Cardiac Remodeling and Arrhythmic Burden in Pre-Transplant Cirrhotic Patients: Pathophysiological Mechanisms and Management Strategies
Abstract
:1. Introduction
2. Epidemiology of Cirrhotic Cardiomyopathy
3. Pathophysiology
3.1. Systemic Hemodynamic Changes in Cirrhotic Patients
3.2. Changes at the Myocardial Level
3.3. Causes That Lead to Cardiac Dysfunction in Cirrhotic Patients
3.4. The Role of Inflammation in Cirrhosis
4. Discussion
4.1. The Role of Systolic Dysfunction
4.2. The Role of Diastolic Dysfunction
4.3. Electrophysiological Abnormalities
4.4. The Bidirectional Relationship Between Cirrhotic Cardiomyopathy and TIPS
4.5. The Impact of Cirrhotic Cardiomyopathy on Liver Transplantation Outcomes and Its Post-Transplant Evolution
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ACE | angiotensin-converting enzyme |
ACLF | acute-on-chronic liver failure |
AF | atrial fibrillation |
ALD | alcohol-related disease |
ANZLTR | Australia and New Zealand Liver Transplant Registry |
ASE | American Society of Echocardiography |
AT II | angiotensin II |
BNP | brain natriuretic peptide |
CAD | coronary artery disease |
cAMP | cyclic adenosine monophosphate |
CCC | Cirrhotic Cardiomyopathy Consortium |
CCM | cirrhotic cardiomyopathy |
cGMP | cyclic guanosine monophosphate |
CLD | chronic liver disease |
CO | cardiac output |
CTP | Child–Turcotte–Pugh score |
EACVI | European Association of Cardiovascular Imaging |
ECG | electrocardiogram |
EF | ejection fraction |
GLS | global longitudinal strain |
HFpEF | heart failure with preserved ejection fraction |
IL | interleukin |
LT | liver transplantation |
LV | left ventricle |
LVEF | left ventricular ejection fraction |
MASLD | metabolic dysfunction-associated steatotic liver disease |
MELD | model for end-stage liver disease |
MRI | magnetic resonance imaging |
NAFLD | nonalcoholic fatty liver disease |
NO | nitric oxide |
OLT | orthotopic liver transplantation |
RAAS | renin–angiotensin–aldosterone system |
SNS | sympathetic nervous system |
STE | speckle-tracking echocardiography |
TDI | tissue Doppler imaging |
TGF-β | transforming growth factor-beta |
TIPS | transjugular intrahepatic portosystemic shunt |
TNF | tumor necrosis factor |
WCG | World Congress of Gastroenterology |
References
- GBD 2017 Cirrhosis Collaborators. The global, regional, and national burden of cirrhosis by cause in 195 countries and territories, 1990-2017: A systematic analysis for the Global Burden of Disease Study 2017. Lancet Gastroenterol. Hepatol. 2020, 5, 245–266. [Google Scholar] [CrossRef]
- Global Observatory on Donation and Transplantation. International Reports On Organ Donation and Transplantation Activities. 2021. Available online: www.transplant-observatory.org (accessed on 1 December 2022).
- Gofton, C.; Upendran, Y.; Zheng, M.H.; George, J. MAFLD: How is it different from NAFLD? Clin. Mol. Hepatol. 2023, 29, S17–S31. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Rinella, M.E.; Lazarus, J.V.; Ratziu, V.; Francque, S.M.; Sanyal, A.J.; Kanwal, F.; Romero, D.; Abdelmalek, M.F.; Anstee, Q.M.; Arab, J.P.; et al. Nomenclature consensus group. A multisociety Delphi consensus statement on new fatty liver disease nomenclature. J. Hepatol. 2023, 79, 1542–1556. [Google Scholar] [CrossRef] [PubMed]
- Younossi, Z.M.; Golabi, P.; Paik, J.M.; Henry, A.; Van Dongen, C.; Henry, L. The global epidemiology of nonalcoholic fatty liver disease (NAFLD) and nonalcoholic steatohepatitis (NASH): A systematic review. Hepatology 2023, 77, 1335–1347. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Hsu, C.L.; Loomba, R. From NAFLD to MASLD: Implications of the new nomenclature for preclinical and clinical research. Nat. Metab. 2024, 6, 600–602. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Devi, J.; Raees, A.; Butt, A.S. Redefining non-alcoholic fatty liver disease to metabolic associated fatty liver disease: Is this plausible? World J. Hepatol. 2022, 14, 158–167. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Battistella, S.; D’Arcangelo, F.; Grasso, M.; Zanetto, A.; Gambato, M.; Germani, G.; Senzolo, M.; Russo, F.P.; Burra, P. Liver transplantation for non-alcoholic fatty liver disease: Indications and post-transplant management. Clin. Mol. Hepatol. 2023, 29, S286–S301. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Eslam, M.; Newsome, P.N.; Sarin, S.K.; Anstee, Q.M.; Targher, G.; Romero-Gomez, M.; Zelber-Sagi, S.; Wong, V.W.-S.; Dufour, J.-F.; Schattenberg, J.M.; et al. A new definition for metabolic dysfunction-associated fatty liver disease: An international expert consensus statement. J. Hepatol. 2020, 73, 202–209. [Google Scholar]
- Wiest, R.; Lawson, M.; Geuking, M. Pathological bacterial translocation in liver cirrhosis. J. Hepatol. 2014, 60, 197–209. [Google Scholar] [CrossRef] [PubMed]
- Møller, S.; Henriksen, J.H. Cirrhotic cardiomyopathy: A pathophysiological review of circulatory dysfunction in liver disease. Heart 2002, 87, 9–15. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kowalski, H.; Abelmann, W.H. The cardiac output at rest in Laennec’s cirrhosis. J. Clin. Investig. 1953, 32, 1025–1033. [Google Scholar] [CrossRef]
- Chayanupatkul, M.; Liangpunsakul, S. Cirrhotic cardiomyopathy: Review of pathophysiology and treatment. Hepatol. Int. 2014, 8, 308–315. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Gould, L.; Shariff, M.; Zahir, M.; Di, L.M. Cardiac hemodynamics in alcoholic patients with chronic liver disease and a presystolic gallop. J. Clin. Investig. 1969, 48, 860–868. [Google Scholar] [CrossRef]
- Kelbaek, H.; Eriksen, J.; Brynjolf, I.; Raboel, A.; Lund, J.O.; Munck, O.; Bonnevie, O.; Godtfredsen, J. Cardiac performance in patients with asymptomatic alcoholic cirrhosis of the liver. Am. J. Cardiol. 1984, 54, 852–855. [Google Scholar] [CrossRef]
- Ma, Z.; Lee, S.S. Cirrhotic cardiomyopathy: Getting to the heart of the matter. Hepatology 1996, 24, 451–459. [Google Scholar] [CrossRef] [PubMed]
- Zardi, E.M.; Zardi, D.M.; Chin, D.; Sonnino, C.; Dobrina, A.; Abbate, A. Cirrhotic cardiomyopathy in the pre- and post-liver transplantation phase. J. Cardiol. 2016, 67, 125–130. [Google Scholar] [CrossRef] [PubMed]
- Laurenzano, J.; Ganesan, P.; Harrington, C.; Slaughter, J.C.; VanWagner, L.B.; Borgmann, A.; Gupta, D.K.; Mazumder, N.; Boike, J.; Izzy, M. Post-Transjugular Intrahepatic Portosystemic Shunt Right Atrial Pressure and Left Atrial Volume Index Predict Heart Failure and Mortality: Dual Center Experience. Am. J. Gastroenterol. 2024; Epub ahead of print. [Google Scholar] [CrossRef] [PubMed]
- Razpotnik, M.; Bota, S.; Wimmer, P.; Hackl, M.; Lesnik, G.; Alber, H.; Peck-Radosavljevic, M. The prevalence of cirrhotic cardiomyopathy according to different diagnostic criteria. Liver Int. 2021, 41, 1058–1069. [Google Scholar] [CrossRef] [PubMed]
- Lyssy, L.A.; Soos, M.P. Cirrhotic Cardiomyopathy. [Updated 1 July 2024]. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2025. Available online: https://www.ncbi.nlm.nih.gov/books/NBK556089 (accessed on 24 March 2025). [PubMed]
- Yumusaka, O.; Doulberisb, M.; Cantonal Hospital Aarau, Switzerland. Private Gastroenterological Practice, Horgen, Switzerland Update on cirrhotic cardiomyopathy: From etiopathogenesis to treatment. Ann. Gastroenterol. 2024, 37, 1–11. [Google Scholar]
- Skouloudi, M.; Bonou, M.S.; Adamantou, M.; Parastatidou, D.; Kapelios, C.; Masoura, K.; Efstathopoulos, E.; Aggeli, C.; Papatheodoridis, G.V.; Barbetseas, J.; et al. Left atrial strain and ventricular global longitudinal strain in cirrhotic patients using the new criteria of Cirrhotic Cardiomyopathy Consortium. Liver Int. 2023, 43, 2727–2742. [Google Scholar] [CrossRef] [PubMed]
- Boudabbous, M.; Hammemi, R.; Gdoura, H.; Chtourou, L.; Moalla, M.; Mnif, L.; Amouri, A.; Abid, L.; Tahri, N. Cirrhotic cardiomyopathy: A subject that’s always topical. Future Sci. OA 2024, 10, FSO954. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Groszmann, R.; Kotelanski, B.; Cohn, J.N.; Khatri, I.M. Quantitation of portasystemic shunting from the splenic and mesenteric beds in alcoholic liver disease. Am. J. Med. 1972, 53, 715–722. [Google Scholar] [CrossRef]
- Kotelanski, B.; Groszmann, R.J.; Cohn, J.N. Circulation times in the splanchnic and hepatic beds in alcoholic liver disease. Gastroenterology 1972, 63, 102–111. [Google Scholar] [CrossRef]
- Berzigotti, A.; Bosch, J. Pharmacologic management of portal hypertension. Clin. Liver Dis. 2014, 18, 303–317. [Google Scholar] [CrossRef]
- Bosch, J.; Abraldes, J.G.; Groszmann, R.J. Current management of portal hypertension. J. Hepatol. 2003, 38, S54–S68. [Google Scholar] [CrossRef]
- Iwakiri, Y.; Groszmann, R.J. The hyperdynamic circulation of chronic liver diseases: From the patient to the molecule. Hepatology 2006, 43, S121–S131. [Google Scholar] [CrossRef]
- Fernandez, M.; Mejias, M.; Angermayr, B.; Garcia-Pagan, J.C.; Rodés, J.; Bosch, J. Inhibition of VEGF receptor-2 decreases the development of hyperdynamic splanchnic circulation and portal-systemic collateral vessels in portal hypertensive rats. J. Hepatol. 2005, 43, 98–103. [Google Scholar] [CrossRef]
- Iwakiri, Y. The molecules: Mechanisms of arterial vasodilatation observed in the splanchnic and systemic circulation in portal hypertension. J. Clin. Gastroenterol. 2007, 41, S288–S294. [Google Scholar] [CrossRef]
- Ginès, P.; Krag, A.; Abraldes, J.G.; Solà, E.; Fabrellas, N.; Kamath, P.S. Liver cirrhosis. Lancet 2021, 398, 1359–1376. [Google Scholar] [CrossRef] [PubMed]
- Bosch, J.; Roberto; Groszmann, J.; Shah, V.H. Evolution in the understanding of the pathophysiological basis of portal hypertension: How changes in paradigm are leading to successful new treatments. J. Hepatol. 2015, 62, S121–S130. [Google Scholar] [CrossRef] [PubMed]
- Davies, T.; Wythe, S.; O’Beirne, J.; Martin, D.; Gilbert-Kawai, E. Review article: The role of the microcirculation in liver cirrhosis. Aliment. Pharmacol. Ther. 2017, 46, 825–835. [Google Scholar] [CrossRef] [PubMed]
- Sheikh, M.Y.; Javed, U.; Singh, J.; Choudhury, J.; Deen, O.; Dhah, K.; Peterson, M.W. Bedside sublingual video imaging of microcirculation in assessing bacterial infection in cirrhosis. Dig. Dis. Sci. 2009, 54, 2706–2711. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Engelmann, C.; Clària, J.; Szabo, G.; Bosch, J.; Bernardi, M. Pathophysiology of decompensated cirrhosis: Portal hypertension, circulatory dysfunction, inflammation, metabolism and mitochondrial dysfunction. J. Hepatol. 2021, 75 (Suppl. S1), S49–S66. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Praktiknjo, M.; Monteiro, S.; Grandt, J.; Kimer, N.; Madsen, J.L.; Werge, M.P.; William, P.; Brol, M.J.; Turco, L.; Schierwagen, R.; et al. Cardiodynamic state is associated with systemic inflammation and fatal acute-on-chronic liver failure. Liver Int. 2020, 40, 1457–1466. [Google Scholar] [CrossRef] [PubMed]
- Yotti, R.; Ripoll, C.; Benito, Y.; Catalina, M.V.; Elízaga, J.; Rincón, D.; Fernández-Avilés, F.; Bermejo, J.; Bañares, R. Left ventricular systolic function is associated with sympathetic nervous activity and markers of inflammation in cirrhosis. Hepatology 2017, 65, 2019–2030. [Google Scholar] [CrossRef] [PubMed]
- Téllez, L.; Ibáñez-Samaniego, L.; Del Villar, C.P.; Yotti, R.; Martínez, J.; Carrión, L.; de Santiago, E.R.; Rivera, M.; González-Mansilla, A.; Pastor, Ó.; et al. Non-selective beta-blockers impair global circulatory homeostasis and renal function in cirrhotic patients with refractory ascites. J. Hepatol. 2020, 73, 1404–1414. [Google Scholar] [CrossRef] [PubMed]
- Ryu, D.G.; Yu, F.; Yoon, K.T.; Liu, H.; Lee, S.S. The Cardiomyocyte in Cirrhosis: Pathogenic Mechanisms Underlying Cirrhotic Cardiomyopathy. Rev. Cardiovasc. Med. 2024, 25, 457. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Moss, R.L.; Razumova, M.; Fitzsimons, D.P. Myosin crossbridge activation of cardiac thin filaments: Implications for myocardial function in health and disease. Circ. Res. 2004, 94, 1290–1300. [Google Scholar] [CrossRef] [PubMed]
- Anna, L.; Giuseppina, N.; Daniela, C.; Antonino, T.; Massimo, G.; Calogero, C. Cardiac involvement in patients with cirrhosis: A focus on clinical features and diagnosis. J. Cardiovasc. Med. 2016, 17, 26–36. [Google Scholar] [CrossRef]
- Fede, G.; Privitera, G.; Tomaselli, T.; Spadaro, L.; Purrello, F. Cardiovascular dysfunction in patients with liver cirrhosis. Ann. Gastroenterol. 2015, 28, 31–40. [Google Scholar] [PubMed] [PubMed Central]
- Gassanov, N.; Caglayan, E.; Semmo, N.; Massenkeil, G.; Er, F. Cirrhotic cardiomyopathy: A cardiologist’s perspective. World J. Gastroenterol. 2014, 20, 15492–15498. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kaur, H.; Premkumar, M. Diagnosis and Management of Cirrhotic Cardiomyopathy. J. Clin. Exp. Hepatol. 2022, 12, 186–199. [Google Scholar] [CrossRef]
- Arya, S.; Kumar, P.; Tiwari, B.; Belwal, S.; Saxena, S.; Abbas, H. What Every Intensivist should Know about Impairment of Cardiac Function and Arrhythmias in Liver Disease Patients: A Review. Indian J. Crit. Care Med. 2020, 24, 1251–1255. [Google Scholar] [PubMed]
- Mantovani, A.; Csermely, A.; Petracca, G.; Beatrice, G.; E Corey, K.; Simon, T.G.; Byrne, C.D.; Targher, G. Nonalcoholic fatty liver disease and risk of fatal and non-fatal cardiovascular events: An updated systematic review and meta-analysis. Lancet Gastroenterol. Hepatol. 2021, 6, 903–913. [Google Scholar] [CrossRef]
- Shirazi, F.; Wang, J.; Wong, R.J. Nonalcoholic Steatohepatitis Becomes the Leading Indication for Liver Transplant Registrants Among US Adults Born Between 1945 and 1965. J. Clin. Exp. Hepatol. 2020, 10, 30–36. [Google Scholar] [CrossRef]
- ANZLTR. 31st Annual Report on Liver and Intestinal Transplantation Activity in Australia and New Zealand [downloadable powerpoint]. Australia and New Zealand Liver Transplant Registry. 2019. Available online: https://www.anzlitr.org/annual-reports/ (accessed on 28 July 2021).
- Zhou, J.; Bai, L.; Zhang, X.J.; Li, H.; Cai, J. Nonalcoholic Fatty Liver Disease and Cardiac Remodeling Risk: Pathophysiological Mechanisms and Clinical Implications. Hepatology 2021, 74, 2839–2847. [Google Scholar]
- Fudim, M.; Zhong, L.; Patel, K.V.; Khera, R.; Abdelmalek, M.F.; Diehl, A.M.; McGarrah, R.W.; Molinger, J.; Moylan, C.A.; Rao, V.N.; et al. Nonalcoholic Fatty Liver Disease and Risk of Heart Failure Among Medicare Beneficiaries. J. Am. Heart Assoc. 2021, 10, e021654. [Google Scholar]
- Yanai, H.; Adachi, H.; Hakoshima, M.; Iida, S.; Katsuyama, H. Metabolic-Dysfunction-Associated Steatotic Liver Disease-Its Pathophysiology, Association with Atherosclerosis and Cardiovascular Disease, and Treatments. Int. J. Mol. Sci. 2023, 24, 15473. [Google Scholar] [CrossRef] [PubMed]
- Garbuzenko, D.V. Pathophysiological mechanisms of cardiovascular disorders in non-alcoholic fatty liver disease. Gastroenterol Hepatol. Bed Bench. 2022, 15, 194–203. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Grander, C.; Grabherr, F.; Tilg, H. Non-alcoholic fatty liver disease: Pathophysiological concepts and treatment options. Cardiovasc. Res. 2023, 119, 1787–1798. [Google Scholar] [CrossRef]
- Chahal, D.; Liu, H.; Shamatutu, C.; Sidhu, H.; Lee, S.S.; Marquez, V. Review article: Comprehensive analysis of cirrhotic cardiomyopathy. Aliment. Pharmacol. Ther. 2021, 53, 985–998. [Google Scholar]
- Guzzo-Merello, G.; Cobo-Marcos, M.; Gallego-Delgado, M.; Garcia-Pavia, P. Alcoholic cardiomyopathy. World J. Cardiol. 2014, 6, 771–781. [Google Scholar] [CrossRef]
- Haber, P.S.; Riordan, B.C.; Morley, K.C. Treatment of alcohol problems: Current status and future directions. Med. J. Aust. 2021, 215, 315–316. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Li, N.; Sun, H.; Liang, C. The prevalence of coronary artery disease in patients with liver cirrhosis: A meta-analysis. Eur. J. Gastroenterol. Hepatol. 2018, 30, 118–120. [Google Scholar] [CrossRef] [PubMed]
- O’Leary, J.G.; Greenberg, C.S.; Patton, H.M.; Caldwell, S.H. AGA Clinical Practice Update: Coagulation in Cirrhosis. Gastroenterology 2019, 157, 34–43.e1. [Google Scholar] [CrossRef] [PubMed]
- Souk, K.; Al-Badri, M.; Azar, S.T. The Safety and Benefit of Statins in Liver Cirrhosis: A Review. Exp. Clin. Endocrinol. Diabetes 2015, 123, 577–580. [Google Scholar] [CrossRef]
- Hogan, B.J.; Gonsalkorala, E.; Heneghan, M.A. Evaluation of coronary artery disease in potential liver transplant recipients. Liver Transpl. 2017, 23, 386–395. [Google Scholar] [CrossRef]
- Martinez-Naharro, A.; Hawkins, P.N.; Fontana, M. Cardiac amyloidosis. Clin. Med. 2018, 18 (Suppl. S2), s30–s35. [Google Scholar]
- De Graaff, B.; Si, L.; Neil, A.L.; Yee, K.C.; Sanderson, K.; Gurrin, L.C.; Palmer, A.J. Population Screening for Hereditary Haemochromatosis in Australia: Construction and Validation of a State-Transition Cost-Effectiveness Model. Pharmacoecon. Open 2017, 1, 37–51. [Google Scholar] [CrossRef]
- VanWagner, L.B.; Harinstein, M.E.; Runo, J.R.; Darling, C.; Serper, M.; Hall, S.; Kobashigawa, J.A.; Hammel, L.L. Multidisciplinary approach to cardiac and pulmonary vascular disease risk assessment in liver transplantation: An evaluation of the evidence and consensus recommendations. Am. J. Transplant. 2018, 18, 30–42. [Google Scholar]
- Aronow, W.S. Management of cardiac hemochromatosis. Arch. Med. Sci. 2018, 14, 560–568. [Google Scholar] [CrossRef] [PubMed]
- Dirchwolf, M.; Ruf, A.E. Role of systemic inflammation in cirrhosis: From pathogenesis to prognosis. World J. Hepatol. 2015, 7, 1974–1981. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Arroyo, V.; Angeli, P.; Moreau, R.; Jalan, R.; Clària, J.; Trebicka, J.; Fernández, J.; Gustot, T.; Caraceni, P.; Bernardi, M. The systemic inflammation hypothesis: Towards a new paradigm of acute decompensation and multiorgan failure in cirrhosis. J. Hepatol. 2021, 74, 670–685. [Google Scholar] [CrossRef] [PubMed]
- Albillos, A.; Lario, M.; Álvarez-Mon, M. Cirrhosis-associated immune dysfunction: Distinctive features and clinical relevance. J. Hepatol. 2014, 61, 1385–1396. [Google Scholar] [CrossRef]
- Giannelli, V.; Di Gregorio, V.; Iebba, V.; Giusto, M.; Schippa, S.; Merli, M.; Thalheimer, U. Microbiota and the gut-liver axis: Bacterial translocation, inflammation and infection in cirrhosis. World J. Gastroenterol. 2014, 20, 16795–16810. [Google Scholar] [CrossRef]
- Sipeki, N.; Antal-Szalmas, P.; Lakatos, P.L.; Papp, M. Immune dysfunction in cirrhosis. World J. Gastroenterol. 2014, 20, 2564–2577. [Google Scholar] [CrossRef] [PubMed]
- Baik, S.K.; Fouad, T.R.; Lee, S.S. Cirrhotic cardiomyopathy. Orphanet. J. Rare Dis. 2007, 2, 15. [Google Scholar] [CrossRef]
- Lang, R.M.; Badano, L.P.; Mor-Avi, V.; Afilalo, J.; Armstrong, A.; Ernande, L.; Flachskampf, F.A.; Foster, E.; Goldstein, S.A.; Kuznetsova, T.; et al. Recommendations for cardiac chamber quantification by echocardiography in adults: An update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J. Am. Soc. Echocardiogr. 2015, 28, 1–39. [Google Scholar] [CrossRef]
- Nagueh, S.F.; Smiseth, O.A.; Appleton, C.P.; Byrd, B.F., 3rd; Dokainish, H.; Edvardsen, T.; Flachskampf, F.A.; Gillebert, T.C.; Klein, A.L.; Lancellotti, P.; et al. Recommendations for the evaluation of left ventricular diastolic function by echocardiography: An update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. Eur. Heart J. Cardiovasc. Imaging 2016, 17, 1321–1360. [Google Scholar] [CrossRef]
- Izzy, M.; VanWagner, L.B.; Lin, G.; Altieri, M.; Findlay, J.Y.; Oh, J.K.; Watt, K.D.; Lee, S.S. Cirrhotic Cardiomyopathy Consortium. Redefining cirrhotic cardiomyopathy for the modern era. Hepatology 2020, 71, 334–345. [Google Scholar] [CrossRef]
- Scarlatescu, E.; Marchenko, S.P.; Tomescu, D.R. Cirrhotic cardiomyopathy-a veiled threat. Cardiol. Rev. 2022, 30, 80–89. [Google Scholar]
- Kalluru, R.; Gadde, S.; Chikatimalla, R.; Dasaradhan, T.; Koneti, J.; Cherukuri, S.P. Cirrhotic cardiomyopathy: The interplay between liver and heart. Cureus 2022, 14, e27969. [Google Scholar] [PubMed]
- Wachsberg, R.H. Cardiac response to exercise in cirrhosis. Gut 2002, 51, 755. [Google Scholar] [CrossRef] [PubMed]
- Shin, W.-J.; Song, J.-G.; Jun, I.-G.; Moon, Y.-J.; Kwon, H.-M.; Jung, K.; Kim, S.-O.; Hwang, G.-S. Effect of ventriculo-arterial coupling on transplant outcomes in cirrhotics: Analysis of pressure-volume curve relations. J. Hepatol. 2017, 66, 328–337. [Google Scholar] [PubMed]
- Desai, M.S. Mechanistic insights into the pathophysiology of cirrhotic cardiomyopathy. Anal. Biochem. 2022, 636, 114388. [Google Scholar]
- Liu, H.; Nguyen, H.H.; Yoon, K.T.; Lee, S.S. Pathogenic mechanisms underlying cirrhotic cardiomyopathy. Front. Netw. Physiol. 2022, 2, 849253. [Google Scholar]
- Ali, S.A.; Arman, H.E.; Shamseddeen, H.; Elsner, N.; Elsemesmani, H.; Johnson, S.; Zenisek, J.; Khemka, A.; Jarori, U.; Patidar, K.R.; et al. Cirrhotic cardiomyopathy: Predictors of major adverse cardiac events and assessment of reversibility after liver transplant. J. Cardiol. 2023, 82, 113–121. [Google Scholar] [CrossRef]
- Yannis, D.; Aggeli, C.; Alexopoulou, A.; Tsartsalis, D.; Patsourakos, D.; Koukos, M.; Tousoulis, D.; Tsioufis, K. The Contemporary Role of Speckle Tracking Echocardiography in Cirrhotic Cardiomyopathy. Life 2024, 14, 179. [Google Scholar] [CrossRef]
- Hai, P.D.; Ly, N.T.K.; Son, P.N.; Thanh, N.H.; Thien, D.H. Subclinical cardiac dysfunction detected by speckle-tracking echocardiography in patients with liver cirrhosis undergoing liver transplantation. Egypt Liver J. 2024, 14, 88. [Google Scholar] [CrossRef]
- Karlsen, S.; Dahlslett, T.; Grenne, B.; Sjøli, B.; Smiseth, O.; Edvardsen, T.; Brunvand, H. Global longitudinal strain is a more reproducible measure of left ventricular function than ejection fraction regardless of echocardiographic training. Cardiovasc. Ultrasound. 2019, 17, 18. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Liu, H.; Naser, J.A.; Lin, G.; Lee, S.S. Cardiomyopathy in cirrhosis: From pathophysiology to clinical care. JHEP Rep. 2024, 6, 100911. [Google Scholar] [CrossRef] [PubMed]
- Ridjab, D.A.; Ivan, I.; Budiman, F.; Tenggara, R. Evaluation of subclinical ventricular systolic dysfunction assessed using global longitudinal strain in liver cirrhosis: A systematic review, meta-analysis, and meta-regression. PLoS ONE 2022, 17, e0269691. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Said, A.; Williams, J.; Holden, J.; Remington, P.; Gangnon, R.; Musat, A.; Lucey, M. Model for End Stage Liver Disease Score Predicts Mortality across a Broad Spectrum of Liver Disease. J. Hepatol. 2004, 40, 897–903. [Google Scholar] [CrossRef]
- Kamath, P.S.; Kim, W.R. The Model for End-Stage Liver Disease (MELD). Hepatology 2007, 45, 797–805. [Google Scholar] [CrossRef] [PubMed]
- Kamath, P.S.; Wiesner, R.H.; Malinchoc, M.; Kremers, W.; Therneau, T.M.; Kosberg, C.L.; D’amico, G.; Dickson, E.R.; Kim, W.R. A Model to Predict Survival in Patients with End-Stage Liver Disease. Hepatology 2001, 33, 464–470. [Google Scholar] [CrossRef]
- Pagourelias, E.D.; Sotiriou, P.; Papadopoulos, C.E.; Cholongitas, E.; Giouleme, O.; Vassilikos, V. Left Ventricular Myocardial Mechanics in Cirrhosis: A Speckle Tracking Echocardiographic Study. Echocardiography 2016, 33, 223–232. [Google Scholar] [CrossRef] [PubMed]
- Anish, P.; Jayaprasad, N.; Madhavan, S.; George, R. Echocardiographic Abnormalities in Patients with Cirrhosis and Relation to Disease Severity. Heart India 2019, 7, 26. [Google Scholar]
- Dimitroglou, Y.; Aggeli, C.; Alexopoulou, A.; Alexopoulos, T.; Patsourakos, D.; Polytarchou, K.; Kastellanos, S.; Angelis, A.; Vasilieva, L.; Mani, I.; et al. Correlation of Global Longitudinal Strain with Disease Severity in Liver Cirrhosis. Eur. Heart J. Cardiovasc. Imaging 2021, 22, jeaa356-155. [Google Scholar] [CrossRef]
- Mechelinck, M.; Hartmann, B.; Hamada, S.; Becker, M.; Andert, A.; Ulmer, T.F.; Neumann, U.P.; Wirtz, T.H.; Koch, A.; Trautwein, C.; et al. Global Longitudinal Strain at Rest as an Independent Predictor of Mortality in Liver Transplant Candidates: A Retrospective Clinical Study. J. Clin. Med. 2020, 9, 2616. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Sampaio, F.; Pimenta, J.; Bettencourt, N.; Fontes-Carvalho, R.; Silva, A.P.; Valente, J.; Bettencourt, P.; Fraga, J.; Gama, V. Left Atrial Function Is Impaired in Cirrhosis: A Speckle Tracking Echocardiographic Study. Hepatol. Int. 2014, 8, 146–153. [Google Scholar] [CrossRef]
- Nazar, A.; Guevara, M.; Sitges, M.; Terra, C.; Solà, E.; Guigou, C.; Arroyo, V.; Ginès, P. LEFT Ventricular Function Assessed by Echocardiography in Cirrhosis: Relationship to Systemic Hemodynamics and Renal Dysfunction. J. Hepatol. 2013, 58, 51–57. [Google Scholar] [PubMed]
- Jansen, C.; Cox, A.; Schueler, R.; Schneider, M.; Lehmann, J.; Praktiknjo, M.; Pohlmann, A.; Chang, J.; Manekeller, S.; Nickenig, G.; et al. Increased Myocardial Contractility Identifies Patients with Decompensated Cirrhosis Requiring Liver Transplantation. Liver Transplant. 2018, 24, 15–25. [Google Scholar]
- Jansen, C.; Schröder, A.; Schueler, R.; Lehmann, J.; Praktiknjo, M.; Uschner, F.E.; Schierwagen, R.; Thomas, D.; Monteiro, S.; Nickenig, G.; et al. Left Ventricular Longitudinal Contractility Predicts Acute-on-Chronic Liver Failure Development and Mortality After Transjugular Intrahepatic Portosystemic Shunt. Hepatol. Commun. 2019, 3, 340–347. [Google Scholar] [PubMed]
- Jia, Y.; Liu, L.; Zhou, Y.; Yao, Y.; Cheng, Y.; Cheng, Y.; Shen, C.; Yang, R.; Zeng, R.; Wan, Z.; et al. Prognostic Implications of Cardiac Geometry in Cirrhosis: Findings From a Large Cohort. Liver Int. 2025, 45, e16230. [Google Scholar] [CrossRef]
- Hammami, R.; Boudabbous, M.; Jdidi, J.; Trabelsi, F.; Mroua, F.; Kallel, R.; Amouri, A.; Abid, D.; Tahri, N.; Abid, L.; et al. Cirrhotic cardiomyopathy: Is there any correlation between the stage of cardiac impairment and the severity of liver disease? Libyan J. Med. 2017, 12, 1283162. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Gaasch, W.H.; Zile, M.R. Left ventricular diastolic dysfunction and diastolic heart failure. Annu. Rev. Med. 2004, 55, 373–394. [Google Scholar]
- Wiese, S.; Hove, J.; Mo, S.; Mookerjee, R.P.; Petersen, C.L.; Vester-Andersen, M.K.; Mygind, N.D.; Goetze, J.P.; Kjær, A.; Bendtsen, F.; et al. Myocardial extracellular volume quantified by magnetic resonance is increased in cirrhosis and related to poor outcome. Liver Int. 2018, 38, 1614–1623. [Google Scholar]
- Isaak, A.; Praktiknjo, M.; Jansen, C.; Faron, A.; Sprinkart, A.M.; Pieper, C.C.; Chang, J.; Fimmers, R.; Meyer, C.; Dabir, D.; et al. Myocardial fibrosis and inflammation in liver cirrhosis: MRI study of the liver-heart axis. Radiology 2020, 297, 51–61. [Google Scholar] [CrossRef]
- Ha, J.W.; Andersen, O.S.; Smiseth, O.A. Diastolic Stress Test: Invasive and Noninvasive Testing. JACC Cardiovasc. Imaging 2020, 13, 272–282. [Google Scholar]
- Stundiene, I.; Sarnelyte, J.; Norkute, A.; Aidietiene, S.; Liakina, V.; Masalaite, L.; Valantinas, J. Liver cirrhosis and left ventricle diastolic dysfunction: Systematic review. World J. Gastroenterol. 2019, 25, 4779–4795. [Google Scholar]
- Premkumar, M.; Devurgowda, D.; Vyas, T.; Shasthry, S.M.; Khumuckham, J.S.; Goyal, R.; Thomas, S.S.; Kumar, G. Left Ventricular Diastolic Dysfunction is Associated with Renal Dysfunction, Poor Survival and Low Health Related Quality of Life in Cirrhosis. J. Clin. Exp. Hepatol. 2019, 9, 324–333. [Google Scholar] [PubMed]
- Ruíz-del-Árbol, L.; Achécar, L.; Serradilla, R.; Rodríguez-Gandía, M.Á.; Rivero, M.; Garrido, E.; Natcher, J.J. Diastolic dysfunction is a predictor of poor outcomes in patients with cirrhosis, portal hypertension, and a normal creatinine. Hepatology 2013, 58, 1732–1741. [Google Scholar] [CrossRef]
- Al Atroush, H.H.; Mohammed, K.H.; Nasr, F.M.; Al Desouky, M.I.; Rabie, M.A. Cardiac dysfunction in patients with end-stage liver disease, prevalence, and impact on outcome: A comparative prospective cohort study. Egypt Liver J. 2022, 12, 37. [Google Scholar] [CrossRef]
- Dragoș, L.; Nedelcu, L.; Țînț, D. The Interplay between Severe Cirrhosis and Heart: A Focus on Diastolic Dysfunction. J. Clin. Med. 2024, 13, 5442. [Google Scholar] [CrossRef] [PubMed]
- Vetrugno, L.; Cherchi, V.; Zanini, V.; Cotrozzi, S.; Ventin, M.; Terrosu, G.; Baccarani, U.; Bove, T. Association between preoperative diastolic dysfunction and early allograft dysfunction after orthotopic liver transplantation. An observational study. Echocardiography 2022, 39, 561–567. [Google Scholar] [PubMed]
- Bernardi, M.; Maggioli, C.; Dibra, V.; Zaccherini, G. QT interval prolongation in liver cirrhosis: Innocent bystander or serious threat? Expert Rev. Gastroenterol. Hepatol. 2012, 6, 57–66. [Google Scholar]
- Mozos, I.; Costea, C.; Serban, C.; Susan, L. Factors associated with a prolonged QT interval in liver cirrhosis patients. J. Electrocardiol. 2011, 44, 105–108. [Google Scholar] [CrossRef]
- Mozos, I. Arrhythmia risk in liver cirrhosis. World J. Hepatol. 2015, 7, 662–672. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Țieranu, E.; Donoiu, I.; Istrătoaie, O.; Găman, A.E.; Țieranu, L.M.; Gheonea, D.I.; Ciurea, T. Q-T interval Prolongation in Patients with Liver Cirrhosis. Curr. Health Sci. J. 2018, 44, 274–279. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Finucci, G.; Lunardi, F.; Sacerdoti, D.; Volpin, R.; Bortoluzzi, A.; Bombonato, G.; Angeli, P.; Gatta, A. Q-T interval prolongation in liver cirrhosis. Reversibility after orthotopic liver transplantation. Jpn. Heart J. 1998, 39, 321–329. [Google Scholar] [CrossRef]
- Bernardi, M.; Calandra, S.; Colantoni, A.; Trevisani, F.; Raimondo, M.L.; Sica, G.; Schepis, F.; Mandini, M.; Simoni, P.; Contin, M.; et al. Q-T interval prolongation in cirrhosis: Prevalence, relationship with severity, and etiology of the disease and possible pathogenetic factors. Hepatology 1998, 27, 28–34. [Google Scholar] [CrossRef] [PubMed]
- Wong, F. Cirrhotic cardiomyopathy. Hepatol. Int. 2009, 3, 294–304. [Google Scholar] [PubMed]
- Trevisani, F.; Di Micoli, A.; Zambruni, A.; Biselli, M.; Santi, V.; Erroi, V.; Lenzi, B.; Caraceni, P.; Domenicali, M.; Cavazza, M.; et al. QT interval prolongation by acute gastrointestinal bleeding in patients with cirrhosis. Liver. Int. 2012, 32, 1510–1515. [Google Scholar]
- Henriksen, J.H.; Bendtsen, F.; Hansen, E.F.; Møller, S. Acute non-selective beta-adrenergic blockade reduces prolonged frequency-adjusted Q-T interval (QTc) in patients with cirrhosis. J. Hepatol. 2004, 40, 239–246. [Google Scholar]
- Zambruni, A.; Trevisani, F.; Di Micoli, A.; Savelli, F.; Berzigotti, A.; Bracci, E.; Caraceni, P.; Domenicali, M.; Felline, P.; Zoli, M.; et al. Effect of chronic beta-blockade on QT interval in patients with liver cirrhosis. J. Hepatol. 2008, 48, 415–421. [Google Scholar]
- Sersté, T.; Melot, C.; Francoz, C.; Durand, F.; Rautou, P.-E.; Valla, D.; Moreau, R.; Lebrec, D. Deleterious effects of beta-blockers on survival in patients with cirrhosis and refractory ascites. Hepatology 2010, 52, 1017–1022. [Google Scholar] [PubMed]
- Lu, X.; Wang, Z.; Yang, L.; Yang, C.; Song, M. Risk Factors of Atrial Arrhythmia in Patients with Liver Cirrhosis: A Retrospective Study. Front. Cardiovasc. Med. 2021, 8, 704073. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Gundling, F.; Schmidtler, F.; Zelihic, E.; Seidl, H.; Haller, B.; Ronel, J.; Löffler, N.; Schepp, W. Frequency of cardiac arrhythmia in patients with liver cirrhoses and evaluation of associated factors. Z Gastroenterol. 2012, 50, 1149–1155. [Google Scholar] [CrossRef]
- Josefsson, A.; Fu, M.; Björnsson, E.; Kalaitzakis, E. Prevalence of pre-transplant electrocardiographic abnormalities and post-transplant cardiac events in patients with liver cirrhosis. BMC Gastroenterol. 2014, 14, 65. [Google Scholar] [CrossRef]
- Zamirian, M.; Sarmadi, T.; Aghasadeghi, K.; Kazemi, M.B. Liver cirrhosis prevents atrial fibrillation: A reality or just an illusion? J. Cardiovasc. Dis. Res. 2012, 3, 109–112. [Google Scholar] [CrossRef]
- Milliez, P.; Deangelis, N.; Rucker-Martin, C.; Leenhardt, A.; Vicaut, E.; Robidel, E.; Beaufils, P.; Delcayre, C.; Hatem, S.N. Spironolactone reduces fibrosis of dilated atria during heart failure in rats with myocardial infarction. Eur. Heart J. 2005, 26, 2193–2199. [Google Scholar] [CrossRef] [PubMed]
- Wong, K.Y.; Wong, S.Y.; McSwiggan, S.; Ogston, S.A.; Sze, K.Y.; MacWalter, R.S.; Struthers, A.D. Myocardial fibrosis and QTc are reduced following treatment with spironolactone or amiloride in stroke survivors: A randomised placebo-controlled cross-over trial. Int. J. Cardiol. 2013, 168, 5229–5233. [Google Scholar]
- Sanders, P.; Morton, J.B.; Davidson, N.C.; Spence, S.J.; Vohra, J.K.; Sparks, P.B.; Kalman, J.M. Electrical remodeling of the atria in congestive heart failure: Electrophysiological and electroanatomic mapping in humans. Circulation 2003, 108, 1461–1468. [Google Scholar] [CrossRef] [PubMed]
- Schaer, B.A.; Schneider, C.; Jick, S.S.; Conen, D.; Osswald, S.; Meier, C.R. Risk for incident atrial fibrillation in patients who receive antihypertensive drugs: A nested case-control study. Ann. Intern. Med. 2010, 152, 78–84. [Google Scholar] [CrossRef]
- Hendrickse, M.T.; Triger, D.R. Peripheral and cardiovascular autonomic impairment in chronic liver disease: Prevalence and relation to hepatic function. J. Hepatol. 1992, 16, 177–183. [Google Scholar] [CrossRef]
- Dourakis, S.P.; Geladari, E.; Geladari, C.; Vallianou, N. Cirrhotic Cardiomyopathy: The Interplay Between Liver and Cardiac Muscle. How Does the Cardiovascular System React When the Liver is Diseased? Curr. Cardiol. Rev. 2021, 17, 78–84. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Henriksen, J.H.; Fuglsang, S.; Bendtsen, F.; Christensen, E.; Moller, S. Dyssynchronous electrical and mechanical systole in patients with cirrhosis. J. Hepatol. 2002, 36, 513–520. [Google Scholar] [CrossRef]
- Ma, Z.; Meddings, J.B.; Lee, S.S. Membrane physical properties determine cardiac beta-adrenergic receptor function in cirrhotic rats. Am. J. Physiol. 1994, 267, G87–G93. [Google Scholar] [CrossRef]
- Zambruni, A.; DI Micoli, A.; Lubisco, A.; Domenicali, M.; Trevisani, F.; Bernardi, M. QT Interval Correction in Patients with Cirrhosis. J. Cardiovasc. Electrophysiol. 2006, 18, 77–82. [Google Scholar] [CrossRef]
- Toma, L.; Stanciu, A.M.; Zgura, A.; Bacalbasa, N.; Diaconu, C.; Iliescu, L. Electrocardiographic Changes in Liver Cirrhosis—Clues for Cirrhotic Cardiomyopathy. Medicina 2020, 56, 68. [Google Scholar] [CrossRef]
- Pourafkari, L.; Ghaffari, S.; Nazeri, L.; Lee, J.B.; Masnadi-Shirazi, K.; Tajlil, A.; Nader, N.D. Electrocardiographic findings in hepatic cirrhosis and their association with the severity of disease. Cor Vasa 2017, 59, e105–e113. [Google Scholar] [CrossRef]
- Jahangiri, S.; Abdiardekani, A.; Jamshidi, S.; Askarinejad, A.; Mosalamiaghili, S.; Bazrafshan, M.; Karimi, M.; Bazrafshan, H.; Drissi, H.B. Electrocardiographic characteristics of cirrhotic patients andtheir association with Child-Pugh score Clinical. Cardiology 2023, 46, 967–972. [Google Scholar] [CrossRef]
- Singh, H.; Panwar, S.; Arora, R. Evaluation of electrocardiographic changes in patients with cirrhosis and their correlation with severity of disease. Int. J. Life Sci. Biotechnol. Pharma Res. 2023, 12, 477–482. [Google Scholar]
- Dimala, C.A.; Nso, N.; Wasserlauf, J.; Njei, B. Electrocardiographic abnormalities in patients with metabolic dysfunction-associated steatotic liver disease: A systematic review and meta-analysis. Curr. Probl. Cardiol. 2024, 49, 102580. [Google Scholar] [CrossRef]
- Huang, W.A.; Dunipace, E.A.; Sorg, J.M.; Vaseghi, M. Liver Disease as a Predictor of New-Onset Atrial Fibrillation. J. Am. Heart Assoc. 2018, 7, 15. [Google Scholar] [CrossRef]
- Cazzaniga, M.; Salerno, F.; Pagnozzi, G.; Dionigi, E.; Visentin, S.; Cirello, I.; Meregaglia, D.; Nicolini, A. Diastolic dysfunction is associated with poor survival in patients with cirrhosis with transjugular intrahepatic portosystemic shunt. Gut 2007, 56, 869–875. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Liu, Y.; Meng, F.; Ma, J.; Zhang, W.; Yu, J.; Zhou, Y.; Zuo, W.; Yan, Z.; Pan, C.; Luo, J. Unveiling the impact of cirrhotic cardiomyopathy on portal hemodynamics and survival after transjugular intrahepatic portosystemic shunt: A prospective study. Abdom. Radiol. 2024, 49, 3507–3516. [Google Scholar] [CrossRef]
- Busk, T.M.; Bendtsen, F.; Poulsen, J.H.; Clemmesen, J.O.; Larsen, F.S.; Goetze, J.P.; Iversen, J.S.; Jensen, M.T.; Møgelvang, R.; Pedersen, E.B.; et al. Transjugular intrahepatic portosystemic shunt: Impact on systemic hemodynamics and renal and cardiac function in patients with cirrhosis. Am. J. Physiol. Gastrointest. Liver Physiol. 2018, 314, G275–G286. [Google Scholar] [CrossRef] [PubMed]
- Bodys-Pełka, A.; Kusztal, M.; Raszeja-Wyszomirska, J.; Główczyńska, R.; Grabowski, M. What’s New in Cirrhotic Cardiomyopathy?—Review Article. J. Pers. Med. 2021, 11, 1285. [Google Scholar] [CrossRef]
- Rahman, S.; Mallett, S.V. Cirrhotic cardiomyopathy: Implications for the perioperative management of liver transplant patients. World J. Hepatol. 2015, 7, 507–520. [Google Scholar] [CrossRef] [PubMed]
- Torregrosa, M.; Aguadé, S.; Dos, L.; Segura, R.; Gónzalez, A.; Evangelista, A.; Castell, J.; Margarit, C.; Esteban, R.; Guardia, J.; et al. Cardiac alterations in cirrhosis: Reversibility after liver transplantation. J. Hepatol. 2005, 42, 68–74. [Google Scholar] [CrossRef] [PubMed]
- Sonny, A.; Govindarajan, S.R.; Jaber, W.A.; Cywinski, J.B. Systolic heart failure after liver transplantation: Incidence, predictors, and outcome. Clin. Transplant. 2018, 32, e13199. [Google Scholar] [CrossRef] [PubMed]
2005 Montreal Criteria |
Systolic Dysfunction (Meeting at least one)
Electrophysiological abnormalities Abnormal chronotropic response Electromechanical uncoupling Prolonged QTc interval Structural and Biomarker Indicators Enlarged left atrium Increased myocardial mass Elevated brain natriuretic peptide (BNP) or proBNP Increased troponin I levels |
2019 Cirrhotic Cardiomyopathy Consortium Criteria Diagnostic Criteria Systolic Dysfunction (Presence of any of the following)
|
Autonomic neuropathy |
The stage of liver disease and the existence of portal hypertension |
Serum markers (electrolytes, creatinine, and biochemical makers) |
Volume overload (dimensions and function of the left ventricle) and left ventricular hypertrophy |
Coronary heart disease (evaluation of risk factors) |
Coexisting stressful events (bleeding) |
Drugs (macrolides and quinolones) |
Author | Number of Patients | Main Findings |
---|---|---|
F Gundling et al. [121] | 293 | The prevalence of atrial fibrillation was increased. Rhythm disorders were linked with risk factors. Diuretic therapy and electrolyte disturbances lead to cardiac arrhythmia. |
A Zambruni et al. [132] | 100 | Bazett’s correction should be avoided in cirrhotic patients. Fridericia’s formula can be used. |
Toma et al. [133] | 117 | Prolonged QT intervals in advanced liver disease. QRS amplitude was lower in decompensates cirrhosis. |
Pourafkari et al. [134] | 69 | Electrocardiographic abnormalities are frequently observed in patients with cirrhosis, irrespective of the severity of the disease. Low-voltage QRS complexes may be associated with anatomical changes and the presence of ascites in these individuals. |
Jahangiri et al. [135] | 425 | ECG changes in prolonged QT and early transitional zones were related to the severity of cirrhosis. |
Josefsson et al. [122] | 234 | Electrocardiographic abnormalities are frequently observed in patients with cirrhosis before liver transplantation and are linked to cardiovascular risk factors as well as the severity and underlying cause of cirrhosis. Cardiac events following transplantation occur more often in these patients compared to the general population. |
Singh et al. [136] | 50 | QTc prolongation and low-voltage QRS complexes are closely associated with the severity of liver cirrhosis, as reflected by their correlation with the Child–Turcotte–Pugh (CTP) and model for end-stage liver Disease (MELD) scores. These electrocardiographic abnormalities are more frequently observed in patients with complications of decompensated cirrhosis, such as ascites and hepatic encephalopathy. |
Lu et al. [120] | 135 | Age and the presence of ascites have been identified as significant risk factors for the development of atrial arrhythmias in patients with liver cirrhosis. |
Dimala et al. [137] | 9,612,601 (meta-analysis) | Metabolic-associated steatotic liver disease (MASLD) is linked to various electrocardiographic abnormalities, which may serve as early indicators of cardiac involvement. These findings underscore the multisystemic nature of MASLD. Incorporating these specific ECG changes into screening and management protocols could enhance cardiac risk stratification in patients with MASLD. |
Huang et al. [138] | 1727 | The prevalence and incidence of atrial fibrillation (AF) are elevated in patients with liver disease. The severity of liver disease, as assessed by the model for end-stage liver disease (MELD) score, is a significant predictor of new-onset AF. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ververeli, C.-L.; Dimitroglou, Y.; Soulaidopoulos, S.; Cholongitas, E.; Aggeli, C.; Tsioufis, K.; Tousoulis, D. Cardiac Remodeling and Arrhythmic Burden in Pre-Transplant Cirrhotic Patients: Pathophysiological Mechanisms and Management Strategies. Biomedicines 2025, 13, 812. https://doi.org/10.3390/biomedicines13040812
Ververeli C-L, Dimitroglou Y, Soulaidopoulos S, Cholongitas E, Aggeli C, Tsioufis K, Tousoulis D. Cardiac Remodeling and Arrhythmic Burden in Pre-Transplant Cirrhotic Patients: Pathophysiological Mechanisms and Management Strategies. Biomedicines. 2025; 13(4):812. https://doi.org/10.3390/biomedicines13040812
Chicago/Turabian StyleVervereli, Charilila-Loukia, Yannis Dimitroglou, Stergios Soulaidopoulos, Evangelos Cholongitas, Constantina Aggeli, Konstantinos Tsioufis, and Dimitris Tousoulis. 2025. "Cardiac Remodeling and Arrhythmic Burden in Pre-Transplant Cirrhotic Patients: Pathophysiological Mechanisms and Management Strategies" Biomedicines 13, no. 4: 812. https://doi.org/10.3390/biomedicines13040812
APA StyleVervereli, C.-L., Dimitroglou, Y., Soulaidopoulos, S., Cholongitas, E., Aggeli, C., Tsioufis, K., & Tousoulis, D. (2025). Cardiac Remodeling and Arrhythmic Burden in Pre-Transplant Cirrhotic Patients: Pathophysiological Mechanisms and Management Strategies. Biomedicines, 13(4), 812. https://doi.org/10.3390/biomedicines13040812