Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,603)

Search Parameters:
Keywords = cathodic current

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 5007 KiB  
Article
Copper-Enhanced NiMo/TiO2 Catalysts for Bifunctional Green Hydrogen Production and Pharmaceutical Pollutant Removal
by Nicolás Alejandro Sacco, Fernanda Albana Marchesini, Ilaria Gamba and Gonzalo García
Catalysts 2025, 15(8), 737; https://doi.org/10.3390/catal15080737 (registering DOI) - 1 Aug 2025
Viewed by 175
Abstract
This study presents the development of Cu-doped NiMo/TiO2 photoelectrocatalysts for simultaneous green hydrogen production and pharmaceutical pollutant removal under simulated solar irradiation. The catalysts were synthesized via wet impregnation (15 wt.% total metal loading with 0.6 wt.% Cu) and thermally treated at [...] Read more.
This study presents the development of Cu-doped NiMo/TiO2 photoelectrocatalysts for simultaneous green hydrogen production and pharmaceutical pollutant removal under simulated solar irradiation. The catalysts were synthesized via wet impregnation (15 wt.% total metal loading with 0.6 wt.% Cu) and thermally treated at 400 °C and 900 °C to investigate structural transformations and catalytic performance. Comprehensive characterization (XRD, BET, SEM, XPS) revealed phase transitions, enhanced crystallinity, and redistribution of redox states upon Cu incorporation, particularly the formation of NiTiO3 and an increase in oxygen vacancies. Crystallite sizes for anatase, rutile, and brookite ranged from 21 to 47 nm at NiMoCu400, while NiMoCu900 exhibited only the rutile phase with 55 nm crystallites. BET analysis showed a surface area of 44.4 m2·g−1 for NiMoCu400, and electrochemical measurements confirmed its higher electrochemically active surface area (ECSA, 2.4 cm2), indicating enhanced surface accessibility. In contrast, NiMoCu900 exhibited a much lower BET surface area (1.4 m2·g−1) and ECSA (1.4 cm2), consistent with its inferior photoelectrocatalytic performance. Compared to previously reported binary NiMo/TiO2 systems, the ternary NiMoCu/TiO2 catalysts demonstrated significantly improved hydrogen production activity and more efficient photoelectrochemical degradation of paracetamol. Specifically, NiMoCu400 showed an anodic peak current of 0.24 mA·cm−2 for paracetamol oxidation, representing a 60% increase over NiMo400 and a cathodic current of −0.46 mA·cm−2 at −0.1 V vs. RHE under illumination, nearly six times higher than the undoped counterpart (–0.08 mA·cm−2). Mott–Schottky analysis further revealed that NiMoCu400 retained n-type behavior, while NiMoCu900 exhibited an unusual inversion to p-type, likely due to Cu migration and rutile-phase-induced realignment of donor states. Despite its higher photosensitivity, NiMoCu900 showed negligible photocurrent, confirming that structural preservation and surface redox activity are critical for photoelectrochemical performance. This work provides mechanistic insight into Cu-mediated photoelectrocatalysis and identifies NiMoCu/TiO2 as a promising bifunctional platform for integrated solar-driven water treatment and sustainable hydrogen production. Full article
(This article belongs to the Section Electrocatalysis)
Show Figures

Figure 1

125 pages, 50190 KiB  
Review
Sulfurized Polyacrylonitrile for Rechargeable Batteries: A Comprehensive Review
by Mufeng Wei
Batteries 2025, 11(8), 290; https://doi.org/10.3390/batteries11080290 - 1 Aug 2025
Viewed by 131
Abstract
This paper presents a comprehensive review of research on sulfurized polyacrylonitrile (SPAN) for rechargeable batteries which was firstly reported by Jiulin Wang in July 2002. Spanning over two decades (2002–2025), this review cites over 600 publications, covering various aspects of SPAN-based battery systems. [...] Read more.
This paper presents a comprehensive review of research on sulfurized polyacrylonitrile (SPAN) for rechargeable batteries which was firstly reported by Jiulin Wang in July 2002. Spanning over two decades (2002–2025), this review cites over 600 publications, covering various aspects of SPAN-based battery systems. These include SPAN chemical structure, structural evolution during synthesis, redox reaction mechanism, synthetic conditions, cathode, electrolyte, binder, current collector, separator, anode, SPAN as additive, SPAN as anode, and high-energy SPAN cathodes. As this field continues to advance rapidly and garners significant interest, this review aims to provide researchers with a thorough and in-depth overview of the progress made over the past 23 years. Additionally, it highlights emerging trends and outlines future directions for SPAN research and its practical applications in energy storage technologies. Full article
Show Figures

Figure 1

12 pages, 1867 KiB  
Article
Graphene Oxide-Constructed 2 nm Pore Anion Exchange Membrane for High Purity Hydrogen Production
by Hengcheng Wan, Hongjie Zhu, Ailing Zhang, Kexin Lv, Hongsen Wei, Yumo Wang, Huijie Sun, Lei Zhang, Xiang Liu and Haibin Zhang
Crystals 2025, 15(8), 689; https://doi.org/10.3390/cryst15080689 - 29 Jul 2025
Viewed by 263
Abstract
Alkaline electrolytic water hydrogen generation, a key driver in the growth of hydrogen energy, heavily relies on high-efficiency and high-purity ion exchange membranes. In this study, three-dimensional (3D) wrinkled reduced graphene oxide (WG) nanosheets obtained through a simple thermal reduction process and two-dimensional [...] Read more.
Alkaline electrolytic water hydrogen generation, a key driver in the growth of hydrogen energy, heavily relies on high-efficiency and high-purity ion exchange membranes. In this study, three-dimensional (3D) wrinkled reduced graphene oxide (WG) nanosheets obtained through a simple thermal reduction process and two-dimensional (2D) graphene oxide act as building blocks, with ethylenediamine as a crosslinking stabilizer, to construct a unique 3D/2D 2 nm-tunneling structure between the GO and WG sheets through via an amide connection at a WG/GO ratio of 1:1. Here, the wrinkled graphene (WG) undergoes a transition from two-dimensional (2D) graphene oxide (GO) into three-dimensional (3D) through the adjustment of surface energy. By increasing the interlayer spacing and the number of ion fluid channels within the membranes, the E-W/G membrane has achieved the rapid passage of hydroxide ions (OH) and simultaneous isolation of produced gas molecules. Moreover, the dense 2 nm nano-tunneling structure in the electrolytic water process enables the E-W/G membrane to attain current densities >99.9% and an extremely low gas crossover rate of hydrogen and oxygen. This result suggests that the as-prepared membrane effectively restricts the unwanted crossover of gases between the anode and cathode compartments, leading to improved efficiency and reduced gas leakage during electrolysis. By enhancing the purity of the hydrogen production industry and facilitating the energy transition, our strategy holds great potential for realizing the widespread utilization of hydrogen energy. Full article
(This article belongs to the Section Macromolecular Crystals)
Show Figures

Figure 1

18 pages, 4643 KiB  
Article
The Effect of Non-Transferred Plasma Torch Electrodes on Plasma Jet: A Computational Study
by Sai Likitha Siddanathi, Lars-Göran Westerberg, Hans O. Åkerstedt, Henrik Wiinikka and Alexey Sepman
Appl. Sci. 2025, 15(15), 8367; https://doi.org/10.3390/app15158367 - 28 Jul 2025
Viewed by 182
Abstract
This study explores how different electrode shapes affect plasma flow in a non-transferred plasma torch. Various cathode geometries—including conical, tapered, flat, and cylindrical—were examined alongside stepped anode designs. A 2D axisymmetric computational model was employed to assess the impact of these shapes on [...] Read more.
This study explores how different electrode shapes affect plasma flow in a non-transferred plasma torch. Various cathode geometries—including conical, tapered, flat, and cylindrical—were examined alongside stepped anode designs. A 2D axisymmetric computational model was employed to assess the impact of these shapes on plasma behavior. The results reveal that different cathode designs require varying current levels to maintain a consistent power output. This paper presents the changes in electric conductivity and electric potential for different input currents across the arc formation path (from the cathode tip to the anode beginning) and relating to Ohm’s law. Significant variations in plasma jet velocity and temperature were observed, especially near the cathode tip. The study concludes by evaluating thermal efficiency across geometry configurations. Flat cathodes demonstrated the highest efficiency, while the anode shape had minimal impact. Full article
(This article belongs to the Section Applied Physics General)
Show Figures

Figure 1

35 pages, 638 KiB  
Review
The Influence of Circadian Rhythms on Transcranial Direct Current Stimulation (tDCS) Effects: Theoretical and Practical Considerations
by James Chmiel and Agnieszka Malinowska
Cells 2025, 14(15), 1152; https://doi.org/10.3390/cells14151152 - 25 Jul 2025
Viewed by 555
Abstract
Transcranial direct current stimulation (tDCS) can modulate cortical excitability in a polarity-specific manner, yet identical protocols often produce inconsistent outcomes across sessions or individuals. This narrative review proposes that much of this variability arises from the brain’s intrinsic temporal landscape. Integrating evidence from [...] Read more.
Transcranial direct current stimulation (tDCS) can modulate cortical excitability in a polarity-specific manner, yet identical protocols often produce inconsistent outcomes across sessions or individuals. This narrative review proposes that much of this variability arises from the brain’s intrinsic temporal landscape. Integrating evidence from chronobiology, sleep research, and non-invasive brain stimulation, we argue that tDCS produces reliable, polarity-specific after-effects only within a circadian–homeostatic “window of efficacy”. On the circadian (Process C) axis, intrinsic alertness, membrane depolarisation, and glutamatergic gain rise in the late biological morning and early evening, whereas pre-dawn phases are marked by reduced excitability and heightened inhibition. On the homeostatic (Process S) axis, consolidated sleep renormalises synaptic weights, widening the capacity for further potentiation, whereas prolonged wakefulness saturates plasticity and can even reverse the usual anodal/cathodal polarity rules. Human stimulation studies mirror this two-process fingerprint: sleep deprivation abolishes anodal long-term-potentiation-like effects and converts cathodal inhibition into facilitation, while stimulating at each participant’s chronotype-aligned (phase-aligned) peak time amplifies and prolongs after-effects even under equal sleep pressure. From these observations we derive practical recommendations: (i) schedule excitatory tDCS after restorative sleep and near the individual wake-maintenance zone; (ii) avoid sessions at high sleep pressure or circadian troughs; (iii) log melatonin phase, chronotype, recent sleep and, where feasible, core temperature; and (iv) consider mild pre-heating or time-restricted feeding as physiological primers. By viewing Borbély’s two-process model and allied metabolic clocks as adjustable knobs for plasticity engineering, this review provides a conceptual scaffold for personalised, time-sensitive tDCS protocols that could improve reproducibility in research and therapeutic gain in the clinic. Full article
Show Figures

Figure 1

32 pages, 5201 KiB  
Review
Opportunities and Challenges for Next-Generation Thick Cathodes in Lithium-Ion Batteries
by Shengkai Li, Yuxuan Luo, Kangchen Wang, Lihan Zhang, Pengfei Yan and Manling Sui
Materials 2025, 18(15), 3464; https://doi.org/10.3390/ma18153464 - 24 Jul 2025
Viewed by 297
Abstract
Advancements in structural engineering are expected to enhance the wide-range commercial application of lithium-ion batteries by enabling the implementation of thicker cathode materials. Increasing the thickness of these cathodes can yield significant increasements in gravimetric energy density while concurrently lowering manufacturing costs. These [...] Read more.
Advancements in structural engineering are expected to enhance the wide-range commercial application of lithium-ion batteries by enabling the implementation of thicker cathode materials. Increasing the thickness of these cathodes can yield significant increasements in gravimetric energy density while concurrently lowering manufacturing costs. These improvements are pivotal to the successful commercial deployment of sustainable transport systems. However, several substantial barriers persist in the adoption of such microstructures, including performance degradation, manufacturing complexities, and scalability concerns, all of which remain open areas of investigation. This review delves into the obstacles associated with current modifying techniques in thick cathodes and explores the potential opportunities to develop more robust and thicker cathodes, while ensuring long-term performance and scalability. Finally, we provide suggestions on the future directions of thick cathodes to promote their large-scale application. Full article
Show Figures

Graphical abstract

24 pages, 738 KiB  
Review
Photocuring in Lithium-Ion Battery Fabrication: Advances Towards Integrated Manufacturing
by Zihao Li, Yanlong Li, Mengting Chen, Weishan Li and Xiaoming Wei
Batteries 2025, 11(8), 282; https://doi.org/10.3390/batteries11080282 - 23 Jul 2025
Viewed by 370
Abstract
Photocuring, including photopolymerization and photocrosslinking, has emerged as a transformative manufacturing paradigm that enables the precise, rapid, and customizable fabrication of advanced battery components. This review first introduces the principles of photocuring and vat photopolymerization and their unique advantages of high process efficiency, [...] Read more.
Photocuring, including photopolymerization and photocrosslinking, has emerged as a transformative manufacturing paradigm that enables the precise, rapid, and customizable fabrication of advanced battery components. This review first introduces the principles of photocuring and vat photopolymerization and their unique advantages of high process efficiency, non-contact fabrication, ambient-temperature processing, and robust interlayer bonding. It then systematically summarizes photocured battery components, involving electrolytes, membranes, anodes, and cathodes, highlighting their design strategies. This review examines the impact of photocured materials on the battery’s properties, such as its conductivity, lithium-ion transference number, and mechanical strength, while examining how vat-photopolymerization-derived 3D architectures optimize ion transport and electrode–electrolyte integration. Finally, it discusses current challenges and future directions for photocuring-based battery manufacturing, emphasizing the need for specialized energy storage resins and scalable processes to bridge lab-scale innovations with industrial applications. Full article
Show Figures

Figure 1

15 pages, 2557 KiB  
Article
Use of Phalaris canariensis Extract as CO2 Corrosion Inhibitor of Brass
by Edgar Salazar-Salazar, Dante Guillermo Gutierrez-Granda, Earvin Galvan, Ana Karen Larios-Galvez, America Maria Ramirez-Arteaga, Roy Lopez-Sesenes, Alfredo Brito-Franco, Jesus Porcayo-Calderon and Jose Gonzalo Gonzalez-Rodriguez
Materials 2025, 18(15), 3449; https://doi.org/10.3390/ma18153449 - 23 Jul 2025
Viewed by 253
Abstract
In this study, the corrosion inhibition of a Phalaris canariensis extract on brass in a CO2-saturated 3.5% NaCl solution is evaluated with the aid of potentiodynamic polarization curves and electrochemical impedance spectroscopy tests. The results indicate that the Phalaris canariensis extract [...] Read more.
In this study, the corrosion inhibition of a Phalaris canariensis extract on brass in a CO2-saturated 3.5% NaCl solution is evaluated with the aid of potentiodynamic polarization curves and electrochemical impedance spectroscopy tests. The results indicate that the Phalaris canariensis extract is an excellent CO2 corrosion inhibitor with an efficiency that increases with its concentration, reaching its maximum value of 99% with an inhibitor concentration of 100 ppm, decreasing the corrosion current density by more than two orders of magnitude. The addition of the Phalaris canariensis extract increased the pitting potential, decreased the passive current density values, and affected cathodic reactions, behaving as a mixed type of inhibitor. The corrosion process was under charge transfer control, and it was neither affected by the addition of the inhibitor nor by the elapsing time. The main compounds found in the Phalaris canariensis extract included antioxidants such as palmitic and oleic acids. Full article
Show Figures

Figure 1

17 pages, 5746 KiB  
Article
The Influence of Hydrogen-Charging Current Density and Temperature on Hydrogen Permeation and Hydrogen Embrittlement Susceptibility of 4130X Steel
by Caijun Xu, Fang Wang and Jiaqing Li
Materials 2025, 18(15), 3448; https://doi.org/10.3390/ma18153448 - 23 Jul 2025
Viewed by 241
Abstract
Chromium-molybdenum steels are extensively used in manufacturing large-volume seamless hydrogen storage vessels, but they still suffer from the hydrogen embrittlement problem. In this study, electrochemical cathodic hydrogen charging is utilized to investigate the hydrogen embrittlement of 4130X steels, with emphasis on the influence [...] Read more.
Chromium-molybdenum steels are extensively used in manufacturing large-volume seamless hydrogen storage vessels, but they still suffer from the hydrogen embrittlement problem. In this study, electrochemical cathodic hydrogen charging is utilized to investigate the hydrogen embrittlement of 4130X steels, with emphasis on the influence of charging current density and temperature on hydrogen permeation and hydrogen embrittlement susceptibility. The hydrogen penetration rate and hydrogen diffusion coefficient of 4130X steel both increase with an increase in hydrogen-charging current density and temperature. The results demonstrate that the degree of hydrogen-induced degradation in tensile ductility is more marked with increasing hydrogen-charging current density, while the hydrogen embrittlement index exhibits a peak at a temperature of 308 K, in which brittle patterns like quasi-cleavage surfaces and crack formations occur. These findings are crucial for understanding hydrogen-induced embrittlement and determining test temperatures of hydrogen-related engineering material applications. Full article
Show Figures

Figure 1

15 pages, 2596 KiB  
Article
Comprehensive Experimental Investigation of Operational Parameter Sensitivity in Proton Exchange Membrane Fuel Cell Performance
by Renhua Feng, Zhanye Hua, Jing Yu, Shaoyang Wang, Laihua Shi, Xing Shu, Ziyi Yan and Jiayi Guo
Batteries 2025, 11(7), 278; https://doi.org/10.3390/batteries11070278 - 21 Jul 2025
Viewed by 282
Abstract
In this study, the sensitivity of operating parameters such as the hydrogen and air excess coefficient, cathode inlet pressure, intake relative humidity, and coolant inlet temperature and their effects on the performance of single proton exchange membrane fuel cells (PEMFCs) are experimentally assessed. [...] Read more.
In this study, the sensitivity of operating parameters such as the hydrogen and air excess coefficient, cathode inlet pressure, intake relative humidity, and coolant inlet temperature and their effects on the performance of single proton exchange membrane fuel cells (PEMFCs) are experimentally assessed. The results revealed that the fuel cell node voltage increases as the hydrogen and air excess coefficient increases, and the impact of the hydrogen and air excess coefficient on the fuel cell node voltage gradually increases as the current density increases. However, a higher hydrogen and air excess coefficient is not always better. The node voltage increases as the intake pressure increases. However, it is not that a higher intake pressure is always better, but rather that there is an optimal intake pressure value to achieve the best overall performance of the fuel cell. The node voltage increases as the coolant inlet temperature increases at most fuel cell current densities. However, the optimum fuel cell operating inlet temperature is not necessarily higher, as the coolant inlet temperature may have a strong coupling relationship with other operating conditions that will also affect the fuel cell performance. The fuel cell operating inlet temperature may have a strong coupling relationship with the intake relative humidity, and both of these parameters must be well-matched to achieve better fuel cell performance. Full article
Show Figures

Figure 1

20 pages, 8022 KiB  
Article
Corrosion Response of Steel to Penetration of Chlorides in DC-Treated Hardened Portland Cement Mortar
by Milan Kouřil, Jan Saksa, Vojtěch Hybášek, Ivona Sedlářová, Jiří Němeček, Martina Kohoutková and Jiří Němeček
Materials 2025, 18(14), 3365; https://doi.org/10.3390/ma18143365 - 17 Jul 2025
Viewed by 236
Abstract
Electrochemical treatment by means of direct current (DC) is usually used as a measure for steel rebar corrosion protection, e.g., cathodic protection (CP), electrochemical chloride extraction (ECE), and re-alkalization (RA). However, the passage of an electrical charge through the pore system of concrete [...] Read more.
Electrochemical treatment by means of direct current (DC) is usually used as a measure for steel rebar corrosion protection, e.g., cathodic protection (CP), electrochemical chloride extraction (ECE), and re-alkalization (RA). However, the passage of an electrical charge through the pore system of concrete or mortar, coupled with the migration of ions, concentration changes, and resulting phase changes, may alter its chloride penetration resistance and, subsequently, the time until rebar corrosion activation. Porosity changes in hardened Portland cement mortar were studied by means of mercury intrusion porosimetry (MIP) and electrochemical impedance spectroscopy (EIS), and alterations in the mortar surface phase composition were observed by means of X-ray diffraction (XRD). In order to innovatively investigate the impact of DC treatment on the properties of the mortar–electrolyte interface, the cathode-facing mortar surface and the anode-facing mortar surface were analyzed separately. The corrosion of steel coupons embedded in DC-treated hardened mortar was monitored by means of the free corrosion potential (Eoc) and polarization resistance (Rp). The results showed that the DC treatment affected the surface porosity of the hardened Portland cement mortar at the nanoscale. Up to two-thirds of the small pores (0.001–0.01 µm) were replaced by medium-sized pores (0.01–0.06 µm), which may be significant for chloride ingress. Although the porosity and phase composition alterations were confirmed using other techniques (EIS and XRD), corrosion tests revealed that they did not significantly affect the time until the corrosion activation of the steel coupons in the mortar. Full article
Show Figures

Figure 1

12 pages, 1029 KiB  
Article
Does tDCS Enhance Complex Motor Skill Acquisition? Evidence from a Golf-Putting Task
by Virginia Lopez-Alonso, Gabriel López-Bermúdez, Jeffrey Cayaban Pagaduan and Jose Andrés Sánchez-Molina
Sensors 2025, 25(14), 4297; https://doi.org/10.3390/s25144297 - 10 Jul 2025
Viewed by 729
Abstract
Transcranial direct current stimulation (tDCS) modulates cortical excitability, thus inducing improvements in motor learning of simple tasks. In this study, we aimed to evaluate the effect of different tDCS conditions—anodal stimulation over the motor cortex (M1), anodal and cathodal stimulation over the prefrontal [...] Read more.
Transcranial direct current stimulation (tDCS) modulates cortical excitability, thus inducing improvements in motor learning of simple tasks. In this study, we aimed to evaluate the effect of different tDCS conditions—anodal stimulation over the motor cortex (M1), anodal and cathodal stimulation over the prefrontal cortex (PFC), and sham—on the online and offline learning of a complex accuracy task (golf-putting) in novice golfers. Methods: A total of 40 young, healthy subjects (24 men, 16 women) without previous golf experience were randomly distributed in four groups receiving sham, anodal M1, anodal PFC or cathodal PFC tDCS. All subjects participated in two consecutive sessions. In the first session, they performed 15 blocks of 10 golf-putting along with tDCS stimulation. After 24 h, they performed the same task without tDCS. Results: Repeated measures ANOVA revealed a significant improvement in performance during the two consecutive golf-putting sessions regardless of the site and the stimulation conditions. Conclusion: Our findings suggest that tDCS over M1 or PFC does not confer additional benefits in the acquisition of complex, full-body motor skills such as golf-putting. Full article
(This article belongs to the Special Issue Sensor-Based Human Motor Learning)
Show Figures

Figure 1

12 pages, 23410 KiB  
Article
Recycling and Separation of Valuable Metals from Spent Cathode Sheets by Single-Step Electrochemical Strategy
by Neng Wei, Yaqun He, Guangwen Zhang, Jiahao Li and Fengbin Zhang
Separations 2025, 12(7), 178; https://doi.org/10.3390/separations12070178 - 5 Jul 2025
Viewed by 276
Abstract
The conventional spent lithium-ion batteries (LIBs) recycling method suffers from complex processes and excessive chemical consumption. Hence, this study proposes an electrochemical strategy for achieving reductant-free leaching of high-valence transition metals and efficient separation of valuable components from spent cathode sheets (CSs). An [...] Read more.
The conventional spent lithium-ion batteries (LIBs) recycling method suffers from complex processes and excessive chemical consumption. Hence, this study proposes an electrochemical strategy for achieving reductant-free leaching of high-valence transition metals and efficient separation of valuable components from spent cathode sheets (CSs). An innovatively designed sandwich-structured electrochemical reactor achieved efficient reductive dissolution of cathode materials (CMs) while maintaining the structural integrity of aluminum (Al) foils in a dilute sulfuric acid system. Optimized current enabled leaching efficiencies exceeding 93% for lithium (Li), cobalt (Co), manganese (Mn), and nickel (Ni), with 88% metallic Al foil recovery via cathodic protection. Multi-scale characterization systematically elucidated metal valence evolution and interfacial reaction mechanisms, validating the technology’s tripartite innovation: simultaneous high metal extraction efficiency, high value-added Al foil recovery, and organic removal through single-step electrochemical treatment. The process synergized the dissolution of CM particles and hydrogen bubble-induced physical liberation to achieve clean separation of polyvinylidene difluoride (PVDF) and carbon black (CB) layers from Al foil substrates. This method eliminates crushing pretreatment, high-temperature reduction, and any other reductant consumption, establishing an environmentally friendly and efficient method of comprehensive recycling of battery materials. Full article
Show Figures

Figure 1

25 pages, 4500 KiB  
Article
Cost-Effective Bimetallic Catalysts for Green H2 Production in Anion Exchange Membrane Water Electrolyzers
by Sabrina Campagna Zignani, Marta Fazio, Mariarosaria Pascale, Chiara Alessandrello, Claudia Triolo, Maria Grazia Musolino and Saveria Santangelo
Nanomaterials 2025, 15(13), 1042; https://doi.org/10.3390/nano15131042 - 4 Jul 2025
Viewed by 451
Abstract
Green hydrogen production from water electrolysis (WE) is one of the most promising technologies to realize a decarbonized future and efficiently utilize intermittent renewable energy. Among the various WE technologies, the emerging anion exchange membrane (AEMWE) technology shows the greatest potential for producing [...] Read more.
Green hydrogen production from water electrolysis (WE) is one of the most promising technologies to realize a decarbonized future and efficiently utilize intermittent renewable energy. Among the various WE technologies, the emerging anion exchange membrane (AEMWE) technology shows the greatest potential for producing green hydrogen at a competitive price. To achieve this goal, simple methods for the large-scale synthesis of efficient and low-cost electrocatalysts are needed. This paper proposes a very simple and scalable process for the synthesis of nanostructured NiCo- and NiFe-based electrode materials for a zero-gap AEMWE full cell. For the preparation of the cell anode, oxides with different Ni molar fractions (0.50 or 0.85) are synthesized by the sol–gel method, followed by calcination in air at different temperatures (400 or 800 °C). To fabricate the cell cathode, the oxides are reduced in a H2/Ar atmosphere. Electrochemical testing reveals that phase purity and average crystal size significantly influence cell performance. Highly pure and finely grained electrocatalysts yield higher current densities at lower overpotentials. The best performing membrane electrode assembly exhibits a current density of 1 A cm−2 at 2.15 V during a steady-state 150 h long stability test with 1 M KOH recirculating through the cell, the lowest series resistance at any cell potential (1.8 or 2.0 V), and the highest current density at the cut-off voltage (2.2 V) both at the beginning (1 A cm−2) and end of tests (1.78 A cm−2). The presented results pave the way to obtain, via simple and scalable techniques, cost-effective catalysts for the production of green hydrogen aimed at a wider market penetration by AEMWE. Full article
Show Figures

Figure 1

15 pages, 2160 KiB  
Article
Open-Pore Skeleton Prussian Blue as a Cathode Material to Achieve High-Performance Sodium Storage
by Wenxin Song, Yaxin Li, Jiahao Chen, Huihua Min, Xinyuan Wu, Xiaomin Liu and Hui Yang
Materials 2025, 18(13), 3174; https://doi.org/10.3390/ma18133174 - 4 Jul 2025
Viewed by 397
Abstract
Prussian blue and its analogs (PBAs), considered potential cathode materials for sodium-ion batteries (SIBs), still confront multiple challenges. For example, many defect vacancies and high crystal water content are generated during the fast crystallization of PBAs, impairing the rate performance. The stress accumulation [...] Read more.
Prussian blue and its analogs (PBAs), considered potential cathode materials for sodium-ion batteries (SIBs), still confront multiple challenges. For example, many defect vacancies and high crystal water content are generated during the fast crystallization of PBAs, impairing the rate performance. The stress accumulation during Na+ insertion/extraction destabilizes the lattice framework and then damages the electrochemical performance. Herein, iron-based Prussian blue with an open-pore skeleton structure (PB-3) is prepared using a facile template method which employs PVP and sodium citrate to control the crystallization rate and adjust the particle morphology. The prepared materials exhibit excellent kinetic properties and are conducive to mitigate the volume changes during ion insertion/extraction processes. PB-3 electrode not only exhibits a superior rate performance (92 mAh g−1 reversible capacity at 2000 mA g−1), but also presents superior cycling performance (capacity retention remained at 90.2% after 600 cycles at a current density of 500 mA g−1). The highly reversible sodium ion insertion/extraction mechanism of PB-3 is investigated by ex situ XRD tests, which proves that the stabilized lattice structure can enhance the long cycling performance. In addition, the considerable capacitance contributes to the rate performance. This study provides valuable insights for the subsequent development of high-performance and stable cathodes for SIBs. Full article
(This article belongs to the Special Issue Development of Electrode Materials for Sodium Ion Batteries)
Show Figures

Figure 1

Back to TopTop