Comprehensive Experimental Investigation of Operational Parameter Sensitivity in Proton Exchange Membrane Fuel Cell Performance
Abstract
1. Introduction
2. Test Setup
2.1. Test Fuel Cell and Platform
2.2. Test Setup
3. Results and Analysis
3.1. Excess Coefficient Sensitivity Analysis
3.2. Intake Pressure Sensitivity Analysis
3.3. Coolant Temperature Sensitivity Analysis
3.4. Intake Relative Humidity Sensitivity Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Jia, D.; Qiao, J.; Liu, J.; Fu, J.; Wang, R.; Li, Y.; Duan, X. Experiment and simulation analysis of the effects of different asynchronous variable intake valve phase differences on the in-cylinder flow, combustion and performance characteristics of high compression ratio turbocharged enhanced Miller cycle engine. Energy 2025, 320, 134988. [Google Scholar] [CrossRef]
- Wan, S.; Zhou, F.; Fu, J.; Yu, J.; Liu, J.; Abdellatief, T.M.; Duan, X. Effects of hydrogen addition and exhaust gas recirculation on thermodynamics and emissions of ultra-high compression ratio spark ignition engine fueled with liquid methane. Energy 2024, 306, 132451. [Google Scholar] [CrossRef]
- Xu, L.; Liu, J.; Duan, X.; Liu, H.; Abdellatief, T.M. Effects of rebreathing exhaust gas strategy on performance behaviors of the hydrogen enriched natural gas spark ignition. Int. J. Hydrogen Energy 2025, 145, 359–370. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, F.; Song, X.; Chen, R.; Chen, Z.; Duan, X.; Xia, Y. Optimization of multiple alkaline water electrolyzers coupled with solar photovoltaic power for green hydrogen production on a large scale. Int. J. Hydrogen Energy 2025, 136, 511–532. [Google Scholar] [CrossRef]
- Feng, R.; Hua, Z.; Yu, J.; Zhao, Z.; Dan, Y.; Zhai, H.; Shu, X. A comparative investigation on the energy flow of pure battery electric vehicle under different driving conditions. Appl. Therm. Eng. 2025, 269, 126035. [Google Scholar] [CrossRef]
- Guo, R.; Chen, D.; Li, Y.; Wu, W.; Hu, S.; Xu, X. Anode nitrogen concentration estimation based on voltage variation characteristics for proton exchange membrane fuel cell stacks. Energies 2023, 16, 2111. [Google Scholar] [CrossRef]
- Feng, R.; Yu, J.; Zhao, Z.; Hua, Z.; He, J.; Shu, X. Performance and energy consumption evaluation of fuel cell hybrid heavy-duty truck based on energy flow and thermal management characteristics experiment under different driving conditions. Energy Convers. Management. 2024, 321, 119084. [Google Scholar] [CrossRef]
- Ji, X.F.; Wang, X.B.; Li, Y.; Guo, J.Q.; Yang, Z.; Hao, D. Sensitivity analysis of operating parameters on a 65 kW proton exchange membrane fuel cell stack performances. Energy Rep. 2022, 8, 521–527. [Google Scholar] [CrossRef]
- Liu, Y.; Tu, Z.K.; Chan, S.H. Water management and performance enhancement in a proton exchange membrane fuel cell system using optimized gas recirculation devices. Energy 2023, 279, 128029. [Google Scholar] [CrossRef]
- Rasheed, R.K.A.; Liao, Q.; Zhang, C.Z.; Chan, S.H. A review on modelling of high temperature proton exchange membrane fuel cells (HT-PEMFCs). Int. J. Hydrogen Energy 2017, 42, 3142–3165. [Google Scholar] [CrossRef]
- Jiao, J.R.; Chen, F.X. Humidity estimation of vehicle proton exchange membrane fuel cell under variable operating temperature based on adaptive sliding mode observation. Appl. Energy 2022, 313, 118779. [Google Scholar] [CrossRef]
- Huang, Z.P.; Jian, Q.F. Cooling efficiency optimization on air-cooling PEMFC stack with thin vapor chambers. Appl. Therm. Eng. 2022, 217, 119238. [Google Scholar] [CrossRef]
- Rahimi-Esbo, M.; Rahgoshay, S.M.; Hassani, M.M.; Firouzjaei, K.D. Novel design and numerical evaluating of a cooling flow field in PEMFC with metallic bipolar plates. Int. J. Hydrogen Energy 2020. [Google Scholar] [CrossRef]
- Fikry, M.; Khavlyuk, P.; Herranz, J.; Eychmüller, A.; Schmidt, T.J. Effect of Low and Sub-Freezing Temperature on the PEFC Performance of Unsupported Pt-Ni Aerogel Cathode Catalyst Layers. In Proceedings of the 2022 ECS-The Electrochemical Society, San Francisco, CA, USA, 22–26 May 2022; Volume 1, p. 1461. [Google Scholar] [CrossRef]
- Xia, L.; Ni, M.; Xu, Q.; Xu, H.; Zheng, K. Optimization of catalyst layer thickness for achieving high performance and low cost of high temperature proton exchange membrane fuel cell. Appl. Energy 2021, 294, 117012. [Google Scholar] [CrossRef]
- Jiang, Y.; Yang, Z.R.; Jiao, K.; Du, Q. Sensitivity analysis of uncertain parameters based on an improved proton exchange membrane fuel cell analytical model. Energy Convers. Manag. 2018, 164, 639–654. [Google Scholar] [CrossRef]
- Jin, L.; Wang, X.J.; Zhu, J.W.; Wang, C.F.; Zhou, T.T.; Zhang, X.W. Sensitivity analysis of proton exchange membrane fuel cell performance to operating parameters and its applicability assessment under different conditions. Energy Convers. Manag. 2021, 228, 13727. [Google Scholar] [CrossRef]
- Carcadea, E.; Varlam, M.; Ismail, M.; Ingham, D.B.; Marinoiu, A.; Raceanu, M.; Jianu, C.; Patularu, L.; Ion-Ebrasu, D. PEM fuel cell performance improvement through numerical optimization of the parameters of the porous layers. Int. J. Hydrogen Energy 2020, 45, 7968–7980. [Google Scholar] [CrossRef]
- Yu, Z.; Liu, F.; Li, C. Numerical study on effects of hydrogen ejector on PEMFC performances. Energy 2023, 285, 129481. [Google Scholar] [CrossRef]
- Liao, X.R.; Photong, C.; Su, J.B. Sensitivity analysis and optimization of operating conditions of proton exchange membrane fuel cell. J. Appl. Electrochem. 2024, 54, 2505–2518. [Google Scholar] [CrossRef]
- Sezgin, B.; Caglayan, D.G.; Devrim, Y.; Steenberg, T.; Eroglu, I. Modeling and sensitivity analysis of high temperature PEM fuel cells by using Comsol Multiphysics. Int. J. Hydrogen Energy 2016, 41, 10001–10009. [Google Scholar] [CrossRef]
- Soomro, I.; Memon, F.; Mughal, W.; Khan, M.A.; Ali, W.; Liu, Y.; Choi, K.H.; Thebo, K.H. Influence of Operating and Electrochemical Parameters on PEMFC Performance: A Simulation Study. Membranes 2023, 13, 259. [Google Scholar] [CrossRef] [PubMed]
- Zhu, X.N.; Su, L.; Wang, X.; Chen, R.; Ji, S.; Ma, Y.; Lin, W.; Jian, Z.; Wei, Z. Effects of operating conditions on the performance uniformity of the proton-exchange membrane fuel cell stack. Energy Convers. Manag. 2023, 281, 116856. [Google Scholar] [CrossRef]
- Kang, S.; Min, K.; Mueller, F.; Brouwer, J. Configuration effects of air, fuel, and coolant inlets on the performance of a proton exchange membrane fuel cell for automotive applications. Int. J. Hydrogen Energy 2009, 34, 6749–6764. [Google Scholar] [CrossRef]
- Ko, D.G.; Doh, S.; Park, H.S.; Kim, M.H. Investigation of the effect of operating pressure on the performance of proton exchange membrane fuel cell: In the aspect of water distribution. Renew. Energy 2018, 115, 896–907. [Google Scholar] [CrossRef]
- Wang, J.; Wang, B.; Tongsh, C.; Miao, T.; Cheng, P.; Wang, Z.; Du, Q.; Jiao, K. Combining proton and anion exchange membrane fuel cells for enhancing the overall performance and self-humidification. Chem. Eng. J. 2022, 428, 131969. [Google Scholar] [CrossRef]
- Yuan, W.; Tang, Y.; Pan, M.; Li, Z.; Tang, B. Model prediction of effects of operating parameters on proton exchange membrane fuel cell performance. Renew. Energy 2010, 35, 656–666. [Google Scholar] [CrossRef]
- Kahveci, E.E.; Taymaz, I. Assessment of single-serpentine PEM fuel cell model developed by computational fluid dynamics. Fuel 2018, 217, 51–58. [Google Scholar] [CrossRef]
- Huang, Z.Y.; Shen, J.; Chan, S.H.; Tu, Z.K. Transient response of performance in a proton exchange membrane fuel cell under dynamic loading. Energy Convers. Manag. 2020, 226, 113492. [Google Scholar] [CrossRef]
- Xie, N.; Wei, W.; Ba, J.; Yang, T. Operation parameters study on the performance of PEMFC based orthogonal test method. Case Stud. Therm. Eng. 2024, 61, 105035. [Google Scholar] [CrossRef]
- Atak, N.; Dogan, B.; Yesilyurt, M. Investigation of the performance parameters for a PEMFC by thermodynamic analyses: Effects of operating temperature and pressure. Energy 2023, 282, 128907. [Google Scholar] [CrossRef]
- Hao, H.M.; Mo, R.J.; Kang, S.Y.; Wu, Z.F. Effects of temperature, inlet gas pressure and humidity on PEM water contents and current density distribution. Results Eng. 2023, 20, 101411. [Google Scholar] [CrossRef]
- Xu, J.-H.; Yan, H.-Z.; Ding, Q.; Zhu, K.-Q.; Yang, Y.-R.; Wang, Y.-L.; Huang, T.-M.; Chen, X.; Wan, Z.-M.; Wang, X.-D. Sparrow search algorithm applied to temperature control in PEM fuel cell systems. Int. J. Hydrogen Energy 2022, 47, 39973–39986. [Google Scholar] [CrossRef]
- Gao, J.W.; Li, M.; Hu, Y.F.; Chen, H.; Ma, Y. Challenges and developments of automotive fuel cell hybrid power system and control. Sci. China Inf. Sci. 2019, 62, 51201. [Google Scholar] [CrossRef]
- Liu, X.; Chen, J.; Jin, L.; Liu, S.B. Sensitivity analysis of current distribution to critical operating parameters for polymer electrolyte membrane fuel cells. J. Power Sources 2023, 573, 233068. [Google Scholar] [CrossRef]
- Zhang, B.; Chen, F.X.; Jiao, J.R.; Pei, F.L.; Zhang, W.D. Fuel cell parameter analysis and constraint optimization based on Nelder-Mead simplex algorithm considering performance degradation. Int. J. Hydrogen Energy 2024, 69, 1548–1564. [Google Scholar] [CrossRef]
- Albarbar, A.; Alrweq, M. Proton Exchange Membrane Fuel Cells: Design, Modelling and Performance Assessment Techniques; Springer: Berlin/Heidelberg, Germany, 2018. [Google Scholar] [CrossRef]
- Li, Y.K.; Zhao, X.Q.; Tao, S.Y.; Li, Q.; Chen, W.R. Experimental study on anode and cathode pressure difference control and effects in a proton exchange membrane fuel cell system. Energy Technol. 2015, 3, 946–954. [Google Scholar] [CrossRef]
- GB/T 28817-2022; Single Cell Test Methods for Polymer Electrolyte Fuel Cell (PEFC). China Standardization Administration: Beijing, China, 2022.
- Yuan, W.W.; Ou, K.; Kim, Y.B. Thermal management for an air coolant system of a proton exchange membrane fuel cell using heat distribution optimization. Appl. Therm. Eng. 2020, 167, 114715. [Google Scholar] [CrossRef]
- Nöst, M.; Doppler, C.; Klell, M.; Trattner, A. Thermal Management of PEM Fuel Cells in Electric Vehicles. In Springer Briefs in Applied Sciences and Technology; Springer: Berlin/Heidelberg, Germany, 2018. [Google Scholar] [CrossRef]
- Yin, P.; Chen, J.; He, H. Control of oxygen excess ratio for a PEMFC air supply system by intelligent PID methods. Sustainability 2023, 15, 8500. [Google Scholar] [CrossRef]
- Zhou, K.; Liu, Z.; Zhang, X.; Liu, H.; Meng, N.; Bai, H.; Huang, J.; Qi, M.; Song, X.; Yan, X. Effect of the high oxygen excess ratio design on the performance of air-cooling polymer electrolyte membrane fuel cells for unmanned aerial vehicles. J. Power Sources 2023, 571, 23308. [Google Scholar] [CrossRef]
- Zhang, C.L.; Li, H. Fixed-time observation and predefined performance regulation for oxygen excess ratio of vehicular fuel cells under input saturation. Int. J. Hydrogen Energy 2024, 69, 1022–1035. [Google Scholar] [CrossRef]
- Li, X.; Tan, H.; Ni, Z.; Wang, Y.; Li, C.; Han, K. Select sensitivity parameters for proton exchange membrane fuel cell model: An identification method from analytical Butler-Volmer equation. J. Power Sources 2024, 608, 234330. [Google Scholar] [CrossRef]
- Hu, D.H.; Liu, J.; Yi, F.Y.; Yang, Q.Q.; Zhou, J.M. Enhancing heat dissipation to improve efficiency of Two-Stage electric air compressor for fuel cell vehicle. Energy Convers. Manag. 2022, 251, 115007. [Google Scholar] [CrossRef]
- Qin, J.Y.; Mao, Z.Q.; Xu, J.M.; Xie, Z.G. A Study on the Characteristics of a Fuel Cell Engine with Different Excess Air Ratio. Automot. Eng. 2004, 15, 379–381. [Google Scholar] [CrossRef]
- Liao, P.Y.; Yang, D.J.; Ming, P.W.; Hu, K.F.; Su, G.Q.; Chen, S.Q.; Pan, M.; Li, Z. Investigation of water management for residential PEM fuel cells under ultra-low inlet pressure. Chem. Eng. J. 2024, 493, 152369. [Google Scholar] [CrossRef]
- d’Adamo, A.; Martoccia, L.; Berni, F.; Breda, S. An analytical methodology to maximize the fuel cells system efficiency using optimal cathodic pressure and flow rate. Int. J. Hydrogen Energy 2024, 87, 159–170. [Google Scholar] [CrossRef]
- Chen, H.C.; Liu, Z.; Ye, X.C.; Yi, L.; Xu, S.C.; Zhang, T. Air flow and pressure optimization for air supply in proton exchange membrane fuel cell system. Energy 2022, 238, 121949. [Google Scholar] [CrossRef]
- Baz, F.B.; Elzohary, R.M.; Osman, S.; Marzouk, S.A.; Ahmed, M. A review of water management methods in proton exchange membrane fuel cells. Energy Convers. Manag. 2024, 302, 118150. [Google Scholar] [CrossRef]
- Chen, H.C.; Liu, Y.H.; Deng, C.H.; Chen, J.R. Research on improving dynamic response ability of 30 kW real fuel cell system based on operating parameter optimization. Int. J. Hydrogen Energy 2023, 48, 1075–1089. [Google Scholar] [CrossRef]
- Chen, B.; Cai, Y.H.; Yu, Y.; Wang, J.; Tu, Z.K.; Chan, S.H. Gas purging effect on the degradation characteristic of a proton exchange membrane fuel cell with dead-ended mode operation, I.I. Under different operation pressures. Energy 2017, 131, 50–57. [Google Scholar] [CrossRef]
- Ahmadi, N.; Dadvand, A.; Rezazadeh, S.; Mirzaee, I. Analysis of the operating pressure and GDL geometrical configuration effect on PEM fuel cell performance. J. Braz. Soc. Mech. Sci. Eng. 2016, 38, 2311–2325. [Google Scholar] [CrossRef]
- Xia, Y.Z.; Hu, Y.W.; Hu, G.L.; Lei, H.W.; Lu, J.Z.; Wang, Z.C.; Wang, Q. Numerical analysis on the effects of manifold design on flow uniformity in a large proton exchange membrane fuel cell stack. Int. J. Hydrogen Energy 2023, 48, 5643–5655. [Google Scholar] [CrossRef]
- Afshari, E.; Ziaei-Rad, M.; Dehkordi, M.M. Numerical investigation on a novel zigzag-shaped flow channel design for cooling plates of PEM fuel cells. J. Energy Inst. 2017, 90, 752–763. [Google Scholar] [CrossRef]
- Mohamed, H.S.B.; Mohamed, A.A.A.; Tao, Q.; Li, J.; Shi, J.P.; Wang, Y.P. Liquid cooling techniques in proton exchange membrane fuel cell stacks: A detailed survey. Alex. Eng. J. 2020, 59, 635–655. [Google Scholar] [CrossRef]
- Tang, X.W.; Zhang, Y.J.; Xu, S.H. Temperature sensitivity characteristics of PEM fuel cell and output performance improvement based on optimal active temperature control. Int. J. Heat Mass Transf. 2023, 206, 123966. [Google Scholar] [CrossRef]
- Peighambardoust, S.J.; Rowshanzamir, S.; Amjadi, M. Review of the proton exchange membranes for fuel cell applications. Int. J. Hydrogen Energy 2010, 35, 9349–9384. [Google Scholar] [CrossRef]
- Wang, L.; Husar, A.; Zhou, T.H.; Liu, H.T. A parametric study of PEM fuel cell performances. Int. J. Hydrogen Energy 2003, 28, 1263–1272. [Google Scholar] [CrossRef]
- Hirpara, V.; Patel, V.; Zhang, Y.Z.; Anderson, R.; Zhu, N.; Zhang, L.F. Investigating the effect of operating temperature on dynamic behavior of droplets for proton exchange membrane fuel cells. Int. J. Hydrogen Energy 2020, 45, 14145–14155. [Google Scholar] [CrossRef]
- Zhang, B.; Lin, F.; Zhang, C.Z.; Liao, R.Y.; Wang, Y.X. Design and implementation of model predictive control for an open-cathode fuel cell thermal management system. Renew. Energy 2020, 154, 1014–1024. [Google Scholar] [CrossRef]
- Wei, L.; Dafalla, A.M.; Jiang, F.M. Effects of reactants/coolant non-uniform inflow on the cold start performance of PEMFC stack. Int. J. Hydrogen Energy 2020, 45, 13469–13482. [Google Scholar] [CrossRef]
- Lee, H.; Han, C.; Park, T. Experimental investigation of charge transfer coefficient and exchange current density in standard fuel cell model for polymer electrolyte membrane fuel cells. Korean J. Chem. Eng. 2020, 37, 577–582. [Google Scholar] [CrossRef]
- Qiu, C.X.; Su, J.B.; Shi, L. Exploration of proton exchange membrane fuel cell performance under dynamic humidification conditions. J. Indian Chem. Soc. 2024, 101, 101236. [Google Scholar] [CrossRef]
- Latha, K.; Vidhya, S.; Umamaheswari, B.; Rajalakshmi, N.; Dhathathreyan, K.S. Tuning of PEM fuel cell model parameters for prediction of steady state and dynamic performance under various operating conditions. Int. J. Hydrogen Energy 2013, 38, 2370–2386. [Google Scholar] [CrossRef]
- Xiong, Z.; Yuan, Y.P.; Tong, L.; Li, X.; Shen, B.Y. Dynamic performance analysis of proton exchange membrane fuel cell in marine applications. Energy 2024, 310, 133218. [Google Scholar] [CrossRef]
- Xue, Q.; Shan, Z.H.; Wang, J. Humidity impact on polarization dynamics in polymer electrolyte membrane fuel cells through distribution of relaxation times analysis. J. Power Sources 2024, 609, 234655. [Google Scholar] [CrossRef]
- Yang, C.; Costamagna, P.; Srinivasan, S.; Benziger, J.; Bocarsly, A.B. Approaches and technical challenges to high temperature operation of proton exchange membrane fuel cells. J. Power Sources 2001, 103, 1–9. [Google Scholar] [CrossRef]
- Ou, K.; Yuan, W.W.; Choi, M.; Yang, S.; Kim, Y. Performance increase for an open-cathode PEM fuel cell with humidity and temperature control. Int. J. Hydrogen Energy 2017, 42, 29852–29862. [Google Scholar] [CrossRef]
- Schopen, O.; Narayan, S.; Beckmann, M.; Najmi, A.; Esch, T.; Shabani, B. An EIS approach to quantify the effects of inlet air relative humidity on the performance of proton exchange membrane fuel cells: A pathway to developing a novel fault diagnostic method. Int. J. Hydrogen Energy 2024, 58, 1302–1315. [Google Scholar] [CrossRef]
Single Cell Parameter | Composition | Value |
---|---|---|
Electrochemical reactions area | - | 279.4 cm2 |
Anode | Pt/C catalyst | 10 μm |
Electrolyte | Perfluorosulfonic acid | 15 μm |
Cathode | Pt alloy catalyst | 20 μm |
Microporous layer | Carbon/PTFE mixture coated | 38 μm |
Number of cells | - | 1 |
Type of cooling | - | Liquid cooling |
Bipolar plate | Metal | 2 mm |
Bench Parameter | Unit | Value |
---|---|---|
Power test range | W | 50–500 |
Voltage test range | V | 0–40 |
Working temperature of PEM | °C | Room temperature to 90 °C |
Humidity control range | %RH | 10–100 |
Anode flow range | SLPM | 0.12–12 |
Cathode flow range | SLPM | 0.5–50 |
Temperature difference control range | °C | 1–10 |
Type of cooling | Deionized water |
Operating Points | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Current density (A/cm2) | 0 | 0.1 | 0.2 | 0.4 | 0.6 | 0.8 | 1 | 1.2 | 1.4 | 1.6 | 1.8 | 2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Feng, R.; Hua, Z.; Yu, J.; Wang, S.; Shi, L.; Shu, X.; Yan, Z.; Guo, J. Comprehensive Experimental Investigation of Operational Parameter Sensitivity in Proton Exchange Membrane Fuel Cell Performance. Batteries 2025, 11, 278. https://doi.org/10.3390/batteries11070278
Feng R, Hua Z, Yu J, Wang S, Shi L, Shu X, Yan Z, Guo J. Comprehensive Experimental Investigation of Operational Parameter Sensitivity in Proton Exchange Membrane Fuel Cell Performance. Batteries. 2025; 11(7):278. https://doi.org/10.3390/batteries11070278
Chicago/Turabian StyleFeng, Renhua, Zhanye Hua, Jing Yu, Shaoyang Wang, Laihua Shi, Xing Shu, Ziyi Yan, and Jiayi Guo. 2025. "Comprehensive Experimental Investigation of Operational Parameter Sensitivity in Proton Exchange Membrane Fuel Cell Performance" Batteries 11, no. 7: 278. https://doi.org/10.3390/batteries11070278
APA StyleFeng, R., Hua, Z., Yu, J., Wang, S., Shi, L., Shu, X., Yan, Z., & Guo, J. (2025). Comprehensive Experimental Investigation of Operational Parameter Sensitivity in Proton Exchange Membrane Fuel Cell Performance. Batteries, 11(7), 278. https://doi.org/10.3390/batteries11070278