Al2O3 ceramics with ultra-high mechanical strength and oil conductivity were fabricated via the RB process using polymethyl methacrylate (PMMA) microspheres as the pore-forming agent. The pore structure was gradually optimized by regulating the additive amount, particle size, and particle gradation of PMMA microspheres. The bimodal pores, formed by Al oxidation-induced hollow structures (enhancing bonding force) and burnout of large-sized PMMA microspheres, significantly improved mechanical strength; meanwhile, three-dimensional interconnected pores derived from particle gradation increased the diversity and quantity of oil-conduction channels, boosting oil conductivity. Consequently, under an open porosity of 58.2 ± 0.1%, a high compressive strength of 7.9 ± 0.3 MPa (a 54.7% improvement) and an excellent oil conductivity of 2.1 ± 0.0 mg·s−1 (a 46.5% improvement) were achieved. This superior performance combination, overcoming the trade-off between strength and oil conductivity, demonstrates substantial application potential in atomizers. Full article
(This article belongs to the Section Advanced and Functional Ceramics and Glasses)
Show Figures

Figure 1

34 pages, 4388 KiB  
Article
IRSD-Net: An Adaptive Infrared Ship Detection Network for Small Targets in Complex Maritime Environments
by Yitong Sun and Jie Lian
Remote Sens. 2025, 17(15), 2643; https://doi.org/10.3390/rs17152643 - 30 Jul 2025
Viewed by 353
Abstract
Infrared ship detection plays a vital role in maritime surveillance systems. As a critical remote sensing application, it enables maritime surveillance across diverse geographic scales and operational conditions while offering robust all-weather operation and resilience to environmental interference. However, infrared imagery in complex [...] Read more.
Infrared ship detection plays a vital role in maritime surveillance systems. As a critical remote sensing application, it enables maritime surveillance across diverse geographic scales and operational conditions while offering robust all-weather operation and resilience to environmental interference. However, infrared imagery in complex maritime environments presents significant challenges, including low contrast, background clutter, and difficulties in detecting small-scale or distant targets. To address these issues, we propose an Infrared Ship Detection Network (IRSD-Net), a lightweight and efficient detection network built upon the YOLOv11n framework and specially designed for infrared maritime imagery. IRSD-Net incorporates a Hierarchical Multi-Kernel Convolution Network (HMKCNet), which employs parallel multi-kernel convolutions and channel division to enhance multi-scale feature extraction while reducing redundancy and memory usage. To further improve cross-scale fusion, we design the Dynamic Cross-Scale Feature Pyramid Network (DCSFPN), a bidirectional architecture that combines up- and downsampling to integrate low-level detail with high-level semantics. Additionally, we introduce Wise-PIoU, a novel loss function that improves bounding box regression by enforcing geometric alignment and adaptively weighting gradients based on alignment quality. Experimental results demonstrate that IRSD-Net achieves 92.5% mAP50 on the ISDD dataset, outperforming YOLOv6n and YOLOv11n by 3.2% and 1.7%, respectively. With a throughput of 714.3 FPS, IRSD-Net delivers high-accuracy, real-time performance suitable for practical maritime monitoring systems. Full article
Show Figures

Figure 1

31 pages, 2317 KiB  
Review
Roles of Ion Channels in Oligodendrocyte Precursor Cells: From Physiology to Pathology
by Jianing Wang, Yu Shen, Ping Liao, Bowen Yang and Ruotian Jiang
Int. J. Mol. Sci. 2025, 26(15), 7336; https://doi.org/10.3390/ijms26157336 - 29 Jul 2025
Viewed by 255
Abstract
Oligodendrocyte precursor cells (OPCs) are a distinct and dynamic glial population that retain proliferative and migratory capacities throughout life. While traditionally recognized for differentiating into oligodendrocytes (OLs) and generating myelin to support rapid nerve conduction, OPCs are now increasingly appreciated for their diverse [...] Read more.
Oligodendrocyte precursor cells (OPCs) are a distinct and dynamic glial population that retain proliferative and migratory capacities throughout life. While traditionally recognized for differentiating into oligodendrocytes (OLs) and generating myelin to support rapid nerve conduction, OPCs are now increasingly appreciated for their diverse and non-canonical roles in the central nervous system (CNS), including direct interactions with neurons. A notable feature of OPCs is their expression of diverse ion channels that orchestrate essential cellular functions, including proliferation, migration, and differentiation. Given their widespread distribution across the CNS, OPCs are increasingly recognized as active contributors to the development and progression of various neurological disorders. This review aims to present a detailed summary of the physiological and pathological functions of ion channels in OPCs, emphasizing their contribution to CNS dysfunction. We further highlight recent advances suggesting that ion channels in OPCs may serve as promising therapeutic targets across a broad range of disorders, including, but not limited to, multiple sclerosis (MS), spinal cord injury, amyotrophic lateral sclerosis (ALS), psychiatric disorders, Alzheimer’s disease (AD), and neuropathic pain (NP). Finally, we discuss emerging therapeutic strategies targeting OPC ion channel function, offering insights into potential future directions in the treatment of CNS diseases. Full article
(This article belongs to the Special Issue Ion Channels as a Potential Target in Pharmaceutical Designs 2.0)
Show Figures

Figure 1

19 pages, 1555 KiB  
Article
MedLangViT: A Language–Vision Network for Medical Image Segmentation
by Yiyi Wang, Jia Su, Xinxiao Li and Eisei Nakahara
Electronics 2025, 14(15), 3020; https://doi.org/10.3390/electronics14153020 - 29 Jul 2025
Viewed by 245
Abstract
Precise medical image segmentation is crucial for advancing computer-aided diagnosis. Although deep learning-based medical image segmentation is now widely applied in this field, the complexity of human anatomy and the diversity of pathological manifestations often necessitate the use of image annotations to enhance [...] Read more.
Precise medical image segmentation is crucial for advancing computer-aided diagnosis. Although deep learning-based medical image segmentation is now widely applied in this field, the complexity of human anatomy and the diversity of pathological manifestations often necessitate the use of image annotations to enhance segmentation accuracy. In this process, the scarcity of annotations and the lightweight design requirements of associated text encoders collectively present key challenges for improving segmentation model performance. To address these challenges, we propose MedLangViT, a novel language–vision multimodal model for medical image segmentation that incorporates medical descriptive information through lightweight text embedding rather than text encoders. MedLangViT innovatively leverages medical textual information to assist the segmentation process, thereby reducing reliance on extensive high-precision image annotations. Furthermore, we design an Enhanced Channel-Spatial Attention Module (ECSAM) to effectively fuse textual and visual features, strengthening textual guidance for segmentation decisions. Extensive experiments conducted on two publicly available text–image-paired medical datasets demonstrated that MedLangViT significantly outperforms existing state-of-the-art methods, validating the effectiveness of both the proposed model and the ECSAM. Full article
Show Figures

Figure 1

18 pages, 5309 KiB  
Article
LGM-YOLO: A Context-Aware Multi-Scale YOLO-Based Network for Automated Structural Defect Detection
by Chuanqi Liu, Yi Huang, Zaiyou Zhao, Wenjing Geng and Tianhong Luo
Processes 2025, 13(8), 2411; https://doi.org/10.3390/pr13082411 - 29 Jul 2025
Viewed by 209
Abstract
Ensuring the structural safety of steel trusses in escalators is critical for the reliable operation of vertical transportation systems. While manual inspection remains widely used, its dependence on human judgment leads to extended cycle times and variable defect-recognition rates, making it less reliable [...] Read more.
Ensuring the structural safety of steel trusses in escalators is critical for the reliable operation of vertical transportation systems. While manual inspection remains widely used, its dependence on human judgment leads to extended cycle times and variable defect-recognition rates, making it less reliable for identifying subtle surface imperfections. To address these limitations, a novel context-aware, multi-scale deep learning framework based on the YOLOv5 architecture is proposed, which is specifically designed for automated structural defect detection in escalator steel trusses. Firstly, a method called GIES is proposed to synthesize pseudo-multi-channel representations from single-channel grayscale images, which enhances the network’s channel-wise representation and mitigates issues arising from image noise and defocused blur. To further improve detection performance, a context enhancement pipeline is developed, consisting of a local feature module (LFM) for capturing fine-grained surface details and a global context module (GCM) for modeling large-scale structural deformations. In addition, a multi-scale feature fusion module (MSFM) is employed to effectively integrate spatial features across various resolutions, enabling the detection of defects with diverse sizes and complexities. Comprehensive testing on the NEU-DET and GC10-DET datasets reveals that the proposed method achieves 79.8% mAP on NEU-DET and 68.1% mAP on GC10-DET, outperforming the baseline YOLOv5s by 8.0% and 2.7%, respectively. Although challenges remain in identifying extremely fine defects such as crazing, the proposed approach offers improved accuracy while maintaining real-time inference speed. These results indicate the potential of the method for intelligent visual inspection in structural health monitoring and industrial safety applications. Full article
Show Figures

Figure 1

Back to TopTop