Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (7,148)

Search Parameters:
Keywords = cell–cell communications

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 779 KB  
Review
Does the B7-H3 Immune Checkpoint Have High Potential as a Therapeutic Target?
by Marco Agostini, Pietro Traldi and Mahmoud Hamdan
Cells 2026, 15(3), 239; https://doi.org/10.3390/cells15030239 - 26 Jan 2026
Abstract
B7-H3 (CD276), a member of the B7 family of proteins, is known to play a key role in the progression of a number of cancers. This protein is selectively expressed in both tumor cells and immune cells within the tumor microenvironment. Various investigations, [...] Read more.
B7-H3 (CD276), a member of the B7 family of proteins, is known to play a key role in the progression of a number of cancers. This protein is selectively expressed in both tumor cells and immune cells within the tumor microenvironment. Various investigations, including a number of clinical trials, have reported high levels of expression of this protein in cancerous tissues compared to their healthy counterparts. This difference in expression attracted various research efforts to establish whether such a difference can be linked to the therapeutic potential of this molecule. It is worth noting that B7-H3 is not the only immune checkpoint expressed at different levels in cancerous and healthy cells. Therapeutic strategies, based on different levels of expression, have been tested with other checkpoints. To inhibit the expression of some checkpoints, immune checkpoint inhibitors (ICIs) were developed. The introduction of these inhibitors for the treatment of some forms of advanced-stage tumors has been justly described as an important milestone in the landscape of immune therapy. Years after the launch of these inhibitors, numerous clinical trials revealed that these inhibitors benefit a narrow subset of patients suffering from advanced-stage tumors, while the majority of patients treated with these inhibitors either did not respond positively or simply did not respond at all (refractory patients). Other clinical trials showed that this form of treatment can provoke serious immune-related adverse events (irAEs). It is fair to state that changes in the expression level of a given protein in diseased tissue is an important parameter to take into account in the assessment of such a protein as a therapeutic target. However, the last ten years have demonstrated that taking the level of expression of a given checkpoint within a cancerous tissue is not sufficient to consider such expression a reliable predictive biomarker for the investigated disease. On the other hand, to establish a solid base for a given therapeutic strategy, these varying levels of expression have to be combined with a deep understanding of the biology of the molecule under investigation, as well as the identification and thorough analysis of the relevant signaling pathways, particularly those communicating with both the investigated molecule and the immune system. Recently, a number of pharmaceutical and biotechnology firms have suggested that B7-H3 is a highly promising therapeutic target for the development of immune therapeutics. In this review, we ask why hopes of better therapeutic performance are attached to this immune checkpoint. A partial answer to this question is provided through the careful consideration of the available data generated by various clinical trials. The contribution of mass spectrometry-based proteomics to this area of research is highlighted. Full article
Show Figures

Figure 1

15 pages, 4576 KB  
Article
Design of a Compact UHF Wilkinson Power Divider Using a Combined T-Shaped–CCMRC Resonator for Harmonic Suppression
by Saeed Roshani, Salah I. Yahya, Golshan Mohamadpour and Sobhan Roshani
Micromachines 2026, 17(2), 158; https://doi.org/10.3390/mi17020158 - 26 Jan 2026
Abstract
This paper proposes a compact UHF microstrip divider with wideband harmonic suppression. A combined resonator, formed by a T-shaped resonator and a pair of coupled compact microstrip resonant cells (CCMRCs), is embedded into each divider branch to replace the conventional quarter-wavelength transmission lines. [...] Read more.
This paper proposes a compact UHF microstrip divider with wideband harmonic suppression. A combined resonator, formed by a T-shaped resonator and a pair of coupled compact microstrip resonant cells (CCMRCs), is embedded into each divider branch to replace the conventional quarter-wavelength transmission lines. The divider is designed on an FR4 substrate (εr = 4.4, thickness = 60 mil) for a center frequency of 570 MHz. Full-wave electromagnetic simulations indicate equal power division at 570 MHz with return loss better than 39 dB and output-port isolation higher than 47 dB. Moreover, a wide stopband from 1.5 GHz to 3.5 GHz is obtained, yielding strong attenuation for the third-to-sixth harmonics. The proposed layout occupies 19.6 mm × 21.6 mm, which is about 76% smaller than a conventional 570 MHz divider (42.7 mm × 41 mm). The proposed design is suitable for modern wireless communication systems. Full article
(This article belongs to the Special Issue Recent Advancements in Microwave and Optoelectronics Devices)
Show Figures

Figure 1

33 pages, 885 KB  
Review
Gut Dysbiosis and Arrhythmogenesis: The Potential Role of Microbial Alterations and Small Intestinal Bacterial Overgrowth in Cardiac Arrhythmias
by Julia Soczyńska, Kamila Butyńska, Maja Ickiewicz, Oskar Soczyński, Kacper Pluta, Agnieszka Frątczak, Wiktor Gawełczyk and Sławomir Woźniak
Gastroenterol. Insights 2026, 17(1), 9; https://doi.org/10.3390/gastroent17010009 (registering DOI) - 26 Jan 2026
Abstract
The gut microbiota is one of the key elements responsible for maintaining the body’s homeostasis. Its diverse composition affects, among others, the digestive and immune systems and also the circulatory system. Imbalances within the microbial community, referred to as dysbiosis, may lead to [...] Read more.
The gut microbiota is one of the key elements responsible for maintaining the body’s homeostasis. Its diverse composition affects, among others, the digestive and immune systems and also the circulatory system. Imbalances within the microbial community, referred to as dysbiosis, may lead to increased intestinal barrier permeability, chronic inflammation, and abnormal immune responses, which can be associated with the development of numerous diseases. Gut dysbiosis results in disturbances in the production of short-chain fatty acids, which exert anti-inflammatory effects, regulate blood pressure, and inhibit cardiac fibrosis. At the same time, it promotes the increased synthesis of trimethylamine N-oxide, a metabolite linked to inflammation, endothelial dysfunction, a higher risk of thrombosis, and the occurrence of arrhythmias. Additionally, small intestinal bacterial overgrowth (SIBO) may increase inflammation and contribute to metabolic and cardiovascular diseases (CVDs). The gut microbiota also influences the immune system through the production of neurotransmitters and modulation of T-cell activity, which may play a role in the development of autoimmune diseases. Reduced microbial diversity and an increased abundance of pathogenic bacteria are observed in individuals with hypertension and CVD, underscoring the importance of the microbiota as both a preventive and therapeutic factor. These findings highlight the crucial role of the gut microbiota in maintaining cardiovascular health and emphasize the need for further research into its modulation in the treatment of chronic diseases. Full article
(This article belongs to the Section Gastrointestinal Disease)
Show Figures

Figure 1

31 pages, 2114 KB  
Review
Molecular Insights into Carbapenem Resistance in Klebsiella pneumoniae: From Mobile Genetic Elements to Precision Diagnostics and Infection Control
by Ayman Elbehiry, Eman Marzouk and Adil Abalkhail
Int. J. Mol. Sci. 2026, 27(3), 1229; https://doi.org/10.3390/ijms27031229 - 26 Jan 2026
Abstract
Carbapenem-resistant Klebsiella pneumoniae (CRKP) has become one of the most serious problems confronting modern healthcare, particularly in intensive care units where patients are highly susceptible, procedures are frequent, and antibiotic exposure is often prolonged. In this review, carbapenem resistance in K. pneumoniae is [...] Read more.
Carbapenem-resistant Klebsiella pneumoniae (CRKP) has become one of the most serious problems confronting modern healthcare, particularly in intensive care units where patients are highly susceptible, procedures are frequent, and antibiotic exposure is often prolonged. In this review, carbapenem resistance in K. pneumoniae is presented not as a fixed feature of individual bacteria, but as a process that is constantly changing and closely interconnected. We bring together evidence showing how the spread of successful bacterial lineages, the exchange of resistance genes, and gradual genetic adjustment combine to drive both the rapid spread and the long-lasting presence of resistance. A major focus is placed on mobile genetic elements, including commonly encountered plasmid backbones, transposons, and insertion sequences that carry carbapenemase genes such as blaKPC, blaNDM, and blaOXA-48-like. These elements allow resistance genes to move easily between bacteria and across different biological environments. The human gut plays a particularly important role in this process. Its microbial community serves as a largely unseen reservoir where resistance genes can circulate and accumulate well before infection becomes clinically apparent, making prevention and control more difficult. This review also discusses the key biological factors that shape resistance levels, including carbapenemase production, changes in the bacterial cell membrane, and systems that expel antibiotics from the cell, and explains how these features work together. Advances in molecular testing have made it possible to identify resistance more quickly, supporting earlier clinical decisions and infection control measures. Even so, current tests remain limited by narrow targets and may miss low-level carriage, hidden genetic reservoirs, or newly emerging resistance patterns. Finally, we look ahead to approaches that move beyond detection alone, emphasizing the need for integrated surveillance, thoughtful antibiotic use, and coordinated system-wide strategies to lessen the impact of CRKP. Full article
(This article belongs to the Special Issue Molecular Insights in Antimicrobial Resistance)
Show Figures

Figure 1

22 pages, 7222 KB  
Article
Cadmium Impairs Human GnRH Neuron Development: Mechanistic Insights into Reproductive Dysfunction
by Giulia Guarnieri, Jacopo J. V. Branca, Rachele Garella, Letizia Lazzerini, Flavia Mencarelli, Francesco Palmieri, Paolo Comeglio, Matteo Becatti, Mario Maggi, Massimo Gulisano, Alessandra Pacini, Roberta Squecco and Annamaria Morelli
Int. J. Mol. Sci. 2026, 27(3), 1221; https://doi.org/10.3390/ijms27031221 - 26 Jan 2026
Abstract
There is increasing evidence that exposure to environmental toxicants may impact fertility, especially during critical windows of reproductive axis development. Hypothalamic gonadotropin-releasing hormone (GnRH) neurons, essential for puberty onset and fertility, originate from the olfactory placode and migrate toward the hypothalamus during development, [...] Read more.
There is increasing evidence that exposure to environmental toxicants may impact fertility, especially during critical windows of reproductive axis development. Hypothalamic gonadotropin-releasing hormone (GnRH) neurons, essential for puberty onset and fertility, originate from the olfactory placode and migrate toward the hypothalamus during development, making them particularly vulnerable to environmental insults. Cadmium (Cd), a widespread heavy metal, is well known for its gonadotoxicity, but its impact on human hypothalamic neuron development remains unclear. Using human fetal GnRH neuroblasts (FNCB4) we investigated the effects of Cd exposure on their morpho-functional and developmental features. Cd induced oxidative stress and COX2 mRNA upregulation, indicative of inflammatory pathway activation, which was accompanied by reduced cell migration and downregulation of motility-related genes. These effects were associated with F-actin disassembly and altered expression of adhesion molecules. Electrophysiological analyses showed that Cd altered membrane potential, increased capacitance and permeability, and disrupted gap junctional communication, as also confirmed by connexin-43 delocalization. Moreover, Cd significantly reduced the expression of specific GnRH neuronal markers, suggesting impaired functional maturation. Overall, our findings provide the first evidence that Cd may interfere with mechanisms crucially involved in human GnRH neuron development, adding new mechanistic insights into the comprehension of how early-life exposure to Cd may contribute to fertility concerns. Full article
(This article belongs to the Special Issue Molecular Mechanisms and Pathways Involved in Toxicant-Induced Stress)
Show Figures

Figure 1

27 pages, 1813 KB  
Review
Sweet Surprises: Decoding Tumor-Associated Glycosylation in Cancer Progression and Therapeutic Potential
by Eileena F. Giurini, Sam G. Pappas and Kajal H. Gupta
Cells 2026, 15(3), 233; https://doi.org/10.3390/cells15030233 - 26 Jan 2026
Abstract
Tumor-associated glycosylation is a defining hallmark of cancer, exerting profound effects on multiple aspects of tumor biology. This phenomenon arises from the central role of glycosylation in a wide range of cellular processes and its inherently diverse structural complexity. In cancer cells, aberrant [...] Read more.
Tumor-associated glycosylation is a defining hallmark of cancer, exerting profound effects on multiple aspects of tumor biology. This phenomenon arises from the central role of glycosylation in a wide range of cellular processes and its inherently diverse structural complexity. In cancer cells, aberrant glycosylation often results in the modification of glycoconjugate structures, leading to alterations in cell surface architecture that disrupt cellular homeostasis and signaling pathways. These changes can enhance tumor cell proliferation, invasion, and metastasis by modulating cell adhesion, receptor activation, and intracellular communication. Beyond its direct impact on cancer cells, tumor-associated glycosylation plays a pivotal role in shaping the tumor microenvironment. Aberrant glycan structures influence immune cell infiltration by altering antigen presentation and immune checkpoint interactions, contributing to immune evasion. Additionally, these modifications regulate angiogenesis by affecting endothelial cell function and promoting the formation of aberrant vasculature, which supports tumor growth and metastasis. Glycosylation also mediates tumor–stroma interactions, influencing extracellular matrix remodeling and fibroblast activation, further enhancing cancer progression. This interplay between cancer-associated glycan modifications and their functional roles in tumorigenesis presents a promising therapeutic approach. Unlike conventional treatments, glycan-targeting therapies confer high tumor specificity, operate independently of canonical immune checkpoint targets, and help mitigate immune cell exhaustion. This review explores commonly dysregulated glycan motifs implicated in tumorigenesis and delves into their mechanistic contributions to cancer pathogenesis. We then highlight emerging opportunities for therapeutic intervention, including the development of glycan-targeted therapies and biomarker-driven strategies for cancer diagnosis and treatment. We also outline where glycan-targeted agents (e.g., desialylating biologics, glycomimetics, and anti-glycan mAbs) can complement checkpoint blockade and potentially overcome immune escape. Full article
Show Figures

Figure 1

29 pages, 8439 KB  
Article
Qingfei Tongluo Jiedu Formula Regulates M2 Macrophage Polarization via the Butyric Acid-GPR109A-MAPK Pathway for the Treatment of Mycoplasma pneumoniae Pneumonia
by Zhilin Liu, Qiuyue Fan, Ruohan Sun and Yonghong Jiang
Pharmaceuticals 2026, 19(2), 212; https://doi.org/10.3390/ph19020212 - 26 Jan 2026
Abstract
Background: Mycoplasma pneumoniae pneumonia (MPP) is a common community-acquired pneumonia in children. Increasing drug resistance highlights the need for more effective treatments with fewer side effects. The Qingfei Tongluo Jiedu formula (QTJD) has demonstrated clinical efficacy against MPP; however, its underlying mechanisms [...] Read more.
Background: Mycoplasma pneumoniae pneumonia (MPP) is a common community-acquired pneumonia in children. Increasing drug resistance highlights the need for more effective treatments with fewer side effects. The Qingfei Tongluo Jiedu formula (QTJD) has demonstrated clinical efficacy against MPP; however, its underlying mechanisms remain unclear. This study aimed to explore the mechanism of QTJD on MPP using network pharmacology and in vitro experiments. Methods: Network pharmacology was used to identify the active compounds and signaling pathways of QTJD in MPP. QTJD-containing serum was prepared, and primary mouse lung and bone marrow cells were isolated to examine the effects of QTJD on macrophage polarization through butyric acid. Cell viability assays, flow cytometry, and quantitative reverse transcription-polymerase chain reaction were performed. GPR109−/− cells were used to confirm the receptor mediating butyric acid’s action, and Western blotting was employed to assess the MAPK signaling pathway. Results: QTJD promoted macrophage polarization and alleviated the inflammatory response caused by Mycoplasma pneumoniae. High-performance liquid chromatography-electrospray ionization mass spectrometry combined with network pharmacology identified 20 active compounds. Protein-protein interaction analysis revealed 10 core target, including JUN and Tumor Necrosis Factor (TNF), while enrichment analysis highlighted pathways such as Mitogen-Activated Protein Kinase (MAPK) and Phosphoinositide 3-Kinase-Protein Kinase B. Experimental validation demonstrated that QTJD reduced M1 markers (CD86, CXCL10) by increasing butyrate levels (p < 0.01) and enhanced M2 markers (CD206, Arg-1, MRC-1), promoting M2 polarization. QTJD inhibited ERK1/2, p38, and JNK1/2 (p < 0.01). In GPR109A−/− mice macrophages, QTJD suppressed p38 and JNK1/2 (p < 0.01) but showed no effect on ERK1/2 (p > 0.05), confirming involvement of the butyrate-GPR109A-MAPK pathway. Conclusions: QTJD effectively alleviates MPP by regulating macrophage polarization through the butyrate-GPR109A-MAPK pathway. Future studies should explore how QTJD modulates pulmonary immunity through gut microbiota and butyrate production and elucidate its immunoregulatory mechanisms along the gut-lung axis using multi-omics approaches. Full article
(This article belongs to the Special Issue Network Pharmacology of Natural Products, 2nd Edition)
Show Figures

Figure 1

18 pages, 3927 KB  
Systematic Review
Extracellular Vesicle Associated Proteomic Biomarkers in Breast Cancer: A Systematic Review and Meta-Analysis
by Nahad Al-Mahrouqi, Hasan Al-Sayegh, Shoaib Al-Zadjali and Aafaque Ahmad Khan
Cells 2026, 15(3), 231; https://doi.org/10.3390/cells15030231 - 26 Jan 2026
Abstract
Breast cancer continues to be the most frequently diagnosed cancer among women worldwide and remains a leading cause of cancer-related mortality. Despite advances in imaging and biopsy-based approaches, current diagnostic methods are invasive, costly, and often insufficient to capture the molecular heterogeneity of [...] Read more.
Breast cancer continues to be the most frequently diagnosed cancer among women worldwide and remains a leading cause of cancer-related mortality. Despite advances in imaging and biopsy-based approaches, current diagnostic methods are invasive, costly, and often insufficient to capture the molecular heterogeneity of tumors. Extracellular vesicles (EVs) have emerged as promising non-invasive biomarkers owing to their role in intercellular communication and their enrichment with tumor-specific cargo. This study conducted a systematic review and meta-analysis of published literature to investigate proteomic alterations in EVs derived from breast cancer samples. From an initial 1097 records screened, four eligible studies were identified, reporting 628 differentially expressed proteins, of which 38 were consistently observed across multiple datasets. Functional enrichment analyses revealed predominant localization of these proteins to vesicle-associated compartments and significant involvement in biological processes related to cell growth, immune regulation, and tumor progression. Pathway analysis further highlighted integrin-mediated interactions, platelet activation, and hemostasis pathways as key molecular mechanisms represented within breast cancer EVs. Overall, the findings reveal a distinct EV proteomic signature in breast cancer that could support early detection and patient monitoring through minimally invasive testing. Future large-scale and standardized studies are needed to validate these candidate proteins and advance EV proteomics toward clinical application in breast cancer management. Full article
Show Figures

Figure 1

18 pages, 4493 KB  
Article
Integrated Single-Cell and Spatial Transcriptomics Coupled with Machine Learning Uncovers MORF4L1 as a Critical Epigenetic Mediator of Radiotherapy Resistance in Colorectal Cancer Liver Metastasis
by Yuanyuan Zhang, Xiaoli Wang, Haitao Liu, Yan Xiang and Le Yu
Biomedicines 2026, 14(2), 273; https://doi.org/10.3390/biomedicines14020273 - 26 Jan 2026
Abstract
Background and Objective: Colorectal cancer (CRC) liver metastasis (CRLM) represents a major clinical challenge, and acquired resistance to radiotherapy (RT) significantly limits therapeutic efficacy. A deep and comprehensive understanding of the cellular and molecular mechanisms driving RT resistance is urgently required to develop [...] Read more.
Background and Objective: Colorectal cancer (CRC) liver metastasis (CRLM) represents a major clinical challenge, and acquired resistance to radiotherapy (RT) significantly limits therapeutic efficacy. A deep and comprehensive understanding of the cellular and molecular mechanisms driving RT resistance is urgently required to develop effective combination strategies. Here, we aimed to dissect the dynamic cellular landscape of the tumor microenvironment (TME) and identify key epigenetic regulators mediating radioresistance in CRLM by integrating cutting-edge single-cell and spatial omics technologies. Methods and Results: We performed integrated single-cell RNA sequencing (scRNA-seq) and spatial transcriptomics (ST) on matched pre- and post-radiotherapy tumor tissues collected from three distinct CRLM patients. Employing a robust machine-learning framework on the multi-omics data, we successfully identified MORF4L1 (Mortality Factor 4 Like 1), an epigenetic reader, as a critical epigenetic mediator of acquired radioresistance. High-resolution scRNA-seq analysis of the tumor cell compartment revealed that the MORF4L1-high subpopulation exhibited significant enrichment in DNA damage repair (DDR) pathways, heightened activity of multiple pro-survival metabolic pathways, and robust signatures of immune evasion. Pseudotime trajectory analysis further confirmed that RT exposure drives tumor cells toward a highly resistant state, marked by a distinct increase in MORF4L1 expression. Furthermore, cell–cell communication inference demonstrated a pronounced, systemic upregulation of various immunosuppressive signaling axes within the TME following RT. Crucially, high-resolution ST confirmed these molecular and cellular interactions in their native context, revealing a significant spatial co-localization of MORF4L1-expressing tumor foci with multiple immunosuppressive immune cell types, including regulatory T cells (Tregs) and tumor-associated macrophages (TAMs), thereby underscoring its role in TME-mediated resistance. Conclusions: Our comprehensive spatial and single-cell profiling establishes MORF4L1 as a pivotal epigenetic regulator underlying acquired radioresistance in CRLM. These findings provide a compelling mechanistic rationale for combining radiotherapy with the targeted inhibition of MORF4L1, presenting a promising new therapeutic avenue to overcome treatment failure and improve patient outcomes in CRLM. Full article
(This article belongs to the Special Issue Epigenetic Regulation in Cancer Progression)
Show Figures

Figure 1

19 pages, 13382 KB  
Article
Gandouling Inhibits the Sinusoid Capillarization Associated with Liver Fibrosis in Wilson’s Disease by Blocking the Communication Between Hepatic Stellate Cells and Liver Sinusoidal Endothelial Cells
by Yikang Cai, Qiying Jin, Meiling Yuan, Xinyue Zhou, Yajie Wu, Yingqiu Song, Bing Wang, Chenggui Miao and Peng Wu
Pharmaceuticals 2026, 19(2), 203; https://doi.org/10.3390/ph19020203 - 25 Jan 2026
Abstract
Background: Gandouling (GDL) is a compound prepared in Chinese medicine and demonstrates favorable clinical efficacy. Studies have shown that sinusoid capillarization promoted hepatic fibrosis and was a potential target for preventing and treating liver fibrosis in Wilson’s disease (WD). This study aimed [...] Read more.
Background: Gandouling (GDL) is a compound prepared in Chinese medicine and demonstrates favorable clinical efficacy. Studies have shown that sinusoid capillarization promoted hepatic fibrosis and was a potential target for preventing and treating liver fibrosis in Wilson’s disease (WD). This study aimed to explore whether GDL inhibited the sinusoid capillarization in WD by blocking the communication between hepatic stellate cells (HSCs) and liver sinusoidal endothelial cells (LSECs). Methods: In this study, Atp7b-H1071Q (TX) mice were used as the WD model mice, and CuSO4⋅5H2O treated LX-2 cells were used as the HSC activation model. We used scanning electron microscopy, vascular tube formation assay, Western blot, cell transfection, and co-culture system to study how GDL blocked the communication between HSCs and LSECs, as well as its inhibitory effect on the sinusoid capillarization. Results: We found that GDL alleviated liver fibrosis in TX mice, inhibited HSC activation, and sinusoid capillarization in TX mice. Excessive secreted VEGFA by LX-2 cells promoted the sinusoid capillarization, played the role of a messenger molecule, and GDL blocked the VEGFA-mediated HSCs-LSECs communication. Furthermore, bioinformatics analysis, molecular docking, and molecular dynamics suggested that GDL may exert its effect by modulating the PDGFRβ/ERK/VEGFA signaling axis. We validated the above observation through experiments, that GDL reduced PDGFRβ/ERK signal pathway in LX-2 cells, inhibited the expression of messenger molecule VEGFA, blocked HSCs-LSECs communication, inhibited sinusoid capillarization, and improved WD. Conclusions: GDL blocked the communication between HSCs and LSECs and inhibited the sinusoid capillarization associated with liver fibrosis in WD by the PDGFRβ/ERK/VEGFA signaling axis. Full article
(This article belongs to the Section Medicinal Chemistry)
33 pages, 1642 KB  
Review
Controlling Biogenesis and Engineering of Exosomes to Inhibit Growth and Promote Death in Glioblastoma Multiforme
by Srikar Alapati and Swapan K. Ray
Brain Sci. 2026, 16(2), 130; https://doi.org/10.3390/brainsci16020130 - 25 Jan 2026
Abstract
Glioblastoma multiforme (GBM) is characterized by aggressive growth, extensive vascularization, high metabolic malleability, and a striking capacity for therapy resistance. Current treatments involve surgical resection and concomitant radiation therapy and chemotherapy, prolonging survival times marginally due to the therapy resistance that is built [...] Read more.
Glioblastoma multiforme (GBM) is characterized by aggressive growth, extensive vascularization, high metabolic malleability, and a striking capacity for therapy resistance. Current treatments involve surgical resection and concomitant radiation therapy and chemotherapy, prolonging survival times marginally due to the therapy resistance that is built up by the tumor cells. A growing body of research has identified exosomes as critical enablers of therapy resistance. These nanoscale vesicles enable GBM cells to disseminate oncogenic proteins, nucleic acids, and lipids that collectively promote angiogenesis, maintain autophagy under metabolic pressure, and suppress apoptosis. As interest grows in targeting tumor communication networks, exosome-based therapeutic strategies have emerged as promising avenues for improving therapeutic outcomes in GBM. This review integrates current insights into two complementary therapeutic strategies: inhibiting exosome biogenesis and secretion, and engineering exosomes as precision vehicles for the delivery of anti-tumor molecular cargo. Key molecular regulators of exosome formation—including the endosomal sorting complex required for transport (ESCRT) machinery, tumor susceptibility gene 101 (TSG101) protein, ceramide-driven pathways, and Rab GTPases—govern the sorting and release of factors that enhance GBM survival. Targeting these pathways through pharmacological or genetic means has shown promise in suppressing angiogenic signaling, disrupting autophagic flux via modulation of autophagy-related gene (ATG) proteins, and sensitizing tumor cells to apoptosis by destabilizing mitochondria and associated survival networks. In parallel, advances in exosome engineering—encompassing siRNA loading, miRNA enrichment, and small-molecule drug packaging—offer new routes for delivering therapeutic agents across the blood–brain barrier with high cellular specificity. Engineered exosomes carrying anti-angiogenic, autophagy-inhibiting, or pro-apoptotic molecules can reprogram the tumor microenvironment and activate both the intrinsic mitochondrial and extrinsic ligand-mediated apoptotic pathways. Collectively, current evidence underscores the potential of strategically modulating endogenous exosome biogenesis and harnessing exogenous engineered therapeutic exosomes to interrupt the angiogenic and autophagic circuits that underpin therapy resistance, ultimately leading to the induction of apoptotic cell death in GBM. Full article
(This article belongs to the Section Molecular and Cellular Neuroscience)
19 pages, 1188 KB  
Review
Advances in Microbial Fuel Cells Using Carbon-Rich Wastes as Substrates
by Kexin Ren, Jianfei Wang, Xurui Hou, Jiaqi Huang and Shijie Liu
Processes 2026, 14(3), 416; https://doi.org/10.3390/pr14030416 - 25 Jan 2026
Abstract
Microbial fuel cells (MFCs) have attracted increasing attention due to their potential applications in renewable energy generation, waste utilization, and biomass upgrading, offering a promising alternative to traditional fossil fuels. By directly converting carbon-rich wastes into electricity, MFCs provide a unique approach to [...] Read more.
Microbial fuel cells (MFCs) have attracted increasing attention due to their potential applications in renewable energy generation, waste utilization, and biomass upgrading, offering a promising alternative to traditional fossil fuels. By directly converting carbon-rich wastes into electricity, MFCs provide a unique approach to simultaneously address energy demand and waste management challenges. This review systematically examines the effects of various carbon-rich substrates on MFC performance, including lignocellulosic biomasses, molasses, lipid waste, crude glycerol, and C1 compounds. These substrates, characterized by wide availability, low cost, and high carbon content, have demonstrated considerable potential for efficient bioelectricity generation and resource recovery. Particular emphasis is placed on the roles of microbial community regulation and genetic engineering strategies in enhancing substrate utilization efficiency and power output. Additionally, the application of carbon-rich wastes in electrode fabrication is discussed, highlighting their contributions to improved electrical conductivity, sustainability, and overall system performance. The integration of carbon-rich substrates into MFCs offers promising prospects for alleviating energy shortages, improving wastewater treatment efficiency, and reducing environmental pollution, thereby supporting the development of a circular bioeconomy. Despite existing challenges related to scalability, operational stability, and system cost, MFCs exhibit strong potential for large-scale implementation across diverse industrial sectors. Full article
(This article belongs to the Special Issue Study on Biomass Conversion and Biorefinery)
Show Figures

Figure 1

18 pages, 3309 KB  
Article
Myosin-X Acts Upstream of L-Plastin to Drive Stress-Induced Tunneling Nanotubes
by Ana Ramirez Perez, Joey Tovar and Karine Gousset
Cells 2026, 15(3), 224; https://doi.org/10.3390/cells15030224 - 24 Jan 2026
Viewed by 125
Abstract
Tunneling nanotubes (TNTs) are thin, actin-based intercellular bridges that enable long-range communication during cellular stress; yet the molecular pathway controlling their formation remains unclear. Here, using gain- and loss-of-function approaches in Cath. a-differentiated (CAD) neuronal cells, we identified a unidirectional regulatory pathway in [...] Read more.
Tunneling nanotubes (TNTs) are thin, actin-based intercellular bridges that enable long-range communication during cellular stress; yet the molecular pathway controlling their formation remains unclear. Here, using gain- and loss-of-function approaches in Cath. a-differentiated (CAD) neuronal cells, we identified a unidirectional regulatory pathway in which myosin-X (Myo10) functions upstream of the actin-bundling protein L-(LCP1) to drive TNT formation. Using Western blotting and fluorescence microscopy, we determined that overexpression of L-plastin significantly increased the proportion of TNT-connected cells, whereas L-plastin downregulation reduced TNT formation, demonstrating that L-plastin is both sufficient and necessary for maintaining normal TNT abundance. Having previously shown that Myo10 is required for TNT formation in CAD cells, we asked whether the relationship is reciprocal. Overexpression/downregulation of L-plastin had no effect on Myo10 protein levels. Conversely, Myo10 downregulation decreased endogenous L-plastin by ~30%, and Myo10 overexpression elevated L-plastin expression and TNT number, demonstrating that Myo10 acts as an upstream regulator of L-plastin. Dual-color 3D imaging revealed co-localization of Myo10 and L-plastin along TNT shafts and filopodia-like precursors (Proto-TNTs). Together, these findings demonstrate that Myo10-dependent TNT formation requires the bundling protein L-plastin, providing a framework for how stress-induced signaling cascades couple TNT initiation to actin-core stabilization during stress and disease. Full article
Show Figures

Figure 1

15 pages, 1107 KB  
Review
The Role and Mechanisms of miRNAs on Ovarian Granulosa Cells: A Literature Review
by Siyu Chen, Jiawei Lu, Yuqian Si, Lei Chen, Ye Zhao, Lili Niu, Yan Wang, Xiaofeng Zhou, Linyuan Shen, Ya Tan, Li Zhu and Mailin Gan
Genes 2026, 17(2), 121; https://doi.org/10.3390/genes17020121 - 24 Jan 2026
Viewed by 60
Abstract
Background: Ovarian granulosa cells (GCs) play a pivotal role in folliculogenesis, and their dysfunction is central to disorders such as polycystic ovary syndrome (PCOS) and premature ovarian failure (POF). MicroRNAs (miRNAs) have emerged as crucial post-transcriptional regulators of GC homeostasis. Method: [...] Read more.
Background: Ovarian granulosa cells (GCs) play a pivotal role in folliculogenesis, and their dysfunction is central to disorders such as polycystic ovary syndrome (PCOS) and premature ovarian failure (POF). MicroRNAs (miRNAs) have emerged as crucial post-transcriptional regulators of GC homeostasis. Method: This review synthesizes current evidence by systematically analyzing relevant studies, integrating data from in vitro GC models, animal experiments, human cell lines, and clinical samples to elucidate the specific mechanisms by which miRNAs regulate GCs. Results: miRNAs precisely modulate GC proliferation, apoptosis, steroidogenesis, and oxidative stress responses by targeting key signaling pathways (e.g., PI3K/AKT/mTOR, TGF-β/SMAD) and functional genes (e.g., TP53, CYP19A1). Exosomal miRNAs serve as vital mediators of communication within the follicular microenvironment. To date, nearly 200 miRNAs have been associated with PCOS. Conclusions: miRNAs constitute a decisive regulatory network governing GC fate, offering promising therapeutic targets for PCOS and POF. However, significant challenges remain, primarily miRNA pleiotropy and the lack of follicle-specific delivery systems. Future clinical translation requires rigorous validation in human-relevant models. Full article
(This article belongs to the Section Animal Genetics and Genomics)
Show Figures

Figure 1

32 pages, 34411 KB  
Article
A Single-Cell Transcriptomic Atlas of Epithelial Cell Heterogeneity During the Crown-to-Root Transition in the Mouse Molar
by Fei Bi, Tian Chen, Jiusi Guo, Wei Qiao, Zhi Liu and Xianglong Han
Int. J. Mol. Sci. 2026, 27(3), 1162; https://doi.org/10.3390/ijms27031162 - 23 Jan 2026
Viewed by 99
Abstract
The mechanisms driving the crown-to-root transition in tooth development remain incompletely understood, particularly the functional heterogeneity of dental epithelium. To address this gap and deconstruct this complexity, we aimed to analyze dental epithelial heterogeneity during this critical transition and to identify subpopulation-specific programs [...] Read more.
The mechanisms driving the crown-to-root transition in tooth development remain incompletely understood, particularly the functional heterogeneity of dental epithelium. To address this gap and deconstruct this complexity, we aimed to analyze dental epithelial heterogeneity during this critical transition and to identify subpopulation-specific programs relevant to root development. We therefore established a single-cell transcriptomic atlas of the mouse molar at postnatal days 3.5 and 7.5, integrating 30,951 cells to profile the pan-tissue landscape and performing an in-depth analysis of 4323 dental epithelial cells. Our results reveal that the dental epithelium is composed of seven distinct subpopulations with a clear lineage hierarchy, originating from multipotent progenitors and bifurcating into self-renewing and differentiating trajectories. The identified particular functions of each subcluster include the following: structural maintaining progenitor that inhibits mineralization (Cluster 4), proliferation driver (Cluster 0), key signaling center (Cluster 1), terminally differentiated executing enamel formation (Cluster 3 and Cluster 6), and extracellular matrix-organizing hub (Cluster 5), communicating extensively via the Bmp, Tgf-β, and Wnt pathways. Our work defines dental epithelium as a dynamic and heterogeneous orchestrator of root morphogenesis, providing a foundational framework for understanding developmental biology and pioneering future regenerative strategies based on precise epithelial cell functions. Full article
(This article belongs to the Special Issue Genome Structure, Function and Dynamic Regulation of Cell Fate)
Show Figures

Figure 1

Back to TopTop