Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (93)

Search Parameters:
Keywords = cementitious grout

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 13234 KB  
Article
Cracking-Resistance Mechanism of Fiber-Reinforced Coal-Based Solid-Waste Grouting Materials
by Shuai Guo, Weifeng Liang, Xiangru Wu, Chenyang Li, Hongzeng Li, Yahui Liu, Shenyang Ouyang, Yachao Guo and Junmeng Li
Materials 2026, 19(2), 389; https://doi.org/10.3390/ma19020389 - 18 Jan 2026
Viewed by 168
Abstract
Grouting technology can be employed to repair cracks in an aquifer to maintain its stability; however, existing grouting materials tend to come with problems such as low flexural strength, poor cracking resistance, and the coupled effects of fiber reinforcement and sulfoaluminate cement (SAC) [...] Read more.
Grouting technology can be employed to repair cracks in an aquifer to maintain its stability; however, existing grouting materials tend to come with problems such as low flexural strength, poor cracking resistance, and the coupled effects of fiber reinforcement and sulfoaluminate cement (SAC) addition on hydrate evolution, and pore-refinement and crack-resistance mechanisms in coal-based solid-waste cementitious grouts remain insufficiently understood. In this paper, fiber-modified coal-based solid-waste grouting (F-CWG) materials were prepared by mixing different contents of sulfoaluminate cement (SAC) and different fibers. The mechanical strength, microstructure, hydration products, and pore evolution characteristics were analyzed by means of mechanical property tests, energy-dispersive X-ray spectroscopy (SEM/EDS), X-ray diffraction (XRD), thermogravimetric analysis (TGA), and nuclear magnetic resonance (NMR). The results show that the mechanical strength decreases at first due to insufficient early-stage hydration products. Specifically, the 28 d compressive and flexural strengths decrease from 15.34 MPa and 4.55 MPa at 0% SAC to 8.18 MPa and 2.99 MPa at 40% SAC but increase again to 13.36 MPa and 3.79 MPa at 60% SAC as the formation of ettringite (AFt) and C–S–H is promoted with higher SAC content. Among the tested fibers, a dosage of 0.6% generally improves mechanical strength and refines pore structure, with PVA and steel fibers showing the most pronounced effects. Our results reveal the mechanism behind the enhancement of cracking resistance in F-CWG materials, providing a scientific basis for grouting and water-preservation mining, and are of great significance in improving the utilization rate of coal-based solid waste. Full article
(This article belongs to the Special Issue Low-Carbon Cementitious Composites)
Show Figures

Figure 1

13 pages, 1384 KB  
Article
Experimental Study on a New Cement-Based Grouting Material for Iron Tailings Sand
by Ruibao Jin, Chaoyu Yang, Yangyang Luo, Yingchun Cai, Pan Guo, Dong Wei and Heng Liu
Materials 2026, 19(2), 328; https://doi.org/10.3390/ma19020328 - 14 Jan 2026
Viewed by 180
Abstract
This study develops a green, high-performance, cement-based grout by replacing manufactured sand with iron tailings sand (ITS) at ratios of 0–50% to address resource depletion. Fluidity, mechanical strength, and expansion rates were experimentally evaluated to determine engineering feasibility. The results indicate that while [...] Read more.
This study develops a green, high-performance, cement-based grout by replacing manufactured sand with iron tailings sand (ITS) at ratios of 0–50% to address resource depletion. Fluidity, mechanical strength, and expansion rates were experimentally evaluated to determine engineering feasibility. The results indicate that while ITS inclusion reduces fluidity due to particle morphology, it significantly enhances compressive strength through a physical filling effect. Specifically, the 30% replacement group achieved a peak 28-day compressive strength of 100.4 MPa. Comprehensive analysis identifies 40% as the optimal replacement rate, where the grout strictly satisfies relevant industry specifications regarding fluidity, early strength, and volume stability. This research demonstrates the practical significance of utilizing industrial solid waste to produce high-performance sleeve grout for prefabricated construction. Full article
(This article belongs to the Special Issue Advances in Modern Cement-Based Materials for Composite Structures)
Show Figures

Graphical abstract

23 pages, 6731 KB  
Article
Research on the Infiltration Effect of Waterborne Polyurethane Cementitious Composite Slurry Penetration Grouting Under Vacuum Effect
by Chungang Zhang, Feng Huang, Yingguang Shi, Xiujun Sun and Guihe Wang
Polymers 2025, 17(23), 3205; https://doi.org/10.3390/polym17233205 - 1 Dec 2025
Viewed by 398
Abstract
To address the issue of restricted grout diffusion caused by seepage effects during grouting in sandy soil layers, this study proposes an optimised grouting method for water-based polyurethane-cement composite grout (WPU-CS) under vacuum-pressure synergy. By establishing a porous medium flow model based on [...] Read more.
To address the issue of restricted grout diffusion caused by seepage effects during grouting in sandy soil layers, this study proposes an optimised grouting method for water-based polyurethane-cement composite grout (WPU-CS) under vacuum-pressure synergy. By establishing a porous medium flow model based on the mass conservation equation and linear filtration law, the influence mechanism of cement particle seepage effects was quantitatively characterised. An orthogonal test (L9(34)) optimised the grout composition, determining the optimal parameter combination as the following: water-to-cement ratio 1.5:1, polyurethane-to-cement ratio 5~10%, magnesium aluminium silicate content 1%, and hydroxypropyl methylcellulose content 0.15%. Vacuum permeation grouting tests demonstrated that compared to pure cement slurry, WPU-CS reduced filter cake thickness by 80%, significantly suppressing the leaching effect (the volume fraction δ of cement particles exhibited exponential decay with increasing distance r from the grouting end, and the slurry front velocity gradually decreased). Concurrently, the porosity ϕ in the grouted zone showed a gradient distribution (with more pronounced porosity reduction near the grouting end). When vacuum pressure increased from −10 kPa to −30 kPa, slurry diffusion distance rose from 11 cm to 18 cm (63.6% increase). When grouting pressure increased from 20 kPa to 60 kPa, diffusion distance increased from 8 cm to 20 cm (150% increase). The study confirms that synergistic control using WPU-CS with moderate grouting pressure and high vacuum effectively balances seepage suppression and soil stability, providing an innovative solution for efficient sandy soil reinforcement. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Figure 1

31 pages, 4052 KB  
Systematic Review
Cementitious Grouts in Ground Support Systems: A PRISMA-Guided Bibliometric and Mechanistic Review
by Alireza Entezam, Hadi Nourizadeh, Paulomi (Polly) Burey, Kevin McDougall, Peter Craig, Behshad Jodeiri Shokri, Shima Entezam, Naj Aziz and Ali Mirzaghorbanali
Appl. Sci. 2025, 15(23), 12439; https://doi.org/10.3390/app152312439 - 24 Nov 2025
Viewed by 601
Abstract
This study follows the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) framework, combining bibliometric mapping and mechanistic synthesis to provide a unified evidence-based review of cementitious grouts in ground support systems. The bibliometric layer quantifies global research activity, while the systematic [...] Read more.
This study follows the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) framework, combining bibliometric mapping and mechanistic synthesis to provide a unified evidence-based review of cementitious grouts in ground support systems. The bibliometric layer quantifies global research activity, while the systematic synthesis interprets how material composition, pozzolanic chemistry, and rheology control grout performance and sustainability. This study presents a systematic review complemented by bibliometric analysis to synthesise global research trends and technical advances in grout design. A dataset of 1200 articles was screened, from which 101 journal papers met the inclusion and quality criteria and were analysed in detail. Co-occurrence mapping of author keywords was then used to identify research hotspots and collaborative structures. The bibliometric analysis revealed that Construction and Building Materials is the leading outlet. Co-authorship mapping highlighted strong international collaboration, with leading clusters centred on supplementary cementitious materials, rheology, and microstructural analysis. The technical review consolidates five interrelated themes: reinforcement mechanisms, cementitious grouts, chemical reactions and pozzolanic reactivity, fresh and hardened state properties, and microstructural development with rheological behaviour. Across these themes, supplementary cementitious materials and waste-derived binders have emerged as central to both performance enhancement and carbon reduction, while advanced experimental and modelling techniques have refined understanding of microstructural evolution and grout–rock–bolt interactions. Collectively, the findings underline that cementitious grouts are no longer passive fillers but engineered composites designed for mechanical efficiency, durability, and environmental responsibility. Key research gaps remain in the standardisation of rheological testing, long-term durability under complex field conditions, and integration of life-cycle assessment into grout development. Addressing these challenges will be critical for the design of next-generation grouts capable of meeting the dual imperatives of safety and sustainability in mining and civil engineering. Full article
Show Figures

Figure 1

23 pages, 5852 KB  
Article
Performance and Microstructure Characterization of Grouting Materials for Tailings Mined-Out Area Prepared by All-Solid Waste
by Yongwei Gao, Mengya Chen, Borui Zhou, Xianhua Yao, Shiwen Liu, Yiqian Chang and Shengqiang Chen
Buildings 2025, 15(22), 4177; https://doi.org/10.3390/buildings15224177 - 19 Nov 2025
Viewed by 410
Abstract
This study aims to develop a high-performance grouting material for mine goaf backfilling, creating a green and low-carbon cementitious alternative by utilizing coal gangue and sludge as the primary precursors. Based on an orthogonal experimental design, the effects of four factors including the [...] Read more.
This study aims to develop a high-performance grouting material for mine goaf backfilling, creating a green and low-carbon cementitious alternative by utilizing coal gangue and sludge as the primary precursors. Based on an orthogonal experimental design, the effects of four factors including the coal gangue/sludge ratio, activator modulus, water–binder ratio, and sodium-to-aluminum ratio on the compressive strength of the geopolymer were systematically investigated. The mineral composition and microstructure of the geopolymer were analyzed using microscopic test methods such as XRD and SEM. The test results indicate that the water–binder ratio has the most significant effect on the polymerization performance of the coal gangue/sludge-based geopolymer (CSG), with compressive strength increasing as the water–binder ratio decreases. The Ca2+ provided by the sludge to the reaction system directly promotes the formation of new calcium-containing products such as anorthite and calcium silicate hydrate, which play an important role in improving the strength of geopolymers. Moreover, the developed CSG exhibits a significantly lower carbon footprint compared to conventional cement-based grouting materials, aligning with the goals of sustainable and green construction. When the coal gangue/sludge ratio is 7:3, the water–binder ratio is 0.3, the sodium-to-aluminum ratio is 0.64, and the activator modulus is 1.0, the 3-day compressive strength (CS) of the geopolymer reaches 34.5 MPa, demonstrating its potential as an effective and environmentally friendly grouting material for goaf applications. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

22 pages, 4993 KB  
Article
Effect of Steel Slag and Ground Slag on the Properties of Cement-Based Greener Grouting Material in Sandy Strata
by Hang Xu, Qian Bai and Guoliang Xie
Buildings 2025, 15(22), 4138; https://doi.org/10.3390/buildings15224138 - 17 Nov 2025
Viewed by 521
Abstract
Grouting materials can be used for reinforcement and water plugging of underground engineering in sandy strata. This study examines the mechanism of alkali-activated cementitious materials by selecting steel slag and ground slag to replace cement in double-liquid grouting materials. Various retarders were used [...] Read more.
Grouting materials can be used for reinforcement and water plugging of underground engineering in sandy strata. This study examines the mechanism of alkali-activated cementitious materials by selecting steel slag and ground slag to replace cement in double-liquid grouting materials. Various retarders were used to adjust the gel time, making it controllable for grouting materials. The results show that when the sodium silicate volume is in the range of 20–40%, the W/B is in the range of 0.7–1.0, and the steel-slag-to-ground-slag ratio (SS:SL) is 3:7, the macroscopic properties of the grouting material reach the optimal value, the microstructure is denser, and the hydration products are calcium hydroxide, calcium–silicate–hydrate (C-S-H) gel, and ettringite. When the cement content is 40%, the W/B is 0.8, the sodium silicate volume dosage is 30%, and the SS:SL ratio is 3:7, the 3 d compressive strength of the slurry reaches 14.57 MPa and the 28 d compressive strength reaches 21.14 MPa. To analyse the solidification effect of double-liquid grouting materials with mixed SS and SL on sandy soil, experiments were conducted to study the impacts of the soil moisture content, soil particle size distribution, and slurry quantity on the strength of consolidation. This study conducts an in-depth investigation into optimising the proportioning of industrial solid wastes and the multi-component synergistic mechanisms. This study provides a new method for the effective utilisation of industrial waste and a reference for the practical application of industrial waste as supplementary cementitious materials in the future. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

20 pages, 23211 KB  
Article
Performance Degradation Mechanism of New Grouting Filling Material Under Goaf Erosion Environment
by Han Yang, Junwu Xia, Yujing Wang, Yu Zhou, Kangjia Song and Siyong Tan
Materials 2025, 18(22), 5147; https://doi.org/10.3390/ma18225147 - 12 Nov 2025
Viewed by 360
Abstract
This study aims to resolve the “secondary activation” challenge when erecting structures over goaf zones by employing a novel grouting and filling material. It delves into the performance degradation of the innovative ECS soil grouting filling material (ESGF material) within the goaf’s ionic [...] Read more.
This study aims to resolve the “secondary activation” challenge when erecting structures over goaf zones by employing a novel grouting and filling material. It delves into the performance degradation of the innovative ECS soil grouting filling material (ESGF material) within the goaf’s ionic erosion context. Erosion tests were performed on ESGF material specimens with varying mix designs to mimic the sulfate and chloride erosion scenarios commonly encountered in practical engineering. The macro-mechanical properties and microstructural changes of ESGF materials under ionic erosion environment were systematically investigated by various testing methods, such as unconfined compressive strength (UCS), SEM, XRD, TG, FTIR, and Raman. The findings indicate that both sulfate and chloride erosion lead to a reduction in the strength of the ESGF material. As erosion progresses, the specimens experience a mass increase followed by a decrease, with their strength exhibiting a consistent downward trend. In sulfate erosion conditions, the buildup of expansion product like ettringite (AFt) and thaumasite (TSA) inflicts substantial internal structural damage. Conversely, Friedel’s salt, the primary product of chloride erosion, exhibits relatively weaker expansiveness, and chloride concentration exerts a less pronounced effect on material degradation. Moreover, the cementitious material content and the proportion of quick-setting component play a significant role in determining the ESGF material’s resistance to erosion. By adjusting the quick-setting components ratio in response to changes in the water content of soft soil, the anti-ion erosion performance of solidified soil can be effectively enhanced. Notably, curing with a 5% sulfate maintenance could significantly improve the erosion resistance of ESGF material. This suggests that ESGF materials can be used without concern for curing issues in high-salinity environments during grouting. The research addresses the root cause of goaf subsidence while facilitating the recycling of solid waste, offering an environmentally friendly solution. Full article
(This article belongs to the Section Advanced Materials Characterization)
Show Figures

Figure 1

15 pages, 1673 KB  
Article
Modeling Compressive and Flexural Strength of Cement Grouts with Fly Ash, Silica Fume, and Polyethylene Terephthalate: A Correlated Multivariate Regression Approach in Compositional Data Analysis
by Omar Almutairi and Muhammad Imran Khan
Buildings 2025, 15(21), 3976; https://doi.org/10.3390/buildings15213976 - 4 Nov 2025
Cited by 1 | Viewed by 558
Abstract
An integrated statistical–graphical framework is introduced for designing sustainable cement grout mixes that incorporate polyethylene terephthalate (PET) waste and supplementary cementitious materials (SCMs) for semi-flexible pavement applications. A correlated multivariate linear mixed-effects model employs additive log-ratio transformations of PET and SCM proportions (fly [...] Read more.
An integrated statistical–graphical framework is introduced for designing sustainable cement grout mixes that incorporate polyethylene terephthalate (PET) waste and supplementary cementitious materials (SCMs) for semi-flexible pavement applications. A correlated multivariate linear mixed-effects model employs additive log-ratio transformations of PET and SCM proportions (fly ash or silica fume relative to cement) to predict 1-day, 7-day, and 28-day compressive strengths and 28-day flexural strength within a single unified framework. This approach quantifies both the systematic strength penalty of PET substitution and the benefits of SCM additions. The model results demonstrate high random-intercept correlations, substantial reductions in the Akaike information criterion (AIC) and root mean squared error (RMSE) compared to a null model, and marginal and conditional coefficient of determination (R2) values of 0.96 and 0.99, respectively, confirming major capture of the variance in the mechanical response. Complementary ternary plots visualize predicted 28-day performance across the cement–PET–SCM compositional space. These plots reveal that zero-PET formulations along the cement–binder edge achieve maximum strengths, with both fly ash and silica fume maximizing compressive and flexural strengths and any PET addition uniformly degrading performance. By combining rigorous compositional modeling with intuitive visualization, the proposed framework offers quantitative rigor, practical mix design guidelines, and a scalable protocol for optimizing sustainable grout formulations and informing future exploration of alternative fillers, flow regimes, and durability assessments. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

15 pages, 1639 KB  
Article
Performance of Sustainable Semi-Rigid Pavements: Optimizing High-Content Reclaimed Asphalt Pavement with Rejuvenators and Novel Grout Formulations
by Naeem Aziz Memon, Gulzar Hussain Jatoi, Giuseppe Loprencipe, Laura Moretti and Nur Izzi Md. Yusoff
Materials 2025, 18(21), 4840; https://doi.org/10.3390/ma18214840 - 23 Oct 2025
Viewed by 552
Abstract
Achieving sustainable pavement construction through high-content Reclaimed Asphalt Pavement (RAP) is a critical industry goal, but its implementation is frequently challenged by the reduced mechanical performance and durability inherent in such mixtures. This study evaluates the performance of semi-rigid pavements with RAP from [...] Read more.
Achieving sustainable pavement construction through high-content Reclaimed Asphalt Pavement (RAP) is a critical industry goal, but its implementation is frequently challenged by the reduced mechanical performance and durability inherent in such mixtures. This study evaluates the performance of semi-rigid pavements with RAP from 0% to 100%, a chemical rejuvenator, and four novel cementitious grout formulations (G1–G4). A comprehensive experimental program examined compressive strength, flexural strength, rutting resistance, fatigue life, and moisture sensitivity. Statistical analysis revealed that increasing RAP content significantly reduced all performance metrics. However, the primary innovation of this work lies in identifying strong interaction effects between key variables. The chemical rejuvenator effectively mitigated performance losses, with its benefits most pronounced at higher RAP contents (p ≤ 0.003). Among the Gi types, G3, containing a proprietary high-reactivity mineral additive, consistently achieved superior results; for instance, the R100-J-G3 regained over 70% strength of the virgin control mix (R0-NJ-G3). Notably, the interaction between RAP content and grout type (p ≤ 0.015) revealed that G3’s performance increased with RAP content, demonstrating its pivotal role in enabling technically viable 100% RAP mixtures. These findings underscore that the successful use of high-content RAP depends not just on individual components but on the optimized synergy between rejuvenator and grout selection, offering a validated pathway for technically viable pavements containing 100% RAP, reducing reliance on virgin materials and lowering environmental impact. Full article
(This article belongs to the Special Issue Innovative Materials and Technologies for Road Pavements)
Show Figures

Figure 1

22 pages, 8704 KB  
Article
Cement-Based Grouting Materials Modified with GO/NS Hybrids
by Longfei Lu, Guoxiang Yang, Yan Ai, Jingkai Qu, Jinrui Duan, Kun Yang and Wenbin Sun
Materials 2025, 18(21), 4820; https://doi.org/10.3390/ma18214820 - 22 Oct 2025
Viewed by 697
Abstract
This study systematically investigates the effects of individual and combined incorporation of graphene oxide (GO) and nano-silica sol (NS) on the macroscopic properties and microstructure of cement-based grouting materials, with emphasis on their synergistic mechanisms. A series of macroscopic tests including setting time, [...] Read more.
This study systematically investigates the effects of individual and combined incorporation of graphene oxide (GO) and nano-silica sol (NS) on the macroscopic properties and microstructure of cement-based grouting materials, with emphasis on their synergistic mechanisms. A series of macroscopic tests including setting time, fluidity, bleeding rate, and mechanical strength were conducted, complemented by multi-scale microstructural characterization techniques such as scanning electron microscopy (SEM), X-ray diffraction (XRD), mercury intrusion porosimetry (MIP), and Fourier-transform infrared spectroscopy (FTIR). The results demonstrate that both NS and GO effectively reduce setting time and bleeding rate while enhancing mechanical strength; however, NS exhibits a more pronounced adverse effect on fluidity compared to GO. The hybrid system displays a distinct transition from synergy to antagonism: under low-dosage co-incorporation (2 wt% NS + 0.01 wt% GO), the flexural and compressive strengths increased by 13.5% and 45.5%, respectively, relative to the reference group. Microscopic analysis revealed that the synergistic interaction between the pozzolanic effect of NS and the templating effect of GO under this condition optimizes hydrate morphology and pore structure, leading to enhanced performance. Conversely, excessive dosage of either component induces agglomeration, resulting in microstructural deterioration and performance degradation. This study establishes optimal dosage ranges and combination principles for NS and GO in cement-based materials, providing a theoretical foundation for designing high-workability and high-strength cementitious composites. Full article
Show Figures

Figure 1

26 pages, 5667 KB  
Article
Performance of High-Fluidity Cementitious Grouting Materials with Recycled Waste Glass in Semi-Flexible Pavement Mixture
by Ayman Hassan AL-Qudah, Suhana Koting, Mohd Rasdan Ibrahim, Muna M. Alibrahim and Abdullah I. Al-Mansour
Coatings 2025, 15(10), 1223; https://doi.org/10.3390/coatings15101223 - 18 Oct 2025
Viewed by 852
Abstract
Semi-flexible pavement (SFP) relies primarily on the properties of cementitious grouting material (CGM), which plays a crucial role in providing durability and crack resistance. This paper investigates the performance of CGMs containing recycled waste glass (RWG) as a replacement to fine granite aggregate [...] Read more.
Semi-flexible pavement (SFP) relies primarily on the properties of cementitious grouting material (CGM), which plays a crucial role in providing durability and crack resistance. This paper investigates the performance of CGMs containing recycled waste glass (RWG) as a replacement to fine granite aggregate (FGA) and their effect on SFP mixtures. Two high-fluidity glass-cementitious grouts (Glcement grouts) were developed and tested at five RWG replacement levels (0%, 30%, 50%, 70%, and 100%). The results indicated that CGM with 70% RWG provided the most balanced performance, with a flowability of 11.8 s, low drying shrinkage (0.04%), and water absorption not exceeding 1.9%. The mechanical properties were significantly enhanced, achieving a high compressive strength of 121.9 MPa and a high flexural strength of 13.9 MPa. Microstructural analysis confirmed a refined interfacial transition zone with low porosity (5.36%), contributing to superior durability. Furthermore, the SFP mixture injected with Glcement exhibited high mechanical performance, attributed to improved interlocking within voids. In conclusion, replacing FGA with RWG in CGM optimizes both mechanical and durability properties, promoting sustainable and low-carbon pavement construction. Full article
(This article belongs to the Section Environmental Aspects in Colloid and Interface Science)
Show Figures

Figure 1

22 pages, 6982 KB  
Article
Design of Semi-Rigid Composite Highway Pavements Using Cementitious Grouting and Porous Asphalt
by Sevil Kofteci, Mansor Nazary, Ahmad Khaled Masbah and Halil Ibrahim Burgan
Materials 2025, 18(19), 4636; https://doi.org/10.3390/ma18194636 - 9 Oct 2025
Viewed by 912
Abstract
Due to the increasing volume of traffic on the world’s highways, researchers have been searching for new composite techniques and methods to develop durable and cost-effective pavement structures. The semi-rigid pavement is a composite pavement consisting of a porous asphalt mix with air [...] Read more.
Due to the increasing volume of traffic on the world’s highways, researchers have been searching for new composite techniques and methods to develop durable and cost-effective pavement structures. The semi-rigid pavement is a composite pavement consisting of a porous asphalt mix with air voids between 25 and 30% and a high-fluidity cementitious grout. In this study, different cementitious grout mixes were prepared. Then a porous asphalt mix with almost 30% air void content was designed. After evaluating the workability, mechanical strength, and volume stability of the prepared grout mixes, the most suitable mix is proposed to fill the voids in the porous asphalt mix. Finally, the prepared semi-rigid pavement specimens were subjected to various tests to evaluate the performance characteristics of the designed pavement. The research concludes that the grout mixture ratio proposed in this study has good grouting ability and the semi-rigid pavement has superior performance characteristics. Full article
Show Figures

Figure 1

13 pages, 4003 KB  
Article
Research and Development of New Conductive Cement-Based Grouting Materials and Performance Studies
by Shen Zuo, Meisheng Shi, Junwei Bi, Menghan Zhang and Qingluan Li
Coatings 2025, 15(10), 1119; https://doi.org/10.3390/coatings15101119 - 25 Sep 2025
Viewed by 745
Abstract
In this study, cement, short-cut carbon fibers, and polymer water-absorbing resin were used as the main materials, with high-performance water-reducing polycarboxylic acid agent as the modified material. A new conductive cement-based grouting material was developed by incorporating functional additives. Its mix design was [...] Read more.
In this study, cement, short-cut carbon fibers, and polymer water-absorbing resin were used as the main materials, with high-performance water-reducing polycarboxylic acid agent as the modified material. A new conductive cement-based grouting material was developed by incorporating functional additives. Its mix design was optimized based on initial setting time, fluidity, bleeding rate, and compressive strength. The optimal ratio of the grouting material was determined as follows: 0.4 wt% of high water-absorbent resin, 0.25 wt% of high-efficiency water reducer, 0.8 wt% of short-cut carbon fibers, and a water–cement ratio of 0.8:1. The electrical conductivity of the grouting material was studied in depth under different dosages of short-cut carbon fibers, considering factors such as curing age, temperature, and pressure conditions. The results show that with the increase in curing age, the volume resistivity of the specimen gradually increases; the resistivity of the conductive cementitious grouting material decreases with the rise in temperature, showing a negative temperature coefficient effect; additionally, the doping of an appropriate amount of short-cut carbon fibers enables the conductive cementitious grouting specimen to exhibit good pressure-sensitive properties. Field test verification indicates that the new cementitious conductive grouting material has excellent conductive properties, and the grouting quality can be effectively evaluated via high-density electrical testing. Full article
(This article belongs to the Special Issue Advanced Functional Cement-Based Materials for Smart Applications)
Show Figures

Figure 1

21 pages, 6894 KB  
Article
Study on the Influence and Performance of Nano SiO2 on Solid Waste Grouting Material
by Huifang Zhang, Lei Wang, Jie Chen, Haiyang Chen, Wei Wu, Jinzhu Li, Henan Lu, Dongxiao Hu and Hongliang Huang
Materials 2025, 18(17), 4110; https://doi.org/10.3390/ma18174110 - 1 Sep 2025
Viewed by 956
Abstract
As a key connection technology in prefabricated buildings, offshore wind power, and bridge engineering, the performance and environmental sustainability of grouted sleeve connections are essential for the long-term development of civil infrastructure. To address the environmental burden of conventional high-strength cement-based grouts, an [...] Read more.
As a key connection technology in prefabricated buildings, offshore wind power, and bridge engineering, the performance and environmental sustainability of grouted sleeve connections are essential for the long-term development of civil infrastructure. To address the environmental burden of conventional high-strength cement-based grouts, an eco-friendly sleeve grouting material incorporating industrial solid waste was developed. In this study, silica fume (15%) and fly ash (5%) were employed as supplementary cementitious materials, while nanosilica (NS) was introduced to enhance the material properties. Mechanical testing, microstructural characterization, and half-grouted sleeve uniaxial tensile tests were conducted to systematically evaluate the effect of NS content on grout performance. Results indicate that the incorporation of NS significantly accelerates the hydration of silica fume and fly ash. At an optimal dosage of 0.4%, the 28-day compressive strength reached 105.5 MPa, representing a 37.9% increase compared with the control group without NS. In sleeve tensile tests, specimens with NS exhibited reinforcement necking failure, and the load–displacement response closely aligned with the stress–strain behavior of the reinforcement. A linear relationship was observed between sleeve wall strain and reinforcement stress, confirming the cooperative load-bearing behavior between the grout and the sleeve. These findings provide theoretical guidance and technical support for developing high-strength, low-impact grouting materials suitable for sustainable engineering applications. Full article
Show Figures

Figure 1

16 pages, 3635 KB  
Article
Properties and Diffusion Plugging Mechanism of Modified Sodium Bentonite
by Sen Hu, Bo Tian, Kaimin Niu, Haowu Wang and Zhihao Li
Coatings 2025, 15(8), 941; https://doi.org/10.3390/coatings15080941 - 12 Aug 2025
Viewed by 660
Abstract
With rising global temperatures, roads in the permafrost regions of the Qinghai–Tibet Plateau are exhibiting issues such as subsidence, water accumulation alongside the roads and in their foundations, and ongoing permafrost degradation. Among these issues, water accumulation has emerged as a prominent challenge [...] Read more.
With rising global temperatures, roads in the permafrost regions of the Qinghai–Tibet Plateau are exhibiting issues such as subsidence, water accumulation alongside the roads and in their foundations, and ongoing permafrost degradation. Among these issues, water accumulation has emerged as a prominent challenge in road management. In this study, sodium-based-bentonite-modified cementitious waterproof grouting materials were prepared and utilized as functional barrier layers. The rheological properties, mechanical strength, flowability, and setting time of the materials were tested under different sodium bentonite dosages. The feasibility of the application of these materials was evaluated, accounting for the evolution of pressure, flow rate, and diffusion distance of permafrost subgrades over different time scales when the materials were applied as functional barrier layers. The results indicate that, when used as a functional barrier layer, the modified cement-based grouting material exhibits a fluidity that meets the upper limit of grouting requirements, with a controllable setting time. Both compressive strength and apparent viscosity rise with the addition of sodium-based bentonite (Na-bentonite). Notably, an appropriate viscosity range of 0.35–0.50 Pa·s was found to effectively resist groundwater erosion while satisfying the critical performance requirements for grouting applications, demonstrating excellent applicability. In the field grouting test, the effects of grouting pressure and flow rate over different time scales on soil cracking, spreading distance, and the crack-filling process were further analyzed. Based on these findings, a technical solution using a new type of subgrade treatment material (functional barrier layer) was proposed, providing a reference for related theoretical research and engineering practice. Full article
(This article belongs to the Section Environmental Aspects in Colloid and Interface Science)
Show Figures

Figure 1

Back to TopTop