Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (130)

Search Parameters:
Keywords = cardiac structural and functional abnormalities

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 9978 KiB  
Article
An Integrated Analysis of Transcriptomics and Metabolomics Elucidates the Role and Mechanism of TRPV4 in Blunt Cardiac Injury
by Liancong Gao, Liu Han, Xiangyu Ma, Huiyan Wang, Mutan Li and Jianhui Cai
Metabolites 2025, 15(8), 512; https://doi.org/10.3390/metabo15080512 (registering DOI) - 31 Jul 2025
Abstract
Background/Objectives: Blunt cardiac injury (BCI) is a severe medical condition that may arise as a result of various traumas, including motor vehicle accidents and falls. The main objective of this study was to explore the role and underlying mechanisms of the TRPV4 gene [...] Read more.
Background/Objectives: Blunt cardiac injury (BCI) is a severe medical condition that may arise as a result of various traumas, including motor vehicle accidents and falls. The main objective of this study was to explore the role and underlying mechanisms of the TRPV4 gene in BCI. Elucidating the function of TRPV4 in BCI may reveal potential novel therapeutic targets for the treatment of this condition. Methods: Rats in each group, including the SD control group (SDCON), the SD blunt-trauma group (SDBT), the TRPV4 gene-knockout control group (KOCON), and the TRPV4 gene-knockout blunt-trauma group (KOBT), were all freely dropped from a fixed height with a weight of 200 g and struck in the left chest with a certain energy, causing BCI. After the experiment, the levels of serum IL-6 and IL-1β were detected to evaluate the inflammatory response. The myocardial tissue structure was observed by HE staining. In addition, cardiac transcriptome analysis was conducted to identify differentially expressed genes, and metabolomics studies were carried out using UHPLC-Q-TOF/MS technology to analyze metabolites. The results of transcriptomics and metabolomics were verified by qRT-PCR and Western blot analysis. Results: Compared with the SDCON group, the levels of serum IL-6 and IL-1β in the SDBT group were significantly increased (p < 0.001), while the levels of serum IL-6 and IL-1β in the KOBT group were significantly decreased (p < 0.001), indicating that the deletion of the TRPV4 gene alleviated the inflammation induced by BCI. HE staining showed that myocardial tissue injury was severe in the SDBT group, while myocardial tissue structure abnormalities were mild in the KOBT group. Transcriptome analysis revealed that there were 1045 upregulated genes and 643 downregulated genes in the KOBT group. These genes were enriched in pathways related to inflammation, apoptosis, and tissue repair, such as p53, apoptosis, AMPK, PPAR, and other signaling pathways. Metabolomics studies have found that TRPV4 regulates nucleotide metabolism, amino-acid metabolism, biotin metabolism, arginine and proline metabolism, pentose phosphate pathway, fructose and mannose metabolism, etc., in myocardial tissue. The combined analysis of metabolic and transcriptional data reveals that tryptophan metabolism and the protein digestion and absorption pathway may be the key mechanisms. The qRT-PCR results corroborated the expression of key genes identified in the transcriptome sequencing, while Western blot analysis validated the protein expression levels of pivotal regulators within the p53 and AMPK signaling pathways. Conclusions: Overall, the deletion of the TRPV4 gene effectively alleviates cardiac injury by reducing inflammation and tissue damage. These findings suggest that TRPV4 may become a new therapeutic target for BCI, providing new insights for future therapeutic strategies. Full article
(This article belongs to the Section Endocrinology and Clinical Metabolic Research)
Show Figures

Figure 1

12 pages, 4902 KiB  
Article
Dynamic Echocardiographic Changes Induced by Exercise in Healthy, Young Individuals with Early Repolarization Pattern
by Loránd Kocsis, Zsuzsanna Pap, István Adorján Szabó and Attila Frigy
Diagnostics 2025, 15(14), 1755; https://doi.org/10.3390/diagnostics15141755 - 11 Jul 2025
Viewed by 303
Abstract
Background: The early repolarization pattern (ERP) on electrocardiography (ECG) has been associated with an increased risk of ventricular arrhythmias in susceptible individuals. This study aimed to evaluate the impact of exercise on echocardiographic parameters to explore the potential influence of ERP on [...] Read more.
Background: The early repolarization pattern (ERP) on electrocardiography (ECG) has been associated with an increased risk of ventricular arrhythmias in susceptible individuals. This study aimed to evaluate the impact of exercise on echocardiographic parameters to explore the potential influence of ERP on hemodynamic response. Methods: Twenty-five healthy, young males with ERP (ERP+ group) and 25 age-matched healthy males without ERP (ERP− group) were enrolled. Comprehensive transthoracic echocardiography was performed at rest and during the early recovery phase following a treadmill exercise test. Baseline values and exercise-induced changes in both conventional and strain-derived echocardiographic parameters were analyzed and compared between groups. Results: Anthropometric measures and resting vital signs were similar in both groups. At baseline, the ERP+ group had a shorter QRS duration. Both groups demonstrated excellent cardiovascular fitness, with comparable chronotropic and pressor responses to exercise. Resting and early recovery-phase echocardiographic parameters were largely similar between ERP+ and ERP− individuals, with no overt structural or functional abnormalities observed in either group. However, ERP+ individuals showed significantly greater reductions in left ventricular end-diastolic volume and stroke volume following exercise, suggesting a distinct volumetric response to physical stress. Conclusions: ERP in healthy young males is not associated with structural cardiac abnormalities or overt myocardial dysfunction. The observed exercise-induced volumetric changes may indicate subtle differences in hemodynamic adaptation, warranting further investigation. Full article
(This article belongs to the Special Issue Clinical Diagnosis and Management in Cardiology)
Show Figures

Figure 1

22 pages, 557 KiB  
Review
Advancing Cardiovascular Risk Stratification and Functional Assessment: A Narrative Review of CPET and ESE Applications
by Valerio Di Fiore, Lavinia Del Punta, Nicolò De Biase, Stefano Masi, Stefano Taddei, Javier Rosada, Michele Emdin, Claudio Passino, Iacopo Fabiani and Nicola Riccardo Pugliese
Healthcare 2025, 13(13), 1627; https://doi.org/10.3390/healthcare13131627 - 7 Jul 2025
Viewed by 479
Abstract
Cardiopulmonary exercise testing combined with exercise stress Echocardiography (CPET-ESE) is an advanced diagnostic modality for evaluating cardiovascular disease and tailoring patient-specific treatment strategies. By integrating metabolic, ventilatory, and hemodynamic data with real-time imaging, CPET-ESE offers a comprehensive assessment of cardiovascular function under physiological [...] Read more.
Cardiopulmonary exercise testing combined with exercise stress Echocardiography (CPET-ESE) is an advanced diagnostic modality for evaluating cardiovascular disease and tailoring patient-specific treatment strategies. By integrating metabolic, ventilatory, and hemodynamic data with real-time imaging, CPET-ESE offers a comprehensive assessment of cardiovascular function under physiological stress. CPET provides detailed insights into metabolic and ventilatory performance, while ESE allows for the dynamic visualisation of cardiac structure and function during exercise. This review outlines the physiological foundations and core parameters of CPET and ESE, emphasising their complementary roles in cardiovascular diagnostics and prognostication and exploring their clinical value for evaluating unexplained dyspnoea and exercise-induced hemodynamic abnormalities. CPET-ESE plays a pivotal role in detecting subtle hemodynamic abnormalities, assessing functional capacity, and contributing to earlier diagnosis, targeted interventions, and improved clinical outcomes. Full article
Show Figures

Graphical abstract

23 pages, 7664 KiB  
Article
Impact of Aerobic Training on Transcriptomic Changes in Skeletal Muscle of Rats with Cardiac Cachexia
by Daniela Sayuri Inoue, Quinten W. Pigg, Dillon R. Harris, Dongmei Zhang, Devon J. Boland and Mariana Janini Gomes
Int. J. Mol. Sci. 2025, 26(13), 6525; https://doi.org/10.3390/ijms26136525 - 7 Jul 2025
Viewed by 838
Abstract
Cardiac cachexia (CC) is an advanced stage of heart failure (HF) characterized by structural and functional abnormalities in skeletal muscle, leading to muscle loss. Aerobic training provides benefits; however, the underlying molecular mechanisms remain poorly understood. This study aimed to investigate the therapeutic [...] Read more.
Cardiac cachexia (CC) is an advanced stage of heart failure (HF) characterized by structural and functional abnormalities in skeletal muscle, leading to muscle loss. Aerobic training provides benefits; however, the underlying molecular mechanisms remain poorly understood. This study aimed to investigate the therapeutic effects of aerobic training on transcriptomic alterations associated with disease progression in cachectic skeletal muscle. HF was induced in male Wistar rats by a single monocrotaline injection (60 mg/Kg). Aerobic training consisted of 30 min treadmill running at ~55% of maximal capacity, 5×/week for 4 weeks. Assessments included body mass, right ventricle mass, skeletal muscle fiber size and exercise tolerance. RNA-seq analysis was performed on the medial gastrocnemius muscle. Sedentary cachectic rats exhibited 114 differentially expressed genes (DEGs) while exercised cachectic rats had only 18 DEGs. Enrichment pathways analyses and weighted gene co-expression network analysis (WGCNA) identified potential key genes involved in disrupted lipid metabolism in sedentary cachectic rats, which were not observed in the exercised cachectic rats. Validation of DEGs related to lipid metabolism confirmed that Dgat2 gene expression was modulated by aerobic training in CC rats. These findings suggest that aerobic training mitigates transcriptional alterations related to lipid metabolism in rats with CC, highlighting its therapeutic potential. Full article
Show Figures

Graphical abstract

33 pages, 2002 KiB  
Review
Network Pharmacology Approaches to Myocardial Infarction Reperfusion Injury: Exploring Mechanisms, Pathophysiology, and Novel Therapies
by Joy Das, Ashok Kumar Sah, Ranjay Kumar Choudhary, Rabab H. Elshaikh, Utpal Bhui, Shreya Chowdhury, Anass M. Abbas, Manar G. Shalabi, Nadeem Ahmad Siddique, Raji Rubayyi Alshammari, Navjyot Trivedi, Khoula Salim Ali Buwaiqi, Said Al Ghenaimi and Pranav Kumar Prabhakar
Biomedicines 2025, 13(7), 1532; https://doi.org/10.3390/biomedicines13071532 - 23 Jun 2025
Viewed by 1618
Abstract
Myocardial infarction (MI) remains a leading cause of morbidity and mortality worldwide. While timely reperfusion therapies such as percutaneous coronary intervention (PCI) and thrombolysis are essential for salvaging ischemic myocardium, they can paradoxically exacerbate tissue injury through a process known as myocardial infarction [...] Read more.
Myocardial infarction (MI) remains a leading cause of morbidity and mortality worldwide. While timely reperfusion therapies such as percutaneous coronary intervention (PCI) and thrombolysis are essential for salvaging ischemic myocardium, they can paradoxically exacerbate tissue injury through a process known as myocardial infarction reperfusion injury (MIRI). MIRI can contribute to up to 50% of the final infarct size, significantly diminishing the benefits of revascularization and leading to worsened cardiac outcomes. The pathophysiology of MIRI involves complex, interrelated mechanisms including oxidative stress, calcium overload, mitochondrial dysfunction, inflammatory responses, apoptosis, and dysregulated autophagy. Post-reperfusion recovery is further complicated by structural and functional abnormalities such as microvascular obstruction, endothelial dysfunction, and myocardial stunning. Clinically, distinguishing reperfusion injury from ischemic damage is challenging and often requires the use of sensitive biomarkers, such as cardiac troponins, alongside advanced imaging modalities. Although a range of pharmacological (e.g., antioxidants, calcium channel blockers, mitochondrial stabilizers, anti-inflammatory agents) and non-pharmacological (e.g., hypothermia, gene therapy, stem cell-based therapies) interventions have shown promise in preclinical studies, their clinical translation remains limited. This is largely due to the multifactorial and dynamic nature of MIRI. In this context, network pharmacology offers a systems-level approach to understanding the complex biological interactions involved in MIRI, facilitating the identification of multi-target therapeutic strategies. Integrating network pharmacology with omics technologies and precision medicine holds potential for advancing cardioprotective therapies. This review provides a comprehensive analysis of the molecular mechanisms underlying MIRI, examines the current clinical challenges, and explores emerging therapeutic strategies. Emphasis is placed on bridging the translational gap through validated, multi-target approaches and large-scale, multicenter clinical trials. Ultimately, this work aims to support the development of innovative and effective interventions for improving outcomes in patients with myocardial infarction. Full article
(This article belongs to the Section Molecular and Translational Medicine)
Show Figures

Figure 1

20 pages, 1771 KiB  
Article
An Innovative Artificial Intelligence Classification Model for Non-Ischemic Cardiomyopathy Utilizing Cardiac Biomechanics Derived from Magnetic Resonance Imaging
by Liqiang Fu, Peifang Zhang, Liuquan Cheng, Peng Zhi, Jiayu Xu, Xiaolei Liu, Yang Zhang, Ziwen Xu and Kunlun He
Bioengineering 2025, 12(6), 670; https://doi.org/10.3390/bioengineering12060670 - 19 Jun 2025
Viewed by 602
Abstract
Significant challenges persist in diagnosing non-ischemic cardiomyopathies (NICMs) owing to early morphological overlap and subtle functional changes. While cardiac magnetic resonance (CMR) offers gold-standard structural assessment, current morphology-based AI models frequently overlook key biomechanical dysfunctions like diastolic/systolic abnormalities. To address this, we propose [...] Read more.
Significant challenges persist in diagnosing non-ischemic cardiomyopathies (NICMs) owing to early morphological overlap and subtle functional changes. While cardiac magnetic resonance (CMR) offers gold-standard structural assessment, current morphology-based AI models frequently overlook key biomechanical dysfunctions like diastolic/systolic abnormalities. To address this, we propose a dual-path hybrid deep learning framework based on CNN-LSTM and MLP, integrating anatomical features from cine CMR with biomechanical markers derived from intraventricular pressure gradients (IVPGs), significantly enhancing NICM subtype classification by capturing subtle biomechanical dysfunctions overlooked by traditional morphological models. Our dual-path architecture combines a CNN-LSTM encoder for cine CMR analysis and an MLP encoder for IVPG time-series data, followed by feature fusion and dense classification layers. Trained on a multicenter dataset of 1196 patients and externally validated on 137 patients from a distinct institution, the model achieved a superior performance (internal AUC: 0.974; external AUC: 0.962), outperforming ResNet50, VGG16, and radiomics-based SVM. Ablation studies confirmed IVPGs’ significant contribution, while gradient saliency and gradient-weighted class activation mapping (Grad-CAM) visualizations proved the model pays attention to physiologically relevant cardiac regions and phases. The framework maintained robust generalizability across imaging protocols and institutions with minimal performance degradation. By synergizing biomechanical insights with deep learning, our approach offers an interpretable, data-efficient solution for early NICM detection and subtype differentiation, holding strong translational potential for clinical practice. Full article
(This article belongs to the Special Issue Bioengineering in a Generative AI World)
Show Figures

Figure 1

29 pages, 1659 KiB  
Review
Albumin: Bountiful Arrow in the Quiver of Liver and Its Significance in Physiology
by Ananda Baral
Livers 2025, 5(2), 27; https://doi.org/10.3390/livers5020027 - 19 Jun 2025
Viewed by 933
Abstract
Albumin is the most abundant protein synthesized exclusively by the hepatocytes in the liver. Once secreted into plasma, it helps in the maintenance of osmotic pressure, as well as the exertion of defensive roles such as anti-oxidative and anti-inflammatory functions. Dysregulation in the [...] Read more.
Albumin is the most abundant protein synthesized exclusively by the hepatocytes in the liver. Once secreted into plasma, it helps in the maintenance of osmotic pressure, as well as the exertion of defensive roles such as anti-oxidative and anti-inflammatory functions. Dysregulation in the synthesis and clearance of albumin is observed in various hepatic and extra-hepatic diseases. Abnormal levels of albumin could be either a cause or an effect of various pathological ailments, including hepatic, cardiac, renal, neurological, etc. Owing to its long half-life and multiple binding sites in its heart-shaped structure, it interacts with various internal agents, such as hormones, or external substances like drugs, which is why transportation can be one of its many functions. Additionally, albumin’s drug interactions, as well as displacement of albumin–drug binding, could have serious clinical consequences, and careful considerations should be made in determining an appropriate drug regimen to achieve a desired therapeutic outcome with minimal side effects. Moreover, albumin also undergoes several post-translational modifications that can influence its physiological roles, including drug binding and antioxidant functions. Furthermore, it has a complicated role in physiology, where it can help in maintaining plasma oncotic pressure and prevent endothelial cell apoptosis but can have adverse effects on the lungs and kidneys. These adverse effects are mainly attributed to ER stress and inflammasome activation. This narrative review provides an overview of the general biology of albumin and its effects in physiology, with a focus on its beneficial and adverse effects and the underlying molecular mechanisms. Full article
Show Figures

Figure 1

25 pages, 840 KiB  
Review
Stem Cell Therapy for Myocardial Infarction Recovery: Advances, Challenges, and Future Directions
by Nicholas T. Le, Matthew W. Dunleavy, William Zhou, Sumrithbir S. Bhatia, Rebecca D. Kumar, Suyin T. Woo, Gonzalo Ramirez-Pulido, Kaushik S. Ramakrishnan and Ahmed H. El-Hashash
Biomedicines 2025, 13(5), 1209; https://doi.org/10.3390/biomedicines13051209 - 16 May 2025
Cited by 1 | Viewed by 1811
Abstract
Myocardial infarction (MI) is a leading cause of morbidity worldwide, resulting from ischemic damage and necrosis to cardiomyocytes. While the standard treatment regimen for MI can be successful in restoring coronary perfusion, it typically does not resolve myocardial damage, which can leave patients [...] Read more.
Myocardial infarction (MI) is a leading cause of morbidity worldwide, resulting from ischemic damage and necrosis to cardiomyocytes. While the standard treatment regimen for MI can be successful in restoring coronary perfusion, it typically does not resolve myocardial damage, which can leave patients particularly vulnerable to complications such as heart failure or electrical conduction abnormalities. Stem cell therapies offer a promising novel approach aimed at restoring cardiac function and decreasing the incidence of functional complications after an MI. This review used a literature search to evaluate the current landscape of stem cell therapy for post-MI recovery and focuses on the stem cell candidates for MI recovery therapy, delivery methods of such treatment, and their effectiveness. Both preclinical and clinical trials have demonstrated the safety of stem cells, but have struggled with limited cell retention, inconsistent efficacy, and survival. Mechanisms are employed by stem cells to promote regeneration, such as paracrine signaling, angiogenesis, and structural remodeling, in addition to the various stem cell delivery methods, including intracoronary infusion, direct myocardial injection, and intravenous administration. Furthermore, some strategies to combat past challenges in this field are discussed; for instance, extracellular vesicles, bioengineered patches, hydrogels, gene editing, and bioprinting. This article will provide a framework for future research in stem cell therapies and highlight the current progress in the field. Full article
(This article belongs to the Section Gene and Cell Therapy)
Show Figures

Figure 1

35 pages, 2225 KiB  
Review
Myocardial Perfusion Imaging with Cardiovascular Magnetic Resonance in Nonischemic Cardiomyopathies: An In-Depth Review of Techniques and Clinical Applications
by Ilir Sharka, Giorgia Panichella, Chrysanthos Grigoratos, Matilda Muca, Carmelo De Gori, Petra Keilberg, Giovanni Novani, Valerio Barra, Hana Hlavata, Matteo Bianchi, Denisa Simona Zai, Francesca Frijia, Alberto Clemente, Giancarlo Todiere and Andrea Barison
Medicina 2025, 61(5), 875; https://doi.org/10.3390/medicina61050875 - 10 May 2025
Viewed by 2446
Abstract
Background and Objectives: Nonischemic cardiomyopathies comprise a wide spectrum of heart muscle disorders characterized by different morphological, functional, and tissue abnormalities. Cardiovascular magnetic resonance (CMR) represents the gold standard imaging modality for assessing cardiac morphology, systolic function, and tissue characterization, thereby aiding [...] Read more.
Background and Objectives: Nonischemic cardiomyopathies comprise a wide spectrum of heart muscle disorders characterized by different morphological, functional, and tissue abnormalities. Cardiovascular magnetic resonance (CMR) represents the gold standard imaging modality for assessing cardiac morphology, systolic function, and tissue characterization, thereby aiding in early diagnosis, precise phenotyping, and tailored treatment. The aim of this review is to provide an up-to-date overview of CMR techniques for studying myocardial perfusion and their applications to nonischemic cardiomyopathy, not only to rule out an underlying ischemic aetiology but also to investigate the pathophysiological characteristics of microcirculatory dysfunction in these patients. Materials and Methods: We performed a structured review of the literature focusing on first-pass gadolinium perfusion sequences, stress protocols, and emerging pixel-wise perfusion mapping approaches. Studies were selected to illustrate the methods for image acquisition, post-processing, and quantification of myocardial blood flow (MBF) and myocardial perfusion reserve (MPR), as well as to highlight associations with clinical endpoints. Results: First-pass CMR perfusion imaging reliably detects diffuse and regional microvascular dysfunction across cardiomyopathies. Semi-quantitative parameters (e.g., upslope, MPRI) and quantitative MBF mapping (mL/g/min) have demonstrated that impaired perfusion correlates with disease severity, extent of fibrosis, and adverse outcomes, including heart failure hospitalization, arrhythmias, and mortality. Novel automated pixel-wise mapping enhances reproducibility and diagnostic accuracy, distinguishing coronary microvascular dysfunction from balanced three-vessel disease. Microvascular dysfunction—present in approximately 50–60% of dilated cardiomyopathy (DCM), 40–80% of hypertrophic cardiomyopathy (HCM), and >95% of cardiac amyloidosis (CA) patients—has emerged as a key driver of adverse outcomes. Perfusion defects appear early, often preceding overt hypertrophy or fibrosis, and provide incremental prognostic value beyond conventional CMR metrics. Conclusions: CMR represents a powerful tool for detecting myocardial perfusion abnormalities in nonischemic cardiomyopathies, improving phenotyping, risk stratification, and personalized management. Further standardization of quantitative perfusion techniques will facilitate broader clinical adoption. Full article
Show Figures

Figure 1

17 pages, 1773 KiB  
Review
Molecular Mechanisms of Type 2 Diabetes-Related Heart Disease and Therapeutic Insights
by German Camilo Giraldo-Gonzalez, Alejandro Roman-Gonzalez, Felipe Cañas and Andres Garcia
Int. J. Mol. Sci. 2025, 26(10), 4548; https://doi.org/10.3390/ijms26104548 - 9 May 2025
Cited by 1 | Viewed by 2866
Abstract
Type 2 diabetes is a significant risk factor for cardiovascular disease, particularly coronary heart disease, heart failure, and diabetic cardiomyopathy. Diabetic cardiomyopathy, characterized by heart dysfunction in the absence of coronary artery disease or hypertension, is triggered by various mechanisms, including hyperinsulinemia, insulin [...] Read more.
Type 2 diabetes is a significant risk factor for cardiovascular disease, particularly coronary heart disease, heart failure, and diabetic cardiomyopathy. Diabetic cardiomyopathy, characterized by heart dysfunction in the absence of coronary artery disease or hypertension, is triggered by various mechanisms, including hyperinsulinemia, insulin resistance, and inflammation. At the cellular level, increased insulin resistance leads to an imbalance in lipid and glucose metabolism, causing oxidative stress, mitochondrial dysfunction, and excess production of reactive oxygen species (ROS). This disrupts normal heart function, leading to fibrosis, hypertrophy, and cardiac remodeling. In diabetic patients, the excessive accumulation of fatty acids, advanced glycation end products (AGEs), and other metabolic disturbances further contribute to endothelial dysfunction and inflammatory responses. This inflammatory environment promotes structural damage, apoptosis, and calcium-handling abnormalities, resulting in heart failure. Additionally, diabetes increases the risk of arrhythmias, such as atrial fibrillation, which worsens cardiac outcomes. New insights into these molecular mechanisms have led to improvements in diabetes management, focusing on mitigating complications and understanding the cellular processes involved. Recent therapeutic advances, such as SGLT-2 inhibitors, have shown promise in addressing the energy imbalance and cardiac dysfunction seen in diabetic cardiomyopathy, offering new hope for better cardiovascular outcomes. Full article
(This article belongs to the Special Issue Cellular and Molecular Biology of Heart Diseases 2.0)
Show Figures

Figure 1

31 pages, 1906 KiB  
Review
Molecular Insights into Oxidative-Stress-Mediated Cardiomyopathy and Potential Therapeutic Strategies
by Zhenyu Xiong, Yuanpeng Liao, Zhaoshan Zhang, Zhengdong Wan, Sijia Liang and Jiawei Guo
Biomolecules 2025, 15(5), 670; https://doi.org/10.3390/biom15050670 - 6 May 2025
Cited by 1 | Viewed by 1233
Abstract
Cardiomyopathies comprise a heterogeneous group of cardiac disorders characterized by structural and functional abnormalities in the absence of significant coronary artery disease, hypertension, valvular disease, or congenital defects. Major subtypes include hypertrophic, dilated, arrhythmogenic, and stress-induced cardiomyopathies. Oxidative stress (OS), resulting from an [...] Read more.
Cardiomyopathies comprise a heterogeneous group of cardiac disorders characterized by structural and functional abnormalities in the absence of significant coronary artery disease, hypertension, valvular disease, or congenital defects. Major subtypes include hypertrophic, dilated, arrhythmogenic, and stress-induced cardiomyopathies. Oxidative stress (OS), resulting from an imbalance between reactive oxygen species (ROS) production and antioxidant defenses, has emerged as a key contributor to the pathogenesis of these conditions. ROS-mediated injury drives inflammation, protease activation, mitochondrial dysfunction, and cardiomyocyte damage, thereby promoting cardiac remodeling and functional decline. Although numerous studies implicate OS in cardiomyopathy progression, the precise molecular mechanisms remain incompletely defined. This review provides an updated synthesis of current findings on OS-related signaling pathways across cardiomyopathy subtypes, emphasizing emerging therapeutic targets within redox-regulatory networks. A deeper understanding of these mechanisms may guide the development of targeted antioxidant strategies to improve clinical outcomes in affected patients. Full article
(This article belongs to the Special Issue Cardiometabolic Disease: Molecular Basis and Therapeutic Approaches)
Show Figures

Figure 1

22 pages, 3303 KiB  
Article
Disparate Molecular Properties of Two Hypertrophic Cardiomyopathy-Associated cMyBP-C Mutants Reveal Distinct Pathogenic Mechanisms Beyond Haploinsufficiency
by Angelos Thanassoulas, Emna Riguene, Maria Theodoridou, Laila Barrak, Hamad Almaraghi, Mohammed Hussain, Sahar Isa Da’as, Mohamed A. Elrayess, F. Anthony Lai and Michail Nomikos
Biomedicines 2025, 13(5), 1010; https://doi.org/10.3390/biomedicines13051010 - 22 Apr 2025
Viewed by 536
Abstract
Background/Objectives: Hypertrophic cardiomyopathy (HCM) is a common genetic cardiac disorder marked by abnormal thickening of the left ventricular myocardium, often leading to arrhythmias and heart failure. Mutations in sarcomeric protein genes, particularly MYBPC3, which encodes cardiac myosin-binding protein C (cMyBP-C), are [...] Read more.
Background/Objectives: Hypertrophic cardiomyopathy (HCM) is a common genetic cardiac disorder marked by abnormal thickening of the left ventricular myocardium, often leading to arrhythmias and heart failure. Mutations in sarcomeric protein genes, particularly MYBPC3, which encodes cardiac myosin-binding protein C (cMyBP-C), are major contributors to HCM pathogenesis. This study aims to investigate the structural and functional effects of two HCM-associated missense mutations, p.S236G and p.E334K, located within the C0–C2 domains of cMyBP-C. Methods: Following in silico analysis, a bacterial expression system was applied, enabling the discrete C0–C2 domains of wild-type (cMyBP-CWT) and mutant (cMyBP-CS236G and cMyBP-CE334K) cMyBP-C proteins to be expressed and purified as recombinant proteins. Structural and stability changes were assessed using circular dichroism (CD), differential scanning calorimetry (DSC), and chemical denaturation assays. Functional impact on actin binding was also evaluated in vitro. Results: CD analysis revealed altered secondary structure in both mutants compared to the wild-type protein. Thermal and chemical stability assays indicated increased stability in the cMyBP-CE334K mutant, suggesting that it exhibits a more rigid conformation. This increased rigidity corresponded with a significant reduction in the actin-binding affinity relative to the wild-type protein. Conclusions: Our findings demonstrate specific detrimental effects of the p.E334K mutation and underscore the importance of understanding the structural and functional consequences of HCM-associated mutations to assist the development of targeted therapeutic strategies. Full article
Show Figures

Figure 1

50 pages, 3293 KiB  
Review
Circulating Non-Coding RNAs as Indicators of Fibrosis and Heart Failure Severity
by Veronika Boichenko, Victoria Maria Noakes, Benedict Reilly-O’Donnell, Giovanni Battista Luciani, Costanza Emanueli, Fabio Martelli and Julia Gorelik
Cells 2025, 14(7), 553; https://doi.org/10.3390/cells14070553 - 7 Apr 2025
Cited by 3 | Viewed by 1552
Abstract
Heart failure (HF) is a leading cause of morbidity and mortality worldwide, representing a complex clinical syndrome in which the heart’s ability to pump blood efficiently is impaired. HF can be subclassified into heart failure with reduced ejection fraction (HFrEF) and heart failure [...] Read more.
Heart failure (HF) is a leading cause of morbidity and mortality worldwide, representing a complex clinical syndrome in which the heart’s ability to pump blood efficiently is impaired. HF can be subclassified into heart failure with reduced ejection fraction (HFrEF) and heart failure with preserved ejection fraction (HFpEF), each with distinct pathophysiological mechanisms and varying levels of severity. The progression of HF is significantly driven by cardiac fibrosis, a pathological process in which the extracellular matrix undergoes abnormal and uncontrolled remodelling. Cardiac fibrosis is characterized by excessive matrix protein deposition and the activation of myofibroblasts, increasing the stiffness of the heart, thus disrupting its normal structure and function and promoting lethal arrythmia. MicroRNAs, long non-coding RNAs, and circular RNAs, collectively known as non-coding RNAs (ncRNAs), have recently gained significant attention due to a growing body of evidence suggesting their involvement in cardiac remodelling such as fibrosis. ncRNAs can be found in the peripheral blood, indicating their potential as biomarkers for assessing HF severity. In this review, we critically examine recent advancements and findings related to the use of ncRNAs as biomarkers of HF and discuss their implication in fibrosis development. Full article
Show Figures

Figure 1

23 pages, 642 KiB  
Review
Cardiac Remodeling and Arrhythmic Burden in Pre-Transplant Cirrhotic Patients: Pathophysiological Mechanisms and Management Strategies
by Charilila-Loukia Ververeli, Yannis Dimitroglou, Stergios Soulaidopoulos, Evangelos Cholongitas, Constantina Aggeli, Konstantinos Tsioufis and Dimitris Tousoulis
Biomedicines 2025, 13(4), 812; https://doi.org/10.3390/biomedicines13040812 - 28 Mar 2025
Viewed by 907
Abstract
Background: Chronic liver disease (CLD) and cirrhosis contribute to approximately 2 million deaths annually, with primary causes including alcohol-related liver disease (ALD), metabolic dysfunction-associated steatotic liver disease (MASLD), and chronic hepatitis B and C infections. Among these, MASLD has emerged as a [...] Read more.
Background: Chronic liver disease (CLD) and cirrhosis contribute to approximately 2 million deaths annually, with primary causes including alcohol-related liver disease (ALD), metabolic dysfunction-associated steatotic liver disease (MASLD), and chronic hepatitis B and C infections. Among these, MASLD has emerged as a significant global health concern, closely linked to metabolic disorders and a leading cause of liver failure and transplantation. Objective: This review aims to highlight the interplay between cirrhosis and cardiac dysfunction, emphasizing the pathophysiology, diagnostic criteria, and management of cirrhotic cardiomyopathy (CCM). Methods: A comprehensive literature review was conducted to evaluate the hemodynamic and structural cardiac alterations in cirrhosis. Results: Cirrhosis leads to portal hypertension and systemic inflammation, contributing to CCM, which manifests as subclinical cardiac dysfunction, impaired contractility, and electrophysiological abnormalities. Structural changes, such as increased left ventricular mass, myocardial fibrosis, and ion channel dysfunction, further impair cardiac function. Vasodilation in the splanchnic circulation reduces peripheral resistance, triggering compensatory tachycardia, while the activation of the renin–angiotensin–aldosterone system (RAAS) promotes fluid retention and increases cardiac preload. Chronic inflammation and endotoxemia exacerbate myocardial dysfunction. The 2005 World Congress of Gastroenterology (WCG) and the 2019 Cirrhotic Cardiomyopathy Consortium (CCC) criteria provide updated diagnostic frameworks that incorporate global longitudinal strain (GLS) and tissue Doppler imaging (TDI). Prolonged QT intervals and arrhythmias are frequently observed. Managing heart failure in cirrhotic patients remains complex due to intolerance to afterload-reducing agents, and beta-blockers require careful use due to potential systemic hypotension. The interaction between CCM and major interventions, such as transjugular intrahepatic portosystemic shunt (TIPS) and orthotopic liver transplantation (OLT), highlights the critical need for thorough preoperative cardiac evaluation and vigilant postoperative monitoring. Conclusions: CCM is a frequently underdiagnosed yet significant complication of cirrhosis, impacting prognosis, particularly post-liver transplantation. Early identification using echocardiography and thorough evaluations of arrhythmia risk in cirrhotic patients are critical for optimizing management strategies. Future research should focus on targeted therapeutic approaches to mitigate the cardiac burden in cirrhotic patients and improve clinical outcomes. Full article
Show Figures

Figure 1

17 pages, 1065 KiB  
Review
Multimodality Imaging in the Diagnosis of Coronary Microvascular Disease: An Update
by Ana Margarida Martins, Miguel Nobre Menezes, Pedro Alves da Silva and Ana G. Almeida
J. Pers. Med. 2025, 15(2), 75; https://doi.org/10.3390/jpm15020075 - 19 Feb 2025
Viewed by 1142
Abstract
Coronary microvascular dysfunction (CMD) is characterized by structural and functional abnormalities in the coronary microvasculature which can lead to ischaemia and angina and is increasingly recognized as a major contributor to adverse cardiovascular outcomes. Despite its clinical importance, the diagnosis of CMD remains [...] Read more.
Coronary microvascular dysfunction (CMD) is characterized by structural and functional abnormalities in the coronary microvasculature which can lead to ischaemia and angina and is increasingly recognized as a major contributor to adverse cardiovascular outcomes. Despite its clinical importance, the diagnosis of CMD remains limited compared with traditional atherosclerotic coronary artery disease. Furthermore, the historical lack of non-invasive methods for detecting and quantifying CMD has hindered progress in understanding its pathophysiology and clinical implications. This review explores advancements in non-invasive cardiac imaging that have enabled the detection and quantification of CMD. It evaluates the clinical utility, strengths and limitation of these imaging modalities in diagnosing and managing CMD. Having improved our understanding of CMD pathophysiology, cardiac imaging can provide insights into its prognosis and enhance diagnostic accuracy. Continued innovation in imaging technologies is essential for advancing knowledge about CMD, leading to improved cardiovascular outcomes and patient care. Full article
(This article belongs to the Section Clinical Medicine, Cell, and Organism Physiology)
Show Figures

Figure 1

Back to TopTop