Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,817)

Search Parameters:
Keywords = cell cytoskeleton

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 1560 KiB  
Article
Electromagnetic Transduction Therapy (EMTT) Enhances Tenocyte Regenerative Potential: Evidence for Senolytic-like Effects and Matrix Remodeling
by Matteo Mancini, Mario Vetrano, Alice Traversa, Carlo Cauli, Simona Ceccarelli, Florence Malisan, Maria Chiara Vulpiani, Nicola Maffulli, Cinzia Marchese, Vincenzo Visco and Danilo Ranieri
Int. J. Mol. Sci. 2025, 26(15), 7122; https://doi.org/10.3390/ijms26157122 - 24 Jul 2025
Viewed by 1068
Abstract
Tendinopathies are a significant challenge in musculoskeletal medicine, with current treatments showing variable efficacy. Electromagnetic transduction therapy (EMTT) has emerged as a promising therapeutic approach, but its biological effects on tendon cells remain largely unexplored. Here, we investigated the effects of EMTT on [...] Read more.
Tendinopathies are a significant challenge in musculoskeletal medicine, with current treatments showing variable efficacy. Electromagnetic transduction therapy (EMTT) has emerged as a promising therapeutic approach, but its biological effects on tendon cells remain largely unexplored. Here, we investigated the effects of EMTT on primary cultured human tenocytes’ behavior and functions in vitro, focusing on cellular responses, senescence-related pathways, and molecular mechanisms. Primary cultures of human tenocytes were established from semitendinosus tendon biopsies of patients undergoing anterior cruciate ligament (ACL) reconstruction (n = 6, males aged 17–37 years). Cells were exposed to EMTT at different intensities (40 and 80 mT) and impulse numbers (1000–10,500). Cell viability (MTT assay), proliferation (Ki67), senescence markers (CDKN2a/INK4a), migration (scratch test), cytoskeleton organization (immunofluorescence), and gene expression (RT-PCR) were analyzed. A 40 mT exposure elicited minimal effects, whereas 80 mT treatments induced significant cellular responses. Repeated 80 mT exposure demonstrated a dual effect: despite a moderate decrease in overall cell vitality, increased Ki67 expression (+7%, p ≤ 0.05) and significant downregulation of senescence marker CDKN2a/INK4a were observed, suggesting potential senolytic-like activity. EMTT significantly enhanced cell migration (p < 0.001) and triggered cytoskeletal remodeling, with amplified stress fiber formation and paxillin redistribution. Molecular analysis revealed upregulation of tenogenic markers (Scleraxis, Tenomodulin) and enhanced Collagen I and III expressions, particularly with treatments at 80 mT, indicating improved matrix remodeling capacity. EMTT significantly promotes tenocyte proliferation, migration, and matrix production, while simultaneously exhibiting senolytic-like effects through downregulation of senescence-associated markers. These results support EMTT as a promising therapeutic approach for the management of tendinopathies through multiple regenerative mechanisms, though further studies are needed to validate these effects in vivo. Full article
Show Figures

Figure 1

12 pages, 1137 KiB  
Article
Which One Would You Choose?—Investigation of Widely Used Housekeeping Genes and Proteins in the Spinal Cord of an Animal Model of Amyotrophic Lateral Sclerosis
by Aimo Samuel Christian Epplen, Sarah Stahlke, Carsten Theiss and Veronika Matschke
NeuroSci 2025, 6(3), 69; https://doi.org/10.3390/neurosci6030069 - 23 Jul 2025
Viewed by 232
Abstract
Amyotrophic lateral sclerosis (ALS) remains a progressive neurodegenerative disease, lacking effective causal therapies. The Wobbler mouse model harboring a spontaneous autosomal recessive mutation in the vacuolar protein sorting associated protein (Vps54), has emerged as a valuable model for investigating ALS pathophysiology and potential [...] Read more.
Amyotrophic lateral sclerosis (ALS) remains a progressive neurodegenerative disease, lacking effective causal therapies. The Wobbler mouse model harboring a spontaneous autosomal recessive mutation in the vacuolar protein sorting associated protein (Vps54), has emerged as a valuable model for investigating ALS pathophysiology and potential treatments. This model exhibits cellular and phenotypic parallels to human ALS, including protein aggregation, microglia and astrocyte activation, as well as characteristic disease progression at distinct stages. Exploring the underlying pathomechanisms and identifying therapeutic targets requires a comprehensive analysis of gene and protein expression. In this study, we examined the expression of three well-established housekeeping genes and proteins—calnexin, ß-actin, and ßIII-tubulin—in the cervical spinal cord of the Wobbler model. These candidates were selected based on their demonstrated stability across various systems like animal models or cell culture. Calnexin, an integral protein of the endoplasmic reticulum, ß-actin, a structural component of the cytoskeleton, and ß-tubulin III, a component of microtubules, were quantitatively assessed using quantitative reverse transcription-polymerase chain reaction (RT-PCR) for gene expression and Western blotting for protein expression. Our results revealed no significant differences in the expression of CANX, ACTB, and TUBB3 between spinal cords of wild-type and Wobbler mice at the symptomatic stage (p40) at both the gene and protein levels. These findings suggest that the pathophysiological alterations induced by the Wobbler mutation do not significantly affect the expression of these crucial housekeeping genes and proteins at p40. Overall, this study provides a basis for further investigations using the Wobbler mouse model, while highlighting the potential use of calnexin, ß-actin, and ßIII-tubulin as reliable reference genes and proteins in future research to aid in the discovery for effective therapeutic interventions. Full article
Show Figures

Figure 1

23 pages, 13635 KiB  
Article
Cytochalasins Suppress 3D Migration of ECM-Embedded Tumoroids at Non-Toxic Concentrations
by Klara Beslmüller, Lieke J. A. van Megen, Timo Struik, Daisy Batenburg, Elsa Neubert, Tom M. J. Evers, Alireza Mashaghi and Erik H. J. Danen
Int. J. Mol. Sci. 2025, 26(14), 7021; https://doi.org/10.3390/ijms26147021 - 21 Jul 2025
Viewed by 357
Abstract
Migrastatic strategies are considered as candidate therapeutic approaches to suppress cancer invasion into local surrounding tissues and metastatic spread. The F-actin cytoskeleton is responsible for key properties regulating (cancer) cell migration. The cortical F-actin network controls cell stiffness, which, in turn, determines cell [...] Read more.
Migrastatic strategies are considered as candidate therapeutic approaches to suppress cancer invasion into local surrounding tissues and metastatic spread. The F-actin cytoskeleton is responsible for key properties regulating (cancer) cell migration. The cortical F-actin network controls cell stiffness, which, in turn, determines cell migration strategies and efficiency. Moreover, the dynamic remodeling of F-actin networks mediating filopodia, lamellipodia, and F-actin stress fibers is crucial for cell migration. Here, we have used a conditional knockout approach to delete cofilin, an F-actin-binding protein that controls severing. We find that the deletion of cofilin prevents the migration of cancer cells from tumoroids into the surrounding extracellular matrix without affecting their viability. This identifies cofilin as a candidate target to suppress metastatic spread. Pharmacological inhibitors interfering with F-actin dynamics have been developed but their effects are pleiotropic, including severe toxicity, and their impact on 3D tumor cell migration has not been tested or separated from this toxicity. Using concentration ranges of a panel of inhibitors, we select cytochalasins based on the suppression of 2D migration at non-toxic concentrations. We then show that these attenuate the escape of tumor cells from tumoroids and their migration into the surrounding extracellular matrix without toxicity in 3D cultures. This effect is accompanied by suppression of cell stiffness at such non-toxic concentrations, as measured by acoustic force spectroscopy. These findings identify cytochalasins B and D as candidate migrastatic drugs to suppress metastatic spread. Full article
(This article belongs to the Section Molecular Pathology, Diagnostics, and Therapeutics)
Show Figures

Figure 1

17 pages, 10557 KiB  
Article
Formation of an Amyloid-like Structure During In Vitro Interaction of Titin and Myosin-Binding Protein C
by Tatiana A. Uryupina, Liya G. Bobyleva, Nikita V. Penkov, Maria A. Timchenko, Azat G. Gabdulkhakov, Anna V. Glyakina, Vadim V. Rogachevsky, Alexey K. Surin, Oxana V. Galzitskaya, Ivan M. Vikhlyantsev and Alexander G. Bobylev
Int. J. Mol. Sci. 2025, 26(14), 6910; https://doi.org/10.3390/ijms26146910 - 18 Jul 2025
Viewed by 214
Abstract
Protein association and aggregation are fundamental processes that play critical roles in a variety of biological phenomena from cell signaling to the development of incurable diseases, including amyloidoses. Understanding the basic biophysical principles governing protein aggregation processes is of crucial importance for developing [...] Read more.
Protein association and aggregation are fundamental processes that play critical roles in a variety of biological phenomena from cell signaling to the development of incurable diseases, including amyloidoses. Understanding the basic biophysical principles governing protein aggregation processes is of crucial importance for developing treatment strategies for diseases associated with protein aggregation, including sarcopenia, as well as for the treatment of pathological processes associated with the disruption of functional protein complexes. This work, using a set of methods such as atomic force microscopy (AFM), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), and X-ray diffraction, as well as bioinformatics analysis, investigated the structures of complexes formed by titin and myosin-binding protein C (MyBP-C). TEM revealed the formation of morphologically ordered aggregates in the form of beads during co-incubation of titin and MyBP-C under close-to-physiological conditions (175 mM KCl, pH 7.0). AFM showed the formation of a relatively homogeneous film with local areas of relief change. Fluorimetry with thioflavin T, as well as FTIR spectroscopy, revealed signs of an amyloid-like structure, including a signal in the cross-β region. X-ray diffraction showed the presence of a cross-β structure characteristic of amyloid aggregates. Such structural features were not observed in the control samples of the investigated proteins separately. In sarcomeres, these proteins are associated with each other, and this interaction plays a partial role in the formation of a strong sarcomeric cytoskeleton. We found that under physiological ionic-strength conditions titin and MyBP-C form complexes in which an amyloid-like structure is present. The possible functional significance of amyloid-like aggregation of these proteins in muscle cells in vivo is discussed. Full article
Show Figures

Figure 1

26 pages, 810 KiB  
Review
The Reciprocal Relationship Between Cell Adhesion Molecules and Reactive Oxygen Species
by Muayad Al-Hadi, Alexander G. Nikonenko and Vladimir Sytnyk
Cells 2025, 14(14), 1098; https://doi.org/10.3390/cells14141098 - 17 Jul 2025
Viewed by 267
Abstract
Cell adhesion molecules (CAMs) are cell-surface-localized proteins mediating interactions of cells with other cells and the extracellular matrix. CAMs influence cell behavior and survival by inducing various intracellular signaling cascades that regulate diverse cellular processes including cytoskeleton remodeling and gene expression. Here, we [...] Read more.
Cell adhesion molecules (CAMs) are cell-surface-localized proteins mediating interactions of cells with other cells and the extracellular matrix. CAMs influence cell behavior and survival by inducing various intracellular signaling cascades that regulate diverse cellular processes including cytoskeleton remodeling and gene expression. Here, we review the evidence demonstrating that the levels, subcellular distribution, and binding affinities of CAMs of several major families including integrins, cadherins, immunoglobulin superfamily, and selectins are regulated by intracellularly generated or extracellular reactive oxygen species (ROS). Remarkably, CAMs themselves induce ROS production in response to binding to their ligands by activating lipoxygenases or NADPH oxidases or influencing ROS generation in mitochondria. CAM-dependent ROS production is essential for CAM-mediated cell adhesion and CAM-dependent intracellular signaling. Importantly, CAMs also protect cells from the ROS-induced cell death by stimulating the synthesis of antioxidants and suppressing the cell death signaling. A better understanding of the role ROS play in controlling CAM functions and mechanisms of this control may pave the way to modulating the functions of CAMs in various disorders associated with abnormal cell adhesion. Full article
(This article belongs to the Section Cell Microenvironment)
Show Figures

Graphical abstract

29 pages, 2426 KiB  
Review
Transmembrane Protein 43: Molecular and Pathogenetic Implications in Arrhythmogenic Cardiomyopathy and Various Other Diseases
by Buyan-Ochir Orgil, Mekaea S. Spaulding, Harrison P. Smith, Zainab Baba, Neely R. Alberson, Enkhzul Batsaikhan, Jeffrey A. Towbin and Enkhsaikhan Purevjav
Int. J. Mol. Sci. 2025, 26(14), 6856; https://doi.org/10.3390/ijms26146856 - 17 Jul 2025
Viewed by 266
Abstract
Transmembrane protein 43 (TMEM43 or LUMA) encodes a highly conserved protein found in the nuclear and endoplasmic reticulum membranes of many cell types and the intercalated discs and adherens junctions of cardiac myocytes. TMEM43 is involved in facilitating intra/extracellular signal transduction [...] Read more.
Transmembrane protein 43 (TMEM43 or LUMA) encodes a highly conserved protein found in the nuclear and endoplasmic reticulum membranes of many cell types and the intercalated discs and adherens junctions of cardiac myocytes. TMEM43 is involved in facilitating intra/extracellular signal transduction to the nucleus via the linker of the nucleoskeleton and cytoskeleton complex. Genetic mutations may result in reduced TMEM43 expression and altered TMEM43 protein cellular localization, resulting in impaired cell polarization, intracellular force transmission, and cell–cell connections. The p.S358L mutation causes arrhythmogenic right ventricular cardiomyopathy type-5 and is associated with increased absorption of lipids, fatty acids, and cholesterol in the mouse small intestine, which may promote fibro-fatty replacement of cardiac myocytes. Mutations (p.E85K and p.I91V) have been identified in patients with Emery–Dreifuss Muscular Dystrophy-related myopathies. Other mutations also lead to auditory neuropathy spectrum disorder-associated hearing loss and have a negative association with cancer progression and tumor cell survival. This review explores the pathogenesis of TMEM43 mutation-associated diseases in humans, highlighting animal and in vitro studies that describe the molecular details of disease processes and clinical, histologic, and molecular manifestations. Additionally, we discuss TMEM43 expression-related conditions and how each disease may progress to severe and life-threatening states. Full article
Show Figures

Figure 1

10 pages, 1373 KiB  
Communication
Phosphoinositide Signaling and Actin Polymerization Are Critical for Tip Growth in the Marine Red Alga Pyropia yezoensis
by Ryunosuke Irie and Koji Mikami
Plants 2025, 14(14), 2194; https://doi.org/10.3390/plants14142194 - 15 Jul 2025
Viewed by 290
Abstract
In the marine red alga Pyropia yezoensis, filamentous phases of the life cycle, e.g., the conchocelis (sporophyte) and conchosporangium (conchosporophyte), proliferate by tip growth. In this study, we investigated the possible involvement of phosphoinositide turnover and actin polymerization in the spontaneous initiation [...] Read more.
In the marine red alga Pyropia yezoensis, filamentous phases of the life cycle, e.g., the conchocelis (sporophyte) and conchosporangium (conchosporophyte), proliferate by tip growth. In this study, we investigated the possible involvement of phosphoinositide turnover and actin polymerization in the spontaneous initiation and tip growth of new branches in isolated single-celled conchocelis cells using pharmacological treatments. Treatment with LY294002 and U73122, specific inhibitors of phosphoinositide-phosphate 3-kinase and phospholipase C, respectively, reduced side-branch formation and inhibited the elongation of branches. In addition, two inhibitors of the actin cytoskeleton, cytochalasin B (CCB) and latrunculin B (LAT-B), had similar effects on tip growth. However, CCB did not alter the branching rate of single-celled conchocelis, whereas LAT-B did. As CCB and LAT-B affect actin polymerization through different mechanisms, this result suggests differences in the contributions of actin polymerization to branch initiation versus tip growth. These findings demonstrate the critical and diverse functional roles played by phosphoinositide turnover and actin polymerization in the regulation of the initiation and maintenance of tip growth in the conchocelis phase of P. yezoensis. Full article
(This article belongs to the Special Issue Algal Morphogenesis and Response to Abiotic Stresses)
Show Figures

Figure 1

20 pages, 3966 KiB  
Review
Mechanotransduction: A Master Regulator of Alveolar Cell Fate Determination
by Kusum Devi and Kalpaj R. Parekh
Bioengineering 2025, 12(7), 760; https://doi.org/10.3390/bioengineering12070760 - 14 Jul 2025
Viewed by 395
Abstract
Mechanotransduction plays an essential role in the fate determination of alveolar cells within the pulmonary system by translating mechanical forces into intricate biochemical signals. This process exclusively governs differentiation, phenotypic stability, and maintenance of alveolar epithelial cell subtypes, primarily the alveolar AT1/AT2 cells. [...] Read more.
Mechanotransduction plays an essential role in the fate determination of alveolar cells within the pulmonary system by translating mechanical forces into intricate biochemical signals. This process exclusively governs differentiation, phenotypic stability, and maintenance of alveolar epithelial cell subtypes, primarily the alveolar AT1/AT2 cells. Perturbed mechanical tension proportionally impacts alveolar cell phenotypic identity and their functional characteristics. The fundamental influence of respiratory mechanics on alveolar cell lineage commitment and sustenance is undeniable. AT1 cells are recognized as principal mechanosensors within the alveolus, directly perceiving and responding to mechanical forces imposed by respiration through cell–matrix interactions. These mechanical forces instigate a profound reorganization of the actin cytoskeleton within cells, indispensable for signal transduction and perpetuation of their differentiated phenotype, orchestrated by integrins and cell adhesion molecule-mediated signaling. The dysregulated mechanotransduction in the pulmonary system intrinsically contributes to the etiology and progression of various diseases, exemplified by pulmonary fibrosis. This review systematically elucidates the profound impact of mechanotransduction on alveolar cell differentiation and fate sustenance and underscores how its dysregulation contributes to the initiation and perpetuation of lung diseases. Full article
(This article belongs to the Section Cellular and Molecular Bioengineering)
Show Figures

Figure 1

15 pages, 2434 KiB  
Article
Proteomic Responses of the Springtail Folsomia candida to Drought
by Yang Wang, Stine Slotsbo, Steffen Y. Bak, Christopher J. Martyniuk and Martin Holmstrup
Insects 2025, 16(7), 707; https://doi.org/10.3390/insects16070707 - 9 Jul 2025
Viewed by 385
Abstract
Springtails are adapted to life in the pore space of soil, where humidity in moist soil is close to saturation. Drought is the most important limiting factor for springtails; however, their molecular and physiological adaptations to low humidity are not well understood. The [...] Read more.
Springtails are adapted to life in the pore space of soil, where humidity in moist soil is close to saturation. Drought is the most important limiting factor for springtails; however, their molecular and physiological adaptations to low humidity are not well understood. The present study explored the global proteomic drought response of the springtail, Folsomia candida (Isotomidae, Collembola). In relatively dry soil (−360 kPa), adult springtails initially lost body water but re-established the normal body water content over the following two weeks. Nano LC–MS/MS analysis identified a total of 1729 unique proteins. Proteomic analysis and pathway enrichment found that the proteome generally did not show a dramatic induction of proteins in response to drought stress. After an initial down-regulation of pathways related to metabolism and growth, these pathways gradually returned to the same levels as in moist soil. Other pathways such as the cytoskeleton pathway, which is important in cell proliferation and differentiation, were predominantly down-regulated throughout the experiment in drought-exposed animals, which correlated with essentially no somatic growth of the springtails in dry soil. This study facilitates the understanding of the consequences of climate change on soil functioning and fertility. Full article
(This article belongs to the Special Issue Research on Insect Molecular Biology)
Show Figures

Figure 1

15 pages, 2238 KiB  
Article
The Phosphodiesterase 4 Inhibitor Roflumilast Protects Microvascular Endothelial Cells from Irradiation-Induced Dysfunctions
by Nathalie Guitard, Florent Raffin and François-Xavier Boittin
Cells 2025, 14(13), 1017; https://doi.org/10.3390/cells14131017 - 3 Jul 2025
Viewed by 357
Abstract
In endothelial cells, high-dose irradiation induces numerous dysfunctions including alteration in junctional proteins such as VE-Cadherin, apoptosis and enhanced adhesiveness linked to overexpression of adhesion molecules like Intercellular Adhesion Molecule 1 (ICAM-1). Such endothelial dysfunctions can lead to altered tissue perfusion, development of [...] Read more.
In endothelial cells, high-dose irradiation induces numerous dysfunctions including alteration in junctional proteins such as VE-Cadherin, apoptosis and enhanced adhesiveness linked to overexpression of adhesion molecules like Intercellular Adhesion Molecule 1 (ICAM-1). Such endothelial dysfunctions can lead to altered tissue perfusion, development of tissue inflammation through increased endothelial permeability, and ultimately organ damage. As intracellular cyclic AMP (cAMP) levels are known to control intercellular junctions or apoptosis in the endothelium, we investigated here the effect of the Phosphodiesterase 4 inhibitor Roflumilast, a drug increasing cAMP levels, on irradiation-induced endothelial dysfunctions in human pulmonary microvascular endothelial cells (HPMECs). Using continuous impedance measurements in confluent endothelial cell monolayers, Roflumilast was found to rapidly reinforce the endothelial barrier and to prevent irradiation-induced barrier disruption. In accordance, irradiation-induced alteration in membrane VE-Cadherin-composed adherens junctions was prevented by Roflumilast treatment after irradiation, which was correlated with its protective effect of the actin cytoskeleton. Post-irradiation treatment with Roflumilast also protected HPMECs from irradiation-induced late apoptosis, but was without effect on irradiation-induced ICAM-1 overexpression. Overall, our results indicate that the beneficial effects of Roflumilast after irradiation are linked to the strengthening/protection of the endothelial barrier and reduced apoptosis, suggesting that this medicine may be useful for the treatment of endothelial damages after exposure to a high dose of radiation. Full article
(This article belongs to the Section Cellular Pathology)
Show Figures

Figure 1

17 pages, 5038 KiB  
Article
Efficacy of Oxygen Fluid (blue®m) on Human Gingival Fibroblast Viability, Proliferation and Inflammatory Cytokine Expression: An In Vitro Study
by Rhodanne Nicole A. Lambarte, Amani M. Basudan, Marwa Y. Shaheen, Terrence S. Sumague, Fatemah M. AlAhmari, Najla M. BinShwish, Abeer S. Alzawawi, Abdurahman A. Niazy, Mohammad A. Alfhili and Hamdan S. Alghamdi
Appl. Sci. 2025, 15(13), 7459; https://doi.org/10.3390/app15137459 - 3 Jul 2025
Viewed by 339
Abstract
Human gingival fibroblasts (HGnFs) play crucial roles in periodontal wound healing. This in vitro study examined the impact of varying concentrations of topical oxygen fluid (blue®m) on HGnF morphology, viability, proliferation, oxidative stress and pro-inflammatory cytokine production. The attempt was to [...] Read more.
Human gingival fibroblasts (HGnFs) play crucial roles in periodontal wound healing. This in vitro study examined the impact of varying concentrations of topical oxygen fluid (blue®m) on HGnF morphology, viability, proliferation, oxidative stress and pro-inflammatory cytokine production. The attempt was to underscore the potential of blue®m as a less cytotoxic alternative to chlorhexidine in the context of tissue-regeneration improvement. Primary HGnF cell cultures were subjected to oxygen fluid (blue®m) at concentrations of 0.6, 1.2 and 2.4% for a duration of 1 min. The positive control was 0.12% chlorhexidine. Cell morphology as well as actin cytoskeleton were assessed using microscopy and immunofluorescence staining. Cell viability and proliferation were assessed through AlamarBlue and trypan blue assays at 1, 2, 7, 10 and 14 days. Levels of reactive oxygen species (ROS) were quantified using DCFH-DA assay. Pro-inflammatory cytokines (IL-1β, IL-6, TNF-α, MMP-8 and TIMP-1) were assessed through ELISA. HGnF morphology and actin structure were preserved at all oxygen fluid concentrations. Cell viability and proliferation were significantly higher in the 0.6% and 1.2% groups than in the control and chlorhexidine groups (p ≤ 0.05). ROS levels were low at 0.6% and 1.2%, but increased at 2.4% and with chlorhexidine (p ≤ 0.05). Oxygen treatment reduced IL-1β, IL-6, TNF-α and TIMP-1 expression, while MMP-8 levels increased. Chlorhexidine significantly upregulated the expression of all proinflammatory cytokines (p ≤ 0.01). Oxygen fluid (blue®m) therapy improves the viability and proliferation of gingival fibroblasts and offers anti-inflammatory and preliminary antioxidative effects at the cellular level, especially at lower concentrations (0.6% and 1.2%), indicating potential application in periodontal wound management, subject to clinical validation. Full article
Show Figures

Figure 1

17 pages, 8548 KiB  
Article
miR-195-5p Suppresses KRT80 Expression Inducing Cell Cycle Arrest in Colon Cancer
by Emanuele Piccinno, Viviana Scalavino, Nicoletta Labarile, Giusy Bianco, Raffaele Armentano, Gianluigi Giannelli and Grazia Serino
Cancers 2025, 17(13), 2183; https://doi.org/10.3390/cancers17132183 - 28 Jun 2025
Viewed by 436
Abstract
Background/Objectives: Keratins form a crucial component of the epithelial cytoskeleton, playing an essential role in maintaining tissue architecture and coordinating key cellular functions. KRT80 is a type II keratin that has emerged as an oncogenic driver in several malignancies, yet its involvement in [...] Read more.
Background/Objectives: Keratins form a crucial component of the epithelial cytoskeleton, playing an essential role in maintaining tissue architecture and coordinating key cellular functions. KRT80 is a type II keratin that has emerged as an oncogenic driver in several malignancies, yet its involvement in colorectal cancer (CRC) remains unclear. Here, we investigated the molecular interaction between miR-195-5p, KRT80 expression, and CRC growth. Methods: Potential miR-195-5p binding sites in the KRT80 3′-UTR were identified through the use of integrated bioinformatic analyses, while publicly available datasets confirmed a significant overexpression of KRT80 in CRC tissues compared to normal mucosa. This finding was further validated through the use of mRNA and protein analysis in paired tumor and adjacent normal samples from CRC patients. Results: Functional assays involving CRC cell lines showed that transfection with miR-195-5p mimics led to a significant downregulation of KRT80 expression, reflecting the effects of direct KRT80 silencing by siRNA. Both molecular approaches induced G1-phase cell cycle arrest, concomitantly with reductions in G2/M populations. Furthermore, the in vivo delivery of miR-195-5p mimics in a mouse model of colitis-associated CRC resulted in a significant reduction in Krt80 expression in the colon. Conclusions: Collectively, our results reveal that miR-195-5p negatively regulates KRT80 expression, contributing to its tumor-suppressive activity in colorectal cancer and highlighting a molecular mechanism with potential therapeutic relevance. Full article
Show Figures

Graphical abstract

17 pages, 5099 KiB  
Article
β-Secosterol, an Oxyphytosterol Produced Through the Reaction of β-Sitosterol with Ozone, Demonstrates Different Cytotoxic Effects on BRL-3A and HTC Cells
by Bianca S. Takayasu, Igor R. Martins, Miriam Uemi, Janice Onuki and Glaucia M. Machado-Santelli
Biomolecules 2025, 15(7), 939; https://doi.org/10.3390/biom15070939 - 27 Jun 2025
Viewed by 279
Abstract
Sitosterol (Sito) is a phytosterol with bioactive properties, including reducing atherosclerosis risk and anti-inflammatory and antitumoral effects. However, it can be oxidized by reactive oxygen species such as ozone (O3), producing oxyphytosterols with harmful effects such as cytotoxicity, oxidative stress, and [...] Read more.
Sitosterol (Sito) is a phytosterol with bioactive properties, including reducing atherosclerosis risk and anti-inflammatory and antitumoral effects. However, it can be oxidized by reactive oxygen species such as ozone (O3), producing oxyphytosterols with harmful effects such as cytotoxicity, oxidative stress, and proatherogenicity. Ozone, a strong oxidant and common pollutant, can alter plant steroid compounds, raising concerns about dietary oxyphytosterol intake. Studies identify β-Secosterol (βSec) as the primary ozone-derived oxyphytosterol from Sito, exhibiting cytotoxic effects on HepG2 human liver tumor cells. This study investigated βSec’s biological effects on two rat liver cell lines: BRL-3A (immortalized) and HTC (tumoral), examining cell death, cell cycle progression, morphology, and cytoskeleton organization. While Sito influenced cell metabolic activity without affecting cell survival or morphology, βSec demonstrated significant cytotoxicity in both cell lines. It induced G0/G1 cell cycle arrest and disrupted cytoskeleton organization, with different implications: BRL-3A cells showed persistent cytoskeletal changes potentially linked to tumor induction, while HTC cells displayed chemoresistance, restoring cytoskeletal integrity and enhancing metastatic potential. These findings reveal βSec’s complex, context-dependent effects, suggesting it may promote tumor-like behavior in non-tumoral cells and resistance mechanisms in cancer cells, contributing to understanding oxyphytosterols’ implications for physiological and pathological conditions. Full article
(This article belongs to the Section Natural and Bio-derived Molecules)
Show Figures

Graphical abstract

14 pages, 1447 KiB  
Review
Emerging Arthropod-Borne Viruses Hijack the Host Cell Cytoskeleton During Neuroinvasion
by Flora De Conto
Viruses 2025, 17(7), 908; https://doi.org/10.3390/v17070908 - 26 Jun 2025
Viewed by 348
Abstract
Arthropod-borne viral infections, ranging from asymptomatic to fatal diseases, are expanding from endemic to nonendemic areas. Climate change, deforestation, and globalization favor their spread. Although arboviral manifestations mainly determine the onset of generalized symptoms, distinct clinical signs have been assessed, depending on the [...] Read more.
Arthropod-borne viral infections, ranging from asymptomatic to fatal diseases, are expanding from endemic to nonendemic areas. Climate change, deforestation, and globalization favor their spread. Although arboviral manifestations mainly determine the onset of generalized symptoms, distinct clinical signs have been assessed, depending on the particular arthropod-borne virus (arbovirus) involved in the infectious process. A number of arboviruses cause neuroinvasive diseases in vertebrate hosts, with acute to chronic outcomes. Long-term neurological sequelae can include cognitive dysfunction and Parkinsonism. To increase knowledge of host interactions with arboviruses, in-depth investigations are needed to highlight how arboviruses exploit a host cell for efficient infection and clarify the molecular alterations underlying human brain diseases. This review focuses on the involvement of host cytoskeletal networks and associated signalling pathways in modulating the neurotropism of emerging arboviruses. A better understanding at the molecular level of the potential for emerging infectious diseases is fundamental for prevention and outbreak control. Full article
(This article belongs to the Special Issue Zoonotic and Vector-Borne Viral Diseases)
Show Figures

Figure 1

19 pages, 3308 KiB  
Article
Transcriptomic Changes in the Frontal Cortex of Juvenile Pigs with Diet-Induced Metabolic Dysfunction-Associated Liver Disease
by Kyle Mahon, Mohammed Abo-Ismail, Emily Auten, Rodrigo Manjarin and Magdalena Maj
Biomedicines 2025, 13(7), 1567; https://doi.org/10.3390/biomedicines13071567 - 26 Jun 2025
Viewed by 559
Abstract
Background/Objectives: Neurodegenerative disorders have a complex multifactorial pathogenesis that develop decades before the initial symptoms occur. One of the crucial factors in the development of neurodegenerative disorders is an unbalanced diet. A pediatric animal model of diet-induced metabolic dysfunction-associated steatotic liver disease [...] Read more.
Background/Objectives: Neurodegenerative disorders have a complex multifactorial pathogenesis that develop decades before the initial symptoms occur. One of the crucial factors in the development of neurodegenerative disorders is an unbalanced diet. A pediatric animal model of diet-induced metabolic dysfunction-associated steatotic liver disease (MASLD) was established by feeding juvenile Iberian pigs a diet high in fat and fructose for 10 weeks. The aim of this study was to investigate the initial molecular imbalances in the frontal cortex (FC) of diet-induced juvenile MASLD pig model and determine whether these changes are associated with neuronal loss. Methods: Eighteen 15-day-old Iberian pigs were randomly assigned to either a standard diet (SD) or a Western diet (WD) for 10 weeks. A short-term recognition memory test and animal activity was recorded during the study. Animals were euthanized in week 10, and the FC and hippocampus (HIP) tissue samples were collected for immunohistochemistry and transcriptomics analyses. Results: WD-fed pigs developed MASLD. There were no significant differences in animals’ activity or recognition memory between WD and SD. To identify and quantify mature neurons, NeuN immunostaining intensity was measured, which was significantly lower in the FC of WD than SD (p ≤ 0.05), but it did not change in HIP (p ≥ 0.05). The Wnt/β-catenin pathway, which promotes neuronal survival and neurogenesis, was downregulated in FC of WD-fed pigs (p ≤ 0.05). Similarly, cytoskeleton organization and extracellular matrix biological processes were downregulated in FC of WD-fed pigs (p ≤ 0.05), whereas the mitochondrial respiratory chain complex and mitochondrion increased in FC of WD compared with SD (p ≤ 0.01). There were several other significantly modulated pathways including signal transduction, cell migration, axon guidance, and calcium ion binding. Conclusions: The high-fructose, high-fat diet led to neuronal loss in the frontal cortex of MASLD pigs and dysregulated gene expression of the Wnt/β-catenin signaling pathway, cytoskeleton organization, extracellular matrix, and mitochondrial respiratory chain—all pathways that are found deregulated in neurodegnerative diseases. Full article
(This article belongs to the Special Issue Cellular and Molecular Biology of Neurodegenerative Disorders)
Show Figures

Figure 1

Back to TopTop