Advancing Cardiovascular Risk Stratification and Functional Assessment: A Narrative Review of CPET and ESE Applications
Abstract
1. Introduction
2. Methods
3. Physiology and Key Parameters of CPET
4. Physiology and Key Parameters of ESE
5. Integrated CPET-ESE Protocol
6. CPET-ESE Role in the Diagnosis and Risk Stratification of Cardiovascular Diseases
6.1. HF Spectrum
6.2. Aortic Stenosis and Regurgitation
6.3. Mitral Regurgitation and Stenosis
6.4. Hypertrophic Cardiomyopathy
6.5. CAD
6.6. CPET-ESE in Pulmonary Diseases
7. Conclusions and Clinical Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Del Punta, L.; De Biase, N.; Armenia, S.; Di Fiore, V.; Maremmani, D.; Gargani, L.; Mazzola, M.; De Carlo, M.; Mengozzi, A.; Lomonaco, T.; et al. Combining cardiopulmonary exercise testing with echocardiography: A multiparametric approach to the cardiovascular and cardiopulmonary systems. Eur. Heart J.—Imaging Methods Pract. 2023, 1, qyad021. [Google Scholar] [CrossRef] [PubMed]
- Reddy, Y.N.V.; Olson, T.P.; Obokata, M.; Melenovsky, V.; Borlaug, B.A. Hemodynamic Correlates and Diagnostic Role of Cardiopulmonary Exercise Testing in Heart Failure With Preserved Ejection Fraction. JACC Heart Fail. 2018, 6, 665–675. [Google Scholar] [CrossRef] [PubMed]
- Pugliese, N.R.; De Biase, N.; Balletti, A.; Filidei, F.; Pieroni, A.; D’Angelo, G.; Armenia, S.; Mazzola, M.; Gargani, L.; Del Punta, L.; et al. Characterization of hemodynamic and metabolic abnormalities in the heart failure spectrum: The role of combined cardiopulmonary and exercise echocardiography stress test. Minerva Cardiol. Angiol. 2022, 70, 370–384. [Google Scholar] [CrossRef] [PubMed]
- Fabiani, I.; Pugliese, N.R.; Galeotti, G.G.; D’Agostino, A.; Mazzola, M.; Pedrinelli, R.; Dini, F.L. The Added Value of Exercise Stress Echocardiography in Patients With Heart Failure. Am. J. Cardiol. 2019, 123, 1470–1477. [Google Scholar] [CrossRef]
- Donal, E.; Lund, L.H.; Oger, E.; Reynaud, A.; Schnell, F.; Persson, H.; Drouet, E.; Linde, C.; Daubert, C. Value of exercise echocardiography in heart failure with preserved ejection fraction: A substudy from the KaRen study. Eur Heart J Cardiovasc. Imaging 2016, 17, 106–113. [Google Scholar] [CrossRef]
- Leopold, J.A.; Loscalzo, J. Emerging Role of Precision Medicine in Cardiovascular Disease. Circ. Res. 2018, 122, 1302–1315. [Google Scholar] [CrossRef]
- Pugliese, N.R.; De Biase, N.; Gargani, L.; Mazzola, M.; Conte, L.; Fabiani, I.; Natali, A.; Dini, F.L.; Frumento, P.; Rosada, J.; et al. Predicting the transition to and progression of heart failure with preserved ejection fraction: A weighted risk score using bio-humoural, cardiopulmonary, and echocardiographic stress testing. Eur. J. Prev. Cardiol. 2021, 28, 1650–1661. [Google Scholar] [CrossRef]
- De Biase, N.; Mazzola, M.; Del Punta, L.; Di Fiore, V.; De Carlo, M.; Giannini, C.; Costa, G.; Paneni, F.; Mengozzi, A.; Nesti, L.; et al. Haemodynamic and metabolic phenotyping of patients with aortic stenosis and preserved ejection fraction: A specific phenotype of heart failure with preserved ejection fraction? Eur. J. Heart Fail. 2023, 25, 1947–1958. [Google Scholar] [CrossRef]
- Hoedemakers, S.; Pugliese, N.R.; Stassen, J.; Vanoppen, A.; Claessens, J.; Gojevic, T.; Bekhuis, Y.; Falter, M.; Ferreira, S.M. mPAP/CO Slope and Oxygen Uptake Add Prognostic Value in Aortic Stenosis. Circulation 2024, 149, 1172–1182. [Google Scholar] [CrossRef]
- Conraads, V.M.; Pattyn, N.; De Maeyer, C.; Beckers, P.J.; Coeckelberghs, E.; Cornelissen, V.A.; Denollet, J.; Frederix, G.; Goetschalckx, K.; Hoymans, V.Y.; et al. Aerobic interval training and continuous training equally improve aerobic exercise capacity in patients with coronary artery disease: The SAINTEX-CAD study. Int. J. Cardiol. 2015, 179, 203–210. [Google Scholar] [CrossRef]
- Lang, R.M.; Badano, L.P.; Mor-Avi, V.; Afilalo, J.; Armstrong, A.; Ernande, L.; Flachskampf, F.A.; Foster, E.; Goldstein, S.A.; Kuznetsova, T.; et al. Recommendations for cardiac chamber quantification by echocardiography in adults: An update from the American society of echocardiography and the European association of cardiovascular imaging. Eur. Heart J. Cardiovasc. Imaging 2015, 16, 233–271. [Google Scholar] [CrossRef] [PubMed]
- Guazzi, M.; Arena, R.; Halle, M.; Piepoli, M.F.; Myers, J.; Lavie, C.J. 2016 focused update: Clinical recommendations for cardiopulmonary exercise testing data assessment in specific patient populations. Circulation 2016, 133, e694–e711. [Google Scholar] [CrossRef] [PubMed]
- Di Fiore, V.; Del Punta, L.; De Biase, N.; Pellicori, P.; Gargani, L.; Dini, F.L.; Armenia, S.; Li Vigni, M.; Maremmani, D.; Masi, S.; et al. Integrative assessment of congestion in heart failure using ultrasound imaging. Intern. Emerg. Med. 2024, 20, 11–22. [Google Scholar] [CrossRef] [PubMed]
- Dhakal, B.P.; Malhotra, R.; Murphy, R.M.; Pappagianopoulos, P.P.; Baggish, A.L.; Weiner, R.B.; Houstis, N.E.; Eisman, A.S.; Hough, S.S.; Lewis, G.D. Mechanisms of exercise intolerance in heart failure with preserved ejection fraction: The role of abnormal peripheral oxygen extraction. Circ. Heart Fail. 2015, 8, 286–294. [Google Scholar] [CrossRef]
- Mancini, D.M.; Eisen, H.; Kussmaul, W.; Mull, R.; Edmonds, L.H.; Wilson, J.R. Value of peak exercise oxygen consumption for optimal timing of cardiac transplantation in ambulatory patients with heart failure. Circulation 1991, 83, 778–786. [Google Scholar] [CrossRef]
- Tumminello, G.; Guazzi, M.; Lancellotti, P.; Piérard, L.A. Exercise ventilation inefficiency in heart failure: Pathophysiological and clinical significance. Eur. Heart J. 2007, 28, 673–678. [Google Scholar] [CrossRef]
- Guazzi, M.; Wilhelm, M.; Halle, M.; Van, E.; Kemps, H.; de Boer, R.A.; Coats, A.J.S.; Lund, L.; Mancini, D.; Borlaug, B.; et al. Exercise testing in heart failure with preserved ejection fraction : An appraisal through diagnosis, pathophysiology and therapy—A clinical consensus statement of the Heart Failure Association and European Association of Preventive Cardiology of the European Society of Cardiology. Eur. J. Hear. Fail. 2022, 24, 1327–1345. [Google Scholar]
- Guazzi, M.; Adams, V.; Conraads, V.; Halle, M.; Mezzani, A.; Vanhees, L.; Arena, R.; Fletcher, G.F.; Forman, D.E.; Kitzman, D.W.; et al. Clinical recommendations for cardiopulmonary exercise testing data assessment in specific patient populations. Circulation 2012, 126, 2261–2274. [Google Scholar] [CrossRef]
- Laveneziana, P.; Di Paolo, M.; Palange, P. The clinical value of cardiopulmonary exercise testing in the modern era. Eur. Respir. Rev. 2021, 30, 200187. [Google Scholar] [CrossRef]
- Brubaker, P.H.; Kitzman, D.W. Chronotropic incompetence: Causes, consequences, and management. Circulation 2011, 123, 1010–1020. [Google Scholar] [CrossRef]
- Pugliese, N.R.; De Biase, N.; Del Punta, L.; Balletti, A.; Armenia, S.; Buralli, S.; Mengozzi, A.; Taddei, S.; Metra, M.; Pagnesi, M.; et al. Deep phenotype characterization of hypertensive response to exercise: Implications on functional capacity and prognosis across the heart failure spectrum. Eur. J. Heart Fail. 2023, 25, 497–509. [Google Scholar] [CrossRef] [PubMed]
- O’Neal, W.T.; Qureshi, W.T.; Blaha, M.J.; Keteyian, S.J.; Brawner, C.A.; Al-mallah, M.H. Systolic Blood Pressure Response During Exercise Stress Testing: The Henry Ford ExercIse Testing (FIT) Project. J. Am. Heart Assoc. 2015, 4, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Pugliese, N.R.; Mazzola, M.; Fabiani, I.; Gargani, L.; De Biase, N.; Pedrinelli, R.; Natali, A.; Dini, F.L. Haemodynamic and metabolic phenotyping of hypertensive patients with and without heart failure by combining cardiopulmonary and echocardiographic stress test. Eur. J. Heart Fail. 2020, 22, 458–468. [Google Scholar] [CrossRef]
- Hansen, J.E.; Sue, D.Y.; Wasserman, K. Predicted values for clinical exercise testing. Am. Rev. Respir. Dis. 1984, 129, S49–S55. [Google Scholar] [CrossRef] [PubMed]
- Weber, K.T.; Kinasewitz, G.T.; Janicki, J.S.; Fishman, A.P. Oxygen utilization and ventilation during exercise in patients with chronic cardiac failure. Circulation 1982, 65, 1213–1223. [Google Scholar] [CrossRef]
- Farmakis, I.T.; Valerio, L.; Barco, S.; Alsheimer, E.; Ewert, R.; Giannakoulas, G.; Hobohm, L.; Keller, K.; Mavromanoli, A.C.; Rosenkranz, S.; et al. Cardiopulmonary exercise testing during follow-up after acute pulmonary embolism. Eur. Respir. J. 2023, 61, 2300059. [Google Scholar] [CrossRef]
- Guazzi, M.; Boracchi, P.; Labate, V.; Arena, R.; Reina, G. Exercise Oscillatory Breathing and NT-proBNP Levels in Stable Heart Failure Provide the Strongest Prediction of Cardiac Outcome When Combining Biomarkers With Cardiopulmonary Exercise Testing. J. Card. Fail. 2012, 18, 313–320. [Google Scholar] [CrossRef]
- McDonagh, T.A.; Metra, M.; Adamo, M.; Gardner, R.S.; Baumbach, A.; Böhm, M.; Burri, H.; Butler, J.; Čelutkienė, J.; Chioncel, O.; et al. 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur. Heart J. 2021, 42, 3599–3726. [Google Scholar] [CrossRef]
- Lancellotti, P.; Pellikka, P.A.; Budts, W.; Chaudhry, F.A.; Donal, E.; Dulgheru, R.; Edvardsen, T.; Garbi, M.; Ha, J.-W.; Kane, G.C.; et al. The clinical use of stress echocardiography in non-ischaemic heart disease: Recommendations from the European Association of Cardiovascular Imaging and the American Society of Echocardiography. Eur. Heart J.—Cardiovasc. Imaging 2016, 17, 1191–1229. [Google Scholar] [CrossRef]
- Eek, C.; Brunvand, H.; Aakhus, S.; Endresen, K.; Hol, P.K.; Smiseth, O.A.; Edvardsen, T.; Skulstad, H. Strain echocardiography and wall motion score index predicts final Infarct size in patients with non-ST-segment-elevation myocardial infarction. Circ. Cardiovasc. Imaging 2010, 3, 187–194. [Google Scholar] [CrossRef]
- Patel, H.N.; Miyoshi, T.; Addetia, K.; Henry, M.P.; Citro, R.; Daimon, M.; Fajardo, P.G.; Kasliwal, R.R.; Kirkpatrick, J.N.; Monaghan, M.J.; et al. Normal Values of Cardiac Output and Stroke Volume According to Measurement Technique, Age, Sex, and Ethnicity: Results of the World Alliance of Societies of Echocardiography Study. J. Am. Soc. Echocardiogr. 2021, 34, 1077–1085.e1. [Google Scholar] [CrossRef] [PubMed]
- Charoenpanichkit, C.; Little, W.C.; Mandapaka, S.; Dall’ARmellina, E.; Morgan, T.M.; Hamilton, C.A.; Hundley, W.G. Impaired left ventricular stroke volume reserve during clinical dobutamine stress predicts future episodes of pulmonary Edema. J. Am. Coll. Cardiol. 2011, 57, 839–848. [Google Scholar] [CrossRef] [PubMed]
- Daros, C.B.; Ciampi, Q.; Cortigiani, L.; Gaibazzi, N.; Rigo, F.; Wierzbowska-Drabik, K.; Kasprzak, J.D.; Dodi, C.; Villari, B.; Antonini-Canterin, F.; et al. Coronary flow, left ventricular contractile and heart rate reserve in non-ischemic heart failure. J. Clin. Med. 2021, 10, 3405. [Google Scholar] [CrossRef] [PubMed]
- Zhou, W.; Sun, Y.-P.; Divakaran, S.; Bajaj, N.S.; Gupta, A.; Chandra, A.; Morgan, V.; Barrett, L.; Martell, L.; Bibbo, C.F.; et al. Association of Myocardial Blood Flow Reserve With Adverse Left Ventricular Remodeling in Patients With Aortic Stenosis: The Microvascular Disease in Aortic Stenosis (MIDAS) Study. JAMA Cardiol. 2022, 7, 93–99. [Google Scholar] [CrossRef]
- Pugliese, N.R.; De Biase, N.; Conte, L.; Gargani, L.; Mazzola, M.; Fabiani, I.; Natali, A.; Dini, F.L.; Frumento, P.; Rosada, J.; et al. Cardiac Reserve and Exercise Capacity: Insights from Combined Cardiopulmonary and Exercise Echocardiography Stress Testing. J. Am. Soc. Echocardiogr. 2021, 34, 38–50. [Google Scholar] [CrossRef]
- Nagueh, S.F.; Smiseth, O.A.; Appleton, C.P.; Byrd, B.F., 3rd; Dokainish, H.; Edvardsen, T.; Flachskampf, F.A.; Gillebert, T.C.; Klein, A.L.; Lancellotti, P.; et al. Recommendations for the Evaluation of Left Ventricular Diastolic Function by Echocardiography: An Update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J. Am. Soc. Echocardiogr. 2016, 29, 277–314. [Google Scholar] [CrossRef]
- Sharifov, O.F.; Gupta, H. What Is the Evidence That the Tissue Doppler Index E/e′ Reflects Left Ventricular Filling Pressure Changes After Exercise or Pharmacological Intervention for Evaluating Diastolic Function? A Systematic Review. J. Am. Heart Assoc. 2017, 6, e004766. [Google Scholar] [CrossRef]
- Yingchoncharoen, T.; Agarwal, S.; Popović, Z.; Marwick, T. Normal Ranges of Left Ventricular Strain: A Meta-Analysis. J. Am. Soc. Echocardiogr. 2013, 26, 185–191. [Google Scholar] [CrossRef]
- Reddy, Y.N.; Obokata, M.; Egbe, A.; Yang, J.H.; Pislaru, S.; Lin, G.; Carter, R.; Borlaug, B.A. Left atrial strain and compliance in the diagnostic evaluation of heart failure with preserved ejection fraction. Eur. J. Heart Fail. 2019, 21, 891–900. [Google Scholar] [CrossRef]
- Pathan, F.; D’ELia, N.; Nolan, M.T.; Marwick, T.H.; Negishi, K. Normal Ranges of Left Atrial Strain by Speckle-Tracking Echocardiography: A Systematic Review and Meta-Analysis. J. Am. Soc. Echocardiogr. 2017, 30, 59–70.e8. [Google Scholar] [CrossRef]
- Sugimoto, T.; Bandera, F.; Generati, G.; Alfonzetti, E.; Bussadori, C.; Guazzi, M. Left Atrial Function Dynamics During Exercise in Heart Failure: Pathophysiological Implications on the Right Heart and Exercise Ventilation Inefficiency. JACC Cardiovasc. Imaging 2017, 10, 1253–1264. [Google Scholar] [CrossRef] [PubMed]
- Reddy, Y.N.V.; Obokata, M.; Verbrugge, F.H.; Lin, G.; Borlaug, B.A. Atrial Dysfunction in Patients with Heart Failure with Preserved Ejection Fraction and Atrial Fibrillation. J. Am. Coll. Cardiol. 2020, 76, 1051–1064. [Google Scholar] [CrossRef] [PubMed]
- Ricci, F.; Bufano, G.; Galusko, V.; Sekar, B.; Benedetto, U.; Awad, W.I.; Di Mauro, M.; Gallina, S.; Ionescu, A.; Badano, L.; et al. Tricuspid regurgitation management: A systematic review of clinical practice guidelines and recommendations. Eur. Heart J.—Qual. Care Clin. Outcomes 2022, 8, 238–248. [Google Scholar] [CrossRef] [PubMed]
- Topyła-Putowska, W.; Tomaszewski, M.; Wojtkowska, A.; Styczeń, A.; Wysokiński, A. Tricuspid Regurgitation Velocity/Tricuspid Annular Plane Systolic Excursion (TRV/TAPSE) Ratio as a Novel Indicator of Disease Severity and Prognosis in Patients with Precapillary Pulmonary Hypertension. Diseases 2023, 11, 117. [Google Scholar] [CrossRef]
- Guazzi, M.; Bandera, F.; Pelissero, G.; Castelvecchio, S.; Menicanti, L.; Ghio, S.; Temporelli, P.L.; Arena, R. Tricuspid annular plane systolic excursion and pulmonary arterial systolic pressure relationship in heart failure: An index of right ventricular contractile function and prognosis. Am. J. Physiol.—Heart Circ. Physiol. 2013, 305, H1373–H1381. [Google Scholar] [CrossRef]
- Gargani, L.; Pugliese, N.R.; De Biase, N.; Mazzola, M.; Agoston, G.; Arcopinto, M.; Argiento, P.; Armstrong, W.F.; Bandera, F.; Cademartiri, F.; et al. Exercise Stress Echocardiography of the Right Ventricle and Pulmonary Circulation. J Am Coll Cardiol 2023, 82, 1973–1985. [Google Scholar] [CrossRef]
- Utsunomiya, H.; Hidaka, T.; Susawa, H.; Izumi, K.; Harada, Y.; Kinoshita, M.; Itakura, K.; Masada, K.; Kihara, Y. Exercise-Stress Echocardiography and Effort Intolerance in Asymptomatic/Minimally Symptomatic Patients with Degenerative Mitral Regurgitation Combined Invasive-Noninvasive Hemodynamic Monitoring. Circ. Cardiovasc. Imaging 2018, 11, e007282. [Google Scholar] [CrossRef]
- Zeder, K.; Banfi, C.; Steinrisser-Allex, G.; Maron, B.A.; Humbert, M.; Lewis, G.D.; Berghold, A.; Olschewski, H.; Kovacs, G. Diagnostic, prognostic and differential-diagnostic relevance of pulmonary haemodynamic parameters during exercise : A systematic review. Eur. Respir. J. 2022, 60, 2103181. [Google Scholar] [CrossRef]
- Chemla, D.; Castelain, V.; Humbert, M.; Heébert, J.-L.; Simonneau, G.; Lecarpentier, Y.; Herveé, P. New Formula for Predicting Mean Pulmonary Artery Pressure Using Systolic Pulmonary Artery Pressure. Chest 2004, 126, 1313–1317. [Google Scholar] [CrossRef]
- Zoghbi, W.A.; Adams, D.; Bonow, R.O.; Enriquez-Sarano, M.; Foster, E.; Grayburn, P.A.; Hahn, R.T.; Han, Y.; Hung, J.; Lang, R.M.; et al. Recommendations for Noninvasive Evaluation of Native Valvular Regurgitation: A Report from the American Society of Echocardiography Developed in Collaboration with the Society for Cardiovascular Magnetic Resonance. J. Am. Soc. Echocardiogr. 2017, 30, 303–371. [Google Scholar] [CrossRef]
- Baumgartner, H.; Hung, J.; Bermejo, J.; Chambers, J.B.; Evangelista, A.; Griffin, B.P.; Iung, B.; Otto, C.M.; Pellikka, P.A.; Quiñones, M. Echocardiographic Assessment of Valve Stenosis: EAE/ASE Recommendations for Clinical Practice. J. Am. Soc. Echocardiogr. 2009, 22, 1–23. [Google Scholar] [CrossRef] [PubMed]
- Sharifov, O.F.; Schiros, C.G.; Aban, I.; Denney, T.S.; Gupta, H. Diagnostic accuracy of tissue Doppler index E/e’ for evaluating left ventricular filling pressure and diastolic dysfunction/heart failure with preserved ejection fraction: A systematic review and meta-analysis. J Am Heart Assoc 2016, 5, e002530. [Google Scholar] [CrossRef]
- Chubuchny, V.; Pugliese, N.R.; Taddei, C.; Poggianti, E.; Spini, V.; Barison, A.; Formichi, B.; Airò, E.; Bauleo, C.; Prediletto, R.; et al. A novel echocardiographic method for estimation of pulmonary artery wedge pressure and pulmonary vascular resistance. ESC Heart Fail. 2021, 8, 1216–1229. [Google Scholar] [CrossRef]
- Vahanian, A.; Beyersdorf, F.; Praz, F.; Milojevic, M.; Baldus, S.; Bauersachs, J.; Capodanno, D.; Conradi, L.; De Bonis, M.; De Paulis, R.; et al. 2021 ESC/EACTS Guidelines for the management of valvular heart disease Developed by the Task Force for the management of valvular heart disease of the European Society of Cardiology (ESC) and the European Association for Cardio-Thoracic Surgery (EACTS). Eur. Heart J. 2022, 43, 561–632. [Google Scholar] [CrossRef]
- Pugliese, N.R.; Pellicori, P.; Filidei, F.; Del Punta, L.; De Biase, N.; Balletti, A.; Di Fiore, V.; Mengozzi, A.; Taddei, S.; Gargani, L.; et al. The incremental value of multi-organ assessment of congestion using ultrasound in outpatients with heart failure. Eur Heart J Cardiovasc Imaging 2023, 24, 961–971. [Google Scholar] [CrossRef]
- Motiwala, S.R.; Nayor, M. Risk Stratification in Advanced Heart Failure. Can Simple Hemodynamic Indices Replace Comprehensive CPET? J. Am. Coll. Cardiol. 2024, 12, 272–274. [Google Scholar]
- Nesti, L.; Pugliese, N.R.; Chiriacò, M.; Trico, D.; Baldi, S.; Natali, A. Epicardial adipose tissue thickness is associated with reduced peak oxygen consumption and systolic reserve in patients with type 2 diabetes and normal heart function. Diabetes Obes. Metab. 2022, 25, 177–188. [Google Scholar] [CrossRef]
- Nesti, L.; Pugliese, N.R.; Santoni, L.; Armenia, S.; Chiriacò, M.; Sacchetta, L.; De Biase, N.; Del Punta, L.; Masi, S.; Tricò, D.; et al. Distinct effects of type 2 diabetes and obesity on cardiopulmonary performance. Diabetes, Obes. Metab. 2024, 26, 351–361. [Google Scholar] [CrossRef]
- Nesti, L.; Pugliese, N.R.; Sciuto, P.; De Biase, N.; Mazzola, M.; Fabiani, I.; Trico, D.; Masi, S.; Natali, A. Mechanisms of reduced peak oxygen consumption in subjects with uncomplicated type 2 diabetes. Cardiovasc. Diabetol. 2021, 20, 1–13. [Google Scholar] [CrossRef]
- Pugliese, N.R.; Balletti, A.; Armenia, S.; De Biase, N.; Faita, F.; Mengozzi, A.; Paneni, F.; Ruschitzka, F.; Virdis, A.; Ghiadoni, L.; et al. Ventricular-Arterial Coupling Derived From Proximal Aortic Stiffness and Aerobic Capacity Across the Heart Failure Spectrum. JACC Cardiovasc. Imaging 2022, 15, 1545–1559. [Google Scholar] [CrossRef]
- Pugliese, N.R.; Fabiani, I.; Santini, C.; Rovai, I.; Pedrinelli, R.; Natali, A.; Dini, F.L. Value of combined cardiopulmonary and echocardiography stress test to characterize the haemodynamic and metabolic responses of patients with heart failure and mid-range ejection fraction. Eur. Heart J. Cardiovasc. Imaging 2019, 20, 828–836. [Google Scholar] [CrossRef] [PubMed]
- Shimiaie, J.; Sherez, J.; Aviram, G.; Megidish, R.; Viskin, S.; Halkin, A.; Ingbir, M.; Nesher, N.; Biner, S.; Keren, G.; et al. Determinants of Effort Intolerance in Patients With Heart Failure: Combined Echocardiography and Cardiopulmonary Stress Protocol. JACC Heart Fail. 2015, 3, 803–814. [Google Scholar] [CrossRef] [PubMed]
- Gorter, T.M.; Obokata, M.; Reddy, Y.N.V.; Melenovsky, V.; Borlaug, B.A. Exercise unmasks distinct pathophysiologic features in heart failure with preserved ejection fraction and pulmonary vascular disease. Eur. Heart J. 2018, 39, 2825–2835. [Google Scholar] [CrossRef] [PubMed]
- Parasuraman, S.K.; Loudon, B.L.; Lowery, C.; Cameron, D.; Singh, S.; Schwarz, K.; Gollop, N.D.; Rudd, A.; McKiddie, F.; Phillips, J.J.; et al. Diastolic ventricular interaction in heart failure with preserved ejection fraction. J. Am. Heart Assoc. 2019, 8, 1–11. [Google Scholar] [CrossRef]
- Szabó, I.A.; Gargani, L.; Morvai-illés, B.; Polestyuk-németh, N. Prognostic Value of Lung Ultrasound in Aortic Stenosis. Front. Physiol. 2022, 13, 838479. [Google Scholar] [CrossRef]
- Lancellotti, P.; Dulgheru, R.; Go, Y.Y.; Sugimoto, T.; Marchetta, S.; Oury, C.; Garbi, M. Stress echocardiography in patients with native valvular heart disease. Heart 2017, 104, 807–813. [Google Scholar] [CrossRef]
- Magne, J.; Lancellotti, P.; Pie, L.A. Exercise Pulmonary Hypertension in Asymptomatic Degenerative Mitral Regurgitation. Circulation 2010, 122, 33–41. [Google Scholar] [CrossRef]
- Magne, J.; Donal, E.; Mahjoub, H.; Miltner, B.; Dulgheru, R.; Thebault, C.; Pierard, L.A.; Pibarot, P.; Lancellotti, P. Impact of exercise pulmonary hypertension on postoperative outcome in primary mitral regurgitation. Heart 2014, 101, 391–396. [Google Scholar] [CrossRef]
- Kadoglou, N.P.E.; Papadopoulos, C.H.; Krommydas, A. The prognostic value of exercise-induced pulmonary hypertension in asymptomatic patients with primary mitral regurgitation. J. Cardiol. 2022, 79, 306–310. [Google Scholar] [CrossRef]
- Suzuki, T.; Izumo, M.; Suzuki, K.; Koto, D.; Tsukahara, M.; Teramoto, K. Prognostic value of exercise stress echocardiography in patients with secondary mitral regurgitation: A long-term follow-up study. J. Echocardiogr. 2018, 17, 147–156. [Google Scholar] [CrossRef]
- Kempton, H.; Hungerford, S.; Muller, D.W.; Hayward, C.S. Pulmonary arterial compliance as a measure of right ventricular loading in mitral regurgitation. IJC Heart Vasc. 2024, 53, 101472. [Google Scholar] [CrossRef] [PubMed]
- Magrì, D.; Santolamazza, C. Cardiopulmonary Exercise Test in Hypertrophic Cardiomyopathy. Ann. Am. Thorac. Soc. 2017, 14, S102–S109. [Google Scholar] [CrossRef] [PubMed]
- Lele, S.S.; Thomson, H.L.; Seo, H.; Belenkie, I.; Mckenna, W.J.; Frenneaux, M.P. Exercise capacity in hypertrophic cardiomyopathy: Role of stroke volume limitation, heart rate, and diastolic filling characteristics. Circulation 1995, 92, 2886–2894. [Google Scholar] [CrossRef] [PubMed]
- Finocchiaro, G.; Haddad, F.; Knowles, J.; Caleshu, C.; Pavlovic, A.; Homburger, J.; Shmargad, Y.; Sinagra, G. Cardiopulmonary Responses and Prognosis in Hypertrophic Cardiomyopathy. JACC Heart Fail. 2015, 3, 408–418. [Google Scholar] [CrossRef]
- Agostoni, P.; Maria, F.; Beatrice, C.; Magrı, D.; Egidy, G.; Carlo, A.; De Cecco, N.; Muscogiuri, G.; Maruotti, A. Determinants of peak oxygen uptake in patients with hypertrophic cardiomyopathy: A single-center study. Intern. Emerg. Med. 2012, 9, 293–302. [Google Scholar]
- Magrì, D.; Palermo, P.; Cauti, F.M.; Contini, M.; Farina, S.; Cattadori, G.; Apostolo, A.; Salvioni, E.; Magini, A.; Vignati, C.; et al. Chronotropic Incompentence and Functional Capacity in Chronic Heart Failure: No Role of β-Blockers and β-Blocker Dose. Circ. Heart Fail. 2012, 30, 100–108. [Google Scholar] [CrossRef]
- Elliott, P.M.; Uk, C.; Anastasakis, A.; Germany, M.A.B.; Germany, M.B.; Cecchi, F.; France, P.C.; Alain, A.; France, H.; Lafont, A.; et al. 2014 ESC Guidelines on diagnosis and management of hypertrophic cardiomyopathy The Task Force for the Diagnosis and Management of Hypertrophic Cardiomyopathy of the European Society of Cardiology (ESC). Eur. Heart J. 2014, 35, 2733–2779. [Google Scholar]
- Coats, C.J.; Rantell, K.; Bartnik, A.; Patel, A.; Mist, B.; Mckenna, W.J.; Elliott, P.M. Cardiopulmonary Exercise Testing and Prognosis in Hypertrophic Cardiomyopathy. Circ. Heart Fail. 2015, 8, 1022–1031. [Google Scholar] [CrossRef]
- Hirasawa, K.; Izumo, M.; Mizukoshi, K.; Nishikawa, H.; Sato, Y.; Watanabe, M.; Kamijima, R.; Akashi, Y.J. Prognostic significance of right ventricular function during exercise in asymptomatic/minimally symptomatic patients with nonobstructive hypertrophic cardiomyopathy. Echocardiography 2021, 38, 916–923. [Google Scholar] [CrossRef]
- Bruce, R.A.; Blackmon, J.R.; Jones, J.W.; Strait, G. Exercising Testing in Adult Normal Subjects and Cardiac Patients. Ann. Noninvasive Electrocardiol. 2004, 9, 291–303. [Google Scholar] [CrossRef]
- Padang, R.; Pellikka, P.A. The role of stress echocardiography in the evaluation of coronary artery disease and myocardial ischemia in women. J. Nucl. Cardiol. 2016, 23, 1023–1035. [Google Scholar] [CrossRef] [PubMed]
- Chaudhry, S.; Arena, R.; Bhatt, D.L.; Verma, S. A practical clinical approach to utilize cardiopulmonary exercise testing in the evaluation and management of coronary artery disease: A primer for cardiologists. Curr. Opin. Cardiol. 2018, 33, 168–177. [Google Scholar] [CrossRef] [PubMed]
- Belardinelli, R.; Lacalaprice, F.; Tiano, L.; Muçai, A.; Piero, G. Cardiopulmonary exercise testing is more accurate than ECG-stress testing in diagnosing myocardial ischemia in subjects with chest pain. Int. J. Cardiol. 2014, 174, 337–342. [Google Scholar] [CrossRef] [PubMed]
- Pinkstaff, S.; Peberdy, M.A.; Kontos, M.C.; Fabiato, A.; Finucane, S.; Arena, R. Usefulness of Decrease in Oxygen Uptake Efficiency Slope to Identify Myocardial Perfusion Defects in Men Undergoing Myocardial Ischemic Evaluation. Am. J. Cardiol. 2010, 106, 1534–1539. [Google Scholar] [CrossRef]
- Kavanagh, T.; Mertens, D.J.; Ms, C.; Hamm, L.F.; Beyene, J.; Kennedy, J.; Corey, P.; Shephard, R.J. Peak Oxygen Intake and Cardiac Mortality in Women Referred for Cardiac Rehabilitation. J. Am. Coll. Cardiol. 2003, 42, 2139–2143. [Google Scholar] [CrossRef]
- Myers, J.; Prakash, M.; Froelicher, V.; Do, D.; Partignon, S.; Atwood, J.E. Exercise capacity and mortality among men referred from exercise testing. N. Engl. J. Med. 2002, 346, 793–801. [Google Scholar] [CrossRef]
- Song, Y.; Jia, H.; Ma, Q.; Zhang, L.; Lai, X. The causes of pulmonary hypertension and the benefits of aerobic exercise for pulmonary hypertension from an integrated perspective. Front. Physiol. 2024, 5, 1461519. [Google Scholar] [CrossRef]
- Gargani, L.; Pugliese, N.R.; De Biase, N.; Mazzola, M.; Agoston, G.; Arcopinto, M.; Argiento, P.; Armstrong, W.F.; Bandera, F.; Cademartiri, F.; et al. Right Ventricular Contractile Reserve and Pulmonary Circulation Uncoupling During Exercise Challenge in Heart Failure: Pathophysiology and Clinical Phenotypes. JACC Heart Fail. 2016, 4, 625–635. [Google Scholar]
- Sherman, A.E.; Saggar, R. Cardiopulmonary Exercise Testing in Pulmonary Arterial Hypertension. Heart Fail. Clin. 2023, 19, 35–43. [Google Scholar] [CrossRef]
- Blanco, I.; Valeiro, B.; Torres-castro, R.; Barberán-garcía, A.; Torralba, Y.; Moisés, J.; Sebastián, L.; Osorio, J.; Rios, J.; Gimeno-santos, E.; et al. Effects of Pulmonary Hypertension on Exercise Capacity in Patients With Chronic Obstructive Pulmonary Disease. Arch Bronconeumol. 2020, 56, 499–505. [Google Scholar] [CrossRef]
- Mukherjee, M.; Rudski, L.G.; Addetia, K.; Afilalo, J.; D’Alto, M.; Freed, B.H.; Friend, L.B.; Gargani, L.; Grapsa, J.; Hassoun, P.M.; et al. Guidelines for the Echocardiographic Assessment of the Right Heart in Adults and Special Considerations in Pulmonary Hypertension: Recommendations from the American Society of Echocardiography. J. Am. Soc. Echocardiogr. 2025, 38, 141–186. [Google Scholar] [CrossRef] [PubMed]
- Tello, K.; Axmann, J.; Ghofrani, H.A.; Naeije, R.; Narcin, N.; Rieth, A.; Seeger, W.; Gall, H.; Richter, M.J. Relevance of the TAPSE/PASP ratio in pulmonary arterial hypertension. Int. J. Cardiol. 2018, 266, 229–235. [Google Scholar] [CrossRef] [PubMed]
- Finlay, M.; Middleton, H.C.; Peake, M.D.; Howard, P. Cardiac output, pulmonary hypertension, hypoxaemia and survival in patients with chronic obstructive airways disease. Eur. J. Respir. Dis. 1983, 64, 252–263. [Google Scholar] [PubMed]
- Fernandes, T.M.; Alotaibi, M.; Strozza, D.; Stringer, W.; Faulkner, G.; Castro, C.; Tran, D.; Morris, T.A. Dyspnea postpulmonary embolism from physiological dead space proportion and stroke volume defects during exercise. Chest 2019, 157, 936–944. [Google Scholar] [CrossRef]
- Maron, B.J.; Maron, M.S. Hypertrophic cardiomyopathy. Lancet 2013, 381, 242–255. [Google Scholar] [CrossRef]
Parameters | Significance | Normal Values | Interpretation |
---|---|---|---|
Exercise Intolerance | |||
Heart rate (HR) Response | An increase in HR during exercise is a sign of healthy cardiovascular function. HR reserve is calculated as the difference between the age-predicted maximal HR and resting HR. The chronotropic response is calculated as 100∙(peak HR—resting HR)/HR reserve [20]. | HR should increase continuously and exceed 85% of the age-predicted maximal HR at peak exercise, indicating maximal effort. | The inability to achieve ≥80% of the HR reserve, or >62% in patients on beta-blockers, is termed chronotropic incompetence. This abnormality can be observed in several pathologic conditions, e.g., HF, CAD, sick sinus syndrome, and atrioventricular block [20]. |
Blood pressure (BP) Response | Variations in BP during exercise result from an integrated response by the autonomic nervous and cardiovascular systems. | SBP increases proportionally with workload (with a steeper SBP/workload slope in women), whereas DBP remains relatively stable or decreases slightly due to vasodilation in active muscles [21]. | An abnormal BP response (both hypotensive and hypertensive) contributes to reduced functional capacity. It usually indicates impaired cardiovascular adaptation and/or autonomic dysfunction and has poor prognostic implications in patients with cardiovascular disease (e.g., ischemic cardiomyopathy and severe aortic stenosis) [21,22]. |
Oxygen consumption (VO2) | Maximal oxygen uptake during exercise typically averaged over 30 s [23]. It is an indicator of global cardiopulmonary and skeletal muscle function. | An absolute peak VO2 > 20 mL/kg/min and/or >80% of the predicted value (based on age, sex, weight, and height as per the Wassermann–Hansen equation [24]) indicates good functional capacity and favourable prognosis [25] (predicted values might be less accurate in HFpEF [2]). | Values < 16 mL/kg/min suggest a poor prognosis in HF [15]. Values ≤ 14 mL/kg/min, or ≤12 mL/kg/min in patients on beta-blockers, represent an indication for heart transplant in patients with advanced HF. |
VO2/HR (oxygen pulse) | The amount of oxygen consumed per heartbeat. It represents an indirect measure of SV during exercise based on Fick’s principle (VO2 = HR∙SV∙AVO2diff), assuming a constant AVO2diff. | This increases steadily throughout the exercise and may plateau near the end of the test. It should reach at least 80% of the predicted level. | An impaired oxygen pulse, with or without a prolonged plateau, often signals impaired SV and/or CO, a common feature in HF. |
Respiratory exchange ratio (RER) | VCO2/VO2 ratio, reflecting exercise intensity. | Values ≥ 1.00 signal that the patient has reached the anaerobic threshold. | Used to confirm that maximal effort has been achieved. Psychogenic hyperventilation may lead to falsely elevated values, particularly during the initial minutes of exercise. |
Values ≥ 1.10 signal maximal effort. | |||
VO2/work slope | Used to assess exercise limitation due to physical deconditioning or LV dysfunction. | A normal VO2/work slope is about 10 mL/min/W and remains stable regardless of exercise duration. | A flattening (i.e., plateauing) or downsloping VO2/work slope is associated with reduced CO, often due to myocardial ischemia, severe aortic stenosis, or advanced HF. |
Ventilatory Efficiency | |||
Minute ventilation to carbon dioxide production (VE/VCO2) slope | Reflects ventilation–perfusion matching in the lungs [16]. | A VE/VCO2 slope < 30 indicates normal ventilation–perfusion matching during exercise. Values > 36 indicate significant ventilation–perfusion mismatch. | Substantial prognostic value in HF or pulmonary disease, even during submaximal exercise [16]. |
It is influenced by CO2 production during exercise, the VD/VT, and PaCO2. | |||
End-tidal CO2 pressure (PETCO2) | Reflects alveolar ventilation and perfusion matching. It is a reliable, non-invasive estimate of PaCO2 | 36–42 mmHg at rest. A slight increase (3–8 mmHg) is observed during the exercise before reaching the AT, usually followed by a decline at peak exercise. | A further increase after the AT may indicate hypoventilation or poor ventilatory efficiency [12]. |
Breathing reserve (BR) | The difference between MVV (measured directly or estimated based on FEV1) and VE. It indicates the ventilatory response to exercise. | >11 L/min or ≥30% when adjusted for MVV. | A reduced BR, where VE is close to MVV, is frequently observed in primary lung diseases, particularly chronic obstructive lung conditions [17]. |
Dead space to tidal volume (VD/VT) ratio | Represents the ratio between physiological dead space (VD) and tidal volume (VT). It reflects pulmonary ventilation–perfusion interactions. It decreases during exercise due to alveolar recruitment and pulmonary vasodilation. | At rest: 33–34%. It should decrease during exercise, with normal peak VD/VT values ≤ 25%. | Increased peak VD/VT may indicate pulmonary dysfunction and ventilation–perfusion mismatch due to pulmonary hypertension, left-sided pulmonary hypertension, and impaired gas exchange [19,26]. |
Exercise Oscillatory Ventilation (EOV) | Cyclic ventilation and gas exchange fluctuation during exercise. To diagnose EOV, rhythmic fluctuations must occur during at least 60% of the exercise, with an amplitude > 15% above the average resting value [27]. | Absent. | It indicates poor prognosis, especially in patients with advanced HF. |
Peripheral response to exercise | |||
Arterial-venous oxygen difference (AVO2diff) | Indicates oxygen extraction by muscles during exercise. It can be indirectly estimated using Fick’s principle, with CO measured via invasive catheterisation or ESE. | At rest: about 5 mL/100 mL; it can rise to nearly 16 mL/100 mL at peak exercise in healthy individuals [14]. | Low values indicate impaired muscle oxygen extraction or circulatory abnormalities. Anaemia must be ruled out as a potential contributing factor to impaired oxygen delivery and AVO2diff [12]. |
Parameters | Significance | Normal Values | Interpretation |
---|---|---|---|
Left Ventricle | |||
Left ventricle ejection fraction (LVEF) | Key parameter used to classify patients with HF and prognostic indicator when below 50% [28]. It cannot provide direct information about myocardial contractility, as it is influenced by load, heart rate, and geometry [12]. | 62 ± 5% at rest, slightly higher in women than in men [11]. | Values < 30% at rest or during exercise are associated with poor prognosis [28]. An increase of at least 7.5% during exercise indicates adequate contractile reserve. An increase <7.5% suggests restricted coronary flow reserve and/or myocardial damage, even with normal resting LVEF. |
Wall Motion Score Index (WMSI) | It describes the presence of regional wall motion abnormalities [29]. | A score of 1 indicates normal regional wall motion in all the segments that are being considered (usually 16 or 17). | Values > 1 indicate regional wall motion abnormalities (e.g., hypokinesia, akinesia, or dyskinesia), as seen in ischemia, infarction, myocarditis, Takotsubo cardiomyopathy, etc. Values ≥ 1.3–1.5 are associated with a worse prognosis [30]. |
Left ventricle stroke volume (LV SV) | Represents the volume of blood ejected by the LV with every heartbeat. It is estimated by multiplying the LV outflow tract area by the velocity–time integral of the LV outflow tract, measured using pulsed-wave Doppler [29]. | Normal values are 60–100 mL/beat in healthy adults at rest. BSA-indexed normal values are ≥40 mL/m2 for men and ≥ 32 mL/m2 for women [31]. An exercise-induced increase in LV SV of 20% or more [29] is termed flow reserve. | Inadequate flow reserve has been shown to predict the risk of pulmonary oedema in different cardiovascular conditions [32]. Furthermore, it is associated with worse outcomes in patients with HF [33]. In patients with AS, it correlates with adverse LV remodelling and increased myocardial stress, representing an early marker of LV decompensation [34]. |
Tissue Doppler imaging-derived systolic tissue velocity (TDI-S’) | Early systolic velocity of the mitral annulus. It can be reported as individual values for specific LV segments (septum or lateral wall) or as an average. | It correlates with peak VO2, making it useful in exercise testing, but no universally accepted threshold defines an abnormal tissue TDI-S’ at peak effort. | It has been proposed as a more reliable indicator of LV contractility than LVEF for diagnostic and prognostic uses [35]. |
Mitral E/e’ | E-wave is the early diastolic transmitral flow velocity measured by pulsed-wave Doppler; e’ is the early diastolic velocity of the mitral annulus (septum or lateral wall), measured by TDI [36]. | It is commonly used to estimate LV filling pressures. However, several studies raised doubts about the reliability of this parameter as a non-invasive estimator of LV filling pressure, particularly during exercise [37]. Normal diastolic response to exercise includes an E/e′ ratio ≤ 14, septal e′ velocity > 7 cm/s and TRV < 3.1 m/s [29]. | The E/e′ ratio is a prognostic marker in patients with HF and other cardiac conditions [36]. An increased E/e′ ratio (>14) usually indicates elevated LV filling pressures [36]. |
Left ventricle global longitudinal strain (LV GLS) | It measures LV myocardial contractility using speckle tracking [11]. It represents the change in LV myocardial length from end-diastole to end-systole, normalised to end-diastolic length (conventionally indicated with a negative value) and averaged across the three apical views. | <−20%, but highly vendor-dependent [38]. | During exertion, changes in GLS provide clinically relevant information in conditions such as HF, hypertrophic cardiomyopathy (HCM), and heart valve disease [29]. In particular, a blunted increase in GLS during exertion (<2%) indicates limited contractile reserve [29]. |
Left atrium | |||
Left atrial reservoir function (LARS) | It measures LA function during the reservoir phase (i.e., LV systole) using speckle tracking [39]. | >39% in healthy individuals at rest. The LARS/E/e’ ratio has been shown to correlate with LV filling pressures, improving discrimination between HF and non-cardiac dyspnoea [39]. | Values < 23% at rest are considered abnormal and are associated with adverse LA remodelling, increased risk of atrial fibrillation [40], elevated LV filling pressures, RV-PA uncoupling [39], and impaired ventilatory efficiency during exercise [41]. It has prognostic significance in both HFrEF and HFpEF [42]. Exercise-induced reduction in LARS suggests worsening atrioventricular uncoupling and pulmonary hypertension [39]. |
Right Ventricle and Pulmonary Circulation | |||
Systolic pulmonary arterial pressure (sPAP) | Evaluates pulmonary hemodynamics and is estimated via echocardiography using the formula | The upper normal value is <35 mmHg at rest and <43 mmHg at exercise [29]. | Values > 50–60 mmHg during exercise are associated with exercise-induced PH and represent markers of adverse outcomes [29,43]. sPAP is significantly affected by RV function and CO. |
sPAP = 4 × (TRV)2 + RAP, | |||
where RAP is estimated from IVC diameter and its inspiratory collapse [44]. | |||
Tricuspid annular plane systolic excursion (TAPSE) | Assesses RV longitudinal systolic function, which is significantly correlated with RV global function. | >17 mm at rest [11]. | Values < 17 mm are associated with RV systolic dysfunction [11]. |
TAPSE/sPAP ratio | It expresses RV-PA coupling, which reflects the relationship between RV function and pulmonary vascular load [45]. | No agreed-upon reference values. Healthy subjects have higher values than patients with cardiopulmonary diseases [43]. TAPSE/sPAP typically reduces during exercise [46]. | TAPSE/sPAP < 0.70 mm/mmHg at rest or <0.5 mm/mmHg at peak exercise have been associated with poor survival and cardiac events in cardiovascular and non-cardiac conditions [46]. It is inversely related to peak VO2 and VE/VCO2 slope at peak exercise [45]. |
Mean pulmonary artery pressure to cardiac output (mPAP/CO) slope | It reflects the increase in mPAP during exercise, normalised for the rise in CO [9,47,48]. | A value < 3 mm Hg·L−1·min−1 indicates a physiological pulmonary hemodynamic response to exercise [9]. Echocardiography can only estimate mPAP indirectly [49]. | A steeper slope has been associated with poor survival and cardiac events in different cardiovascular and extracardiac conditions [9,46,47,48]. |
Heart valve disease | |||
Vena contracta | It is the narrowest region of a regurgitant jet just downstream from the regurgitant orifice. Measuring the vena contracta width via colour Doppler echocardiography provides a semi-quantitative assessment of regurgitation severity [50]. Technical factors and flow conditions can influence measurements. | <0.3 cm suggests mild regurgitation. | A wider vena contracta correlates with more severe regurgitation for AR and MR. If valve insufficiency worsens with exertion, values may increase. |
≥0.7 cm suggests severe regurgitation. | |||
Effective Regurgitant Orifice Area (EROA) | It quantifies the size of the effective opening through which blood regurgitates, providing a quantitative measure of regurgitation severity. It is commonly calculated using the PISA method [50]. Technical factors and flow conditions can influence measurements. | <0.20 cm2 indicates mild regurgitation [50]. | Higher EROA values indicate more significant regurgitation (≥0.40 cm2 for severe MR and TR; ≥0.30 cm2 for severe AR). The thresholds may be lower in secondary/functional regurgitation due to differences in pathophysiology and clinical implications [50]. If valve insufficiency worsens with exertion, values may increase. |
Peak velocity | Doppler-derived measurements that assess the severity of heart valve stenosis by evaluating the velocity of blood flow across the valve [51]. | Peak aortic jet velocity: <2.5 m/s. | Aortic stenosis [51]: 2.5–3.0 m/s (mild stenosis); 3.0–4.0 m/s (moderate stenosis); >4.0 m/s (severe stenosis). |
Mean pressure gradient (MPG) | Doppler-derived measurements that assess the severity of heart valve stenosis by evaluating gradient across the valve [51]. Measurements are flow-dependent and can be influenced by factors such as CO, BP, and arterial compliance. | Aortic MPG: <10 mmHg; Mitral MPG: <2.5 mmHg. | Aortic stenosis MPG [29,51]: |
<20 mmHg (mild stenosis); | |||
20–40 mmHg (moderate stenosis); | |||
>40 mmHg (severe stenosis); | |||
Δ(peak–rest) > 20 mmHg (severe stenosis) [18]. | |||
Mitral stenosis MPG [29,51]: | |||
<5 mmHg (mild stenosis); | |||
5–10 mmHg (moderate stenosis); | |||
>10 mmHg (severe stenosis); | |||
>15 mmHg during exercise (severe stenosis) [18]. | |||
Congestion assessment | |||
B-lines | Lung ultrasound can quantify EVLW at rest and during exercise [13]. | Absence of B-lines at rest and minimal increase during exercise. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Di Fiore, V.; Del Punta, L.; De Biase, N.; Masi, S.; Taddei, S.; Rosada, J.; Emdin, M.; Passino, C.; Fabiani, I.; Pugliese, N.R. Advancing Cardiovascular Risk Stratification and Functional Assessment: A Narrative Review of CPET and ESE Applications. Healthcare 2025, 13, 1627. https://doi.org/10.3390/healthcare13131627
Di Fiore V, Del Punta L, De Biase N, Masi S, Taddei S, Rosada J, Emdin M, Passino C, Fabiani I, Pugliese NR. Advancing Cardiovascular Risk Stratification and Functional Assessment: A Narrative Review of CPET and ESE Applications. Healthcare. 2025; 13(13):1627. https://doi.org/10.3390/healthcare13131627
Chicago/Turabian StyleDi Fiore, Valerio, Lavinia Del Punta, Nicolò De Biase, Stefano Masi, Stefano Taddei, Javier Rosada, Michele Emdin, Claudio Passino, Iacopo Fabiani, and Nicola Riccardo Pugliese. 2025. "Advancing Cardiovascular Risk Stratification and Functional Assessment: A Narrative Review of CPET and ESE Applications" Healthcare 13, no. 13: 1627. https://doi.org/10.3390/healthcare13131627
APA StyleDi Fiore, V., Del Punta, L., De Biase, N., Masi, S., Taddei, S., Rosada, J., Emdin, M., Passino, C., Fabiani, I., & Pugliese, N. R. (2025). Advancing Cardiovascular Risk Stratification and Functional Assessment: A Narrative Review of CPET and ESE Applications. Healthcare, 13(13), 1627. https://doi.org/10.3390/healthcare13131627