Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,587)

Search Parameters:
Keywords = carbon-fiber reinforced polymer

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
31 pages, 8851 KB  
Article
Design, Manufacturing and Experimental Validation of an Integrated Wing Ice Protection System in a Hybrid Laminar Flow Control Leading Edge Demonstrator
by Ionut Brinza, Teodor Lucian Grigorie and Grigore Cican
Appl. Sci. 2026, 16(3), 1347; https://doi.org/10.3390/app16031347 (registering DOI) - 28 Jan 2026
Abstract
This paper presents the design, manufacturing, instrumentation and validation by tests (ground and icing wind tunnel) of a full-scale Hybrid Laminar Flow Control (HLFC) leading-edge demonstrator based on Airbus A330 outer wing plan-form. The Ground-Based Demonstrator (GBD) was developed to reproduce a full-scale, [...] Read more.
This paper presents the design, manufacturing, instrumentation and validation by tests (ground and icing wind tunnel) of a full-scale Hybrid Laminar Flow Control (HLFC) leading-edge demonstrator based on Airbus A330 outer wing plan-form. The Ground-Based Demonstrator (GBD) was developed to reproduce a full-scale, realistic wing section integrating into the leading-edge three key systems: micro-perforated skin for the hybrid laminar flow control suction system (HLFC), the hot-air Wing Ice Protection System (WIPS) and a folding “bull nose” Krueger high-lift device. The demonstrator combines a superplastic-formed and diffusion-bonded (SPF/DB) perforated titanium skin mounted on aluminum ribs jointed with a carbon-fiber-reinforced polymer (CFRP) wing box. Titanium internal ducts were designed to ensure uniform hot-air distribution and structural compatibility with composite components. Manufacturing employed advanced aeronautical processes and precision assembly under INCAS coordination. Ground tests were performed using a dedicated hot-air and vacuum rig delivering up to 200 °C and 1.6 bar, thermocouples and pressure sensors. The results confirmed uniform heating (±2 °C deviation) and stable operation of the WIPS without structural distortion. Relevant tests were performed in the CIRA Icing Wind Tunnel facility, verifying the anti-ice protection system and Krueger device. The successful design, fabrication, testing and validation of this multifunctional leading edge—featuring integrated HLFC, WIPS and Krueger systems—demonstrates the readiness of the concept for subsequent aerodynamic testing. Full article
25 pages, 10182 KB  
Article
Influence of Interface Inclination Angle and Connection Method on the Failure Mechanisms of CFRP Joints
by Junhan Li, Afang Jin, Wenya Ruan, Junpeng Yang, Fengrong Li and Xiong Shu
Polymers 2026, 18(3), 344; https://doi.org/10.3390/polym18030344 - 28 Jan 2026
Abstract
Carbon fiber reinforced polymers (CFRPs) are widely used in aerospace and wind power applications, but the complex failure mechanisms of their connection structures pose challenges for connection design. This study aims to investigate the influence of bonding interface inclination angle and connection method [...] Read more.
Carbon fiber reinforced polymers (CFRPs) are widely used in aerospace and wind power applications, but the complex failure mechanisms of their connection structures pose challenges for connection design. This study aims to investigate the influence of bonding interface inclination angle and connection method on the failure mechanisms of CFRP joints under bending loads. The study investigated two design parameters: the joint geometry of the bonding interface (single-slope, transition-slope, and single-step) and the connection methods (bonding, bolting, and hybrid bonding–bolting). Finite element simulations analyzed the mechanical performance and failure modes under different design parameters. Bending tests validated the mechanical properties of the joint interface, validating the effectiveness of the numerical simulation. The study found that under bonded connections, the bending load increased with the slope of the connection interface, with improvements of 21.87% and 39.75%, respectively. The main reason is stress concentration caused by sharp geometric discontinuities. The hybrid connection had the highest peak load, with improvements of 38.38% and 43.91% compared to the other connection methods. Hybrid bonding–bolting connections further optimized structural performance and damage tolerance. This study reveals the damage mechanisms of the bonding interface and provides a reliable prediction method for aerospace and wind turbine blade applications. Full article
(This article belongs to the Section Polymer Processing and Engineering)
Show Figures

Figure 1

18 pages, 8932 KB  
Article
Polyphenylene Sulfide-Based Compositions with Solid Fillers for Powder Injection Molding
by Dmitry V. Dudka, Azamat L. Slonov, Khasan V. Musov, Aslanbek F. Tlupov, Azamat A. Zhansitov, Svetlana Yu. Khashirova and Alexander Ya. Malkin
Polymers 2026, 18(3), 341; https://doi.org/10.3390/polym18030341 - 28 Jan 2026
Abstract
Powder Injection Molding (PIM) is a versatile manufacturing technology widely used for fabricating components with complex geometries from metals and ceramics, yet its application to high-performance thermoplastics remains underutilized. This study explores the feasibility of manufacturing products from Polyphenylene Sulfide (PPS)—a promising linear [...] Read more.
Powder Injection Molding (PIM) is a versatile manufacturing technology widely used for fabricating components with complex geometries from metals and ceramics, yet its application to high-performance thermoplastics remains underutilized. This study explores the feasibility of manufacturing products from Polyphenylene Sulfide (PPS)—a promising linear aromatic polymer synthesized in powder form—using PIM technology and investigates the development of PE-based feedstocks with PPS and solid fillers. Regarding the matrix formulation, it was found that using pure paraffin as a binder limited the maximum PPS content to 20%. Consequently, a modified binder system consisting of Low-Density Polyethylene (LDPE) and paraffin in a 70:30 wt.% ratio was utilized, which successfully increased the PPS loading in the feedstock to 50% and enabled stable molding. Following matrix optimization, the study examined composites incorporating various fillers, including chalk, talc, and carbon fibers. Systematic rheological analysis confirmed that these composite suspensions possess characteristics necessary for molding products with complex geometries. Key results indicate that optimal sintering conditions were established to achieve the required mechanical properties. Among the tested fillers, carbon fibers were the most effective reinforcement, increasing the elastic modulus by 33% and flexural strength by 20%. Representative examples of samples successfully manufactured via this approach are presented. Full article
(This article belongs to the Section Polymer Processing and Engineering)
Show Figures

Graphical abstract

21 pages, 7055 KB  
Article
The Effect of Polymer Fiber Reinforcement on the Structural Performance of Timber Columns Under Axial Compression
by Haifa Abuhliga and Tahir Akgül
Buildings 2026, 16(3), 479; https://doi.org/10.3390/buildings16030479 - 23 Jan 2026
Viewed by 101
Abstract
This study investigates the compressive behavior of glued-laminated timber (Glulam) columns reinforced with different configurations of fiber-reinforced polymer (FRP) materials, including glass (GFRP) and carbon (CFRP) fibers in the form of rods, strip/panel, and fabrics. Axial compression tests were performed under controlled laboratory [...] Read more.
This study investigates the compressive behavior of glued-laminated timber (Glulam) columns reinforced with different configurations of fiber-reinforced polymer (FRP) materials, including glass (GFRP) and carbon (CFRP) fibers in the form of rods, strip/panel, and fabrics. Axial compression tests were performed under controlled laboratory conditions to examine the influence of reinforcement type and configuration on mechanical performance. Descriptive statistics, one-way ANOVA, and Tukey’s post hoc tests were used to determine the significance of differences between the tested groups. Finite element analysis (FEA) using ANSYS software2023 R1 was also conducted to validate the experimental results and to provide insight into stress distribution within the strengthened columns. The results revealed that FRP reinforcement clearly enhanced both the ultimate load and compressive stress compared to unreinforced samples. The highest performance was achieved with double CFRP rods and 5 cm carbon strips, which reached stress levels of about 43 MPa, representing an improvement of nearly 60% over raw wood. Statistical analysis confirmed that these increases were significant (p < 0.05), while FEA predictions showed strong agreement with the experimental findings. Observed failure modes shifted from crushing and buckling in unreinforced specimens to shear-splitting and delamination in reinforced ones, indicating improved confinement and delayed failure. Full article
Show Figures

Figure 1

15 pages, 2333 KB  
Article
Prediction of Fatigue Damage Evolution in 3D-Printed CFRP Based on Ultrasonic Testing and LSTM
by Erzhuo Li, Sha Xu, Hongqing Wan, Hao Chen, Yali Yang and Yongfang Li
Appl. Sci. 2026, 16(2), 1139; https://doi.org/10.3390/app16021139 - 22 Jan 2026
Viewed by 34
Abstract
To address the prediction of fatigue damage for 3D-printed Carbon Fiber Reinforced Polymer (CFRP), this study used 3D-printing technology to fabricate CFRP specimens. Through multi-stage fatigue testing, samples with varying porosity levels were obtained. Based on porosity test results and ultrasonic attenuation coefficient [...] Read more.
To address the prediction of fatigue damage for 3D-printed Carbon Fiber Reinforced Polymer (CFRP), this study used 3D-printing technology to fabricate CFRP specimens. Through multi-stage fatigue testing, samples with varying porosity levels were obtained. Based on porosity test results and ultrasonic attenuation coefficient measurements of specimens under different fatigue cycle counts, a quantitative relationship model was established between the porosity and ultrasonic attenuation coefficient of 3D-printed CFRP. According to the porosity and fatigue-loading cycles obtained from tests, the Time-series Generative Adversarial Network (TimeGAN) algorithm was employed for data augmentation to meet the requirements for neural-network training. Subsequently, the Long Short-Term Memory (LSTM) neural network was utilized to predict the fatigue damage evolution of 3D-printed CFRP specimens. Research findings indicate that by integrating the established relationship between porosity and ultrasonic attenuation coefficient, non-destructive testing of material fatigue damage evolution based on ultrasonic attenuation coefficient can be achieved. Full article
Show Figures

Figure 1

19 pages, 7907 KB  
Article
Experimental Study on Axial Compressive Behavior of the BFRP-Confined Timber Columns with and Without Knots
by Ya Ou, Chenghu Tang, Le Yan, Yunlei Fan and Hao Zhou
Buildings 2026, 16(2), 457; https://doi.org/10.3390/buildings16020457 - 22 Jan 2026
Viewed by 36
Abstract
Timber has gained popularity in the construction industry in recent years due to its low carbon footprint, favorable seismic performance, and esthetic appeal. However, due to the size limit and inevitable natural defects such as knots in the lumber, the axial capacity of [...] Read more.
Timber has gained popularity in the construction industry in recent years due to its low carbon footprint, favorable seismic performance, and esthetic appeal. However, due to the size limit and inevitable natural defects such as knots in the lumber, the axial capacity of timber columns might be insufficient. Therefore, wrapping the timber column with basalt fiber-reinforced polymers (BFRPs), which is an environmentally sustainable material, to improve the load-carrying capacity has been a promising technology. While existing research mostly focuses on defect-free specimens, this study investigates the effects of knots on the structural performance of timber columns wrapped by BFRP. Axial compressive tests were carried out on timber columns, i.e., Douglas fir (knot-free) and camphor pine (with knots), wrapped by BFRP. The results showed that the load-carrying capacity, stiffness, and ductility can be significantly enhanced by the BFRP wrapping. The failure mode of the Douglas fir specimens transitioned from timber crushing failure to shear failure, while the camphor pine specimens failed around the knot area, and the failure mode changed from overall bending to BFRP rupture when the three layers of BFRP were employed. Furthermore, compared to knot-free columns, those specimens containing knots exhibited greater variability in load capacity and recorded a higher percentage increase in strength after reinforcement by BFRP. Based on the test results, three prediction models of the compressive strength of the BFRP-wrapped Douglas fir and camphor pine columns are presented. Full article
(This article belongs to the Special Issue Seismic Performance of Seismic-Resilient Structures)
Show Figures

Figure 1

19 pages, 5944 KB  
Article
Sustainable Hybrid Laminated Composites Reinforced with Bamboo, Flex Banner, and Glass Fibers: Impact of CaCO3 Filler on Mechanical Properties
by Rahmat Doni Widodo, Muhammad Irfan Nuryanta, Prima Astuti Handayani, Rizky Ichwan, Edi Syams Zainudin and Muhammad Akhsin Muflikhun
Polymers 2026, 18(2), 275; https://doi.org/10.3390/polym18020275 - 20 Jan 2026
Viewed by 237
Abstract
The increasing demand for sustainable polymer composites has driven the development of hybrid laminates that combine natural, recycled, and synthetic reinforcements while maintaining adequate mechanical performance. However, the combined influence of stacking sequence and mineral filler addition on the mechanical behavior of such [...] Read more.
The increasing demand for sustainable polymer composites has driven the development of hybrid laminates that combine natural, recycled, and synthetic reinforcements while maintaining adequate mechanical performance. However, the combined influence of stacking sequence and mineral filler addition on the mechanical behavior of such sustainable hybrid systems remains insufficiently understood. In this study, sustainable hybrid laminated composites based on epoxy reinforced with glass fiber (G), bamboo fiber (B), and flex banner (F) were fabricated with varying stacking sequences and calcium carbonate (CaCO3) filler contents (0 and 1 wt.%). A total of nine laminate configurations were produced and evaluated through flexural and impact testing. The results demonstrate that mechanical performance is strongly governed by laminate architecture and filler addition. The bamboo-dominant G/B/B/B/G laminate containing 1 wt.% CaCO3 exhibited the highest flexural strength (191 MPa) and impact resistance (0.766 J/mm2), indicating a synergistic effect between reinforcement arrangement and CaCO3-induced matrix strengthening. In contrast, the lowest performance was observed for the G/F/B/F/G configuration without filler. Overall, all hybrid composites outperformed neat epoxy, highlighting the potential of bamboo–flex banner hybrid laminates with CaCO3 filler for sustainable composite applications requiring balanced mechanical properties. This work aligns with SDG 12 by promoting resource-efficient circular-economy practices through the utilization of flex banner material and natural fibers as reinforcements in epoxy-based hybrid composites. Full article
(This article belongs to the Special Issue Mechanical Properties of Polymer Materials, 2nd Edition)
Show Figures

Figure 1

16 pages, 2234 KB  
Article
Evaluating 3D-Printed ABS and Carbon Fiber as Sustainable Alternatives to Steel in Concrete Structures
by Juan José Soto-Bernal, Ma. Rosario González-Mota, Judith Marlene Merida-Cabrera, Iliana Rosales-Candelas and José Ángel Ortiz-Lozano
Materials 2026, 19(2), 393; https://doi.org/10.3390/ma19020393 - 19 Jan 2026
Viewed by 203
Abstract
This study evaluates the potential of 3D-printed acrylonitrile butadiene styrene (ABS) and carbon fiber (CF) as sustainable alternatives to steel reinforcement in cement-based materials. The experimental program analyzed the compressive strength of cement pastes and concrete cylinders incorporating 3D-printed ABS and CF elements. [...] Read more.
This study evaluates the potential of 3D-printed acrylonitrile butadiene styrene (ABS) and carbon fiber (CF) as sustainable alternatives to steel reinforcement in cement-based materials. The experimental program analyzed the compressive strength of cement pastes and concrete cylinders incorporating 3D-printed ABS and CF elements. Unreinforced cement pastes exhibited higher compressive strength than reinforced pastes, indicating limited reinforcement–matrix interaction. In concrete cylinders, ABS reinforcement increased compressive strength by approximately 3 to 7 MPa compared to steel, whereas CF reinforcement showed variable performance and did not consistently surpass the control specimens. ANOVA and Tukey tests confirmed the statistical significance of the results. The anisotropic response of ABS and CF, inherent to layer-by-layer deposition, was identified as a major factor influencing structural performance, particularly with respect to reinforcement orientation. The results indicate that ABS presents potential as an environmentally favourable alternative to steel in selected applications, while CF requires further optimization for compression-oriented use. Continued research is recommended to evaluate long-term durability, environmental resistance, and reinforcement–matrix compatibility in order to advance the implementation of polymer-based, additively manufactured reinforcements in construction materials. Full article
(This article belongs to the Special Issue 3D Printing Materials in Civil Engineering)
Show Figures

Figure 1

15 pages, 2796 KB  
Article
Research on Delamination Damage Factor of Hole-Making Process Optimization Based on Carbon Fiber Composite Materials
by Linsheng Liu, Yushu Lai, Yiwei Zhang, Lin Huang, Jiexiao Yang, Yuchi Jiang, Zhiwei Hu, Zhen Li and Bin Wang
Polymers 2026, 18(2), 219; https://doi.org/10.3390/polym18020219 - 14 Jan 2026
Viewed by 231
Abstract
Carbon fiber reinforced polymer (CFRP) is prone to delamination damage during drilling, which seriously affects the processing quality. This study focuses on the use of variable parameter drilling technology. Firstly, an anisotropic constitutive model and a Hashin failure model for CFRP were constructed. [...] Read more.
Carbon fiber reinforced polymer (CFRP) is prone to delamination damage during drilling, which seriously affects the processing quality. This study focuses on the use of variable parameter drilling technology. Firstly, an anisotropic constitutive model and a Hashin failure model for CFRP were constructed. Then, based on ABAQUS and VUMAT user subroutines, the influence laws of cutting parameters (spindle speed and feed rate) on delamination damage were explored. For the two methods of conventional fixed parameter drilling and variable parameter drilling (dynamic adjustment of feed rate when the drill reaches the exit plane), comparative simulation experiments were conducted. Subsequently, the genetic algorithm was introduced to optimize the spindle speed and feed rate under the variable parameter mode, and the results were verified through hole-making experiments. The results show that: under a constant spindle speed, the delamination damage factor increases monotonically with the increase in feed rate; under a constant feed rate, the delamination damage factor decreases first and then increases with the increase in spindle speed, presenting a nonlinear change characteristic. Among them, the variable parameter strategy of “first high feed, then low feed” can significantly reduce the delamination damage; the obtained optimal parameters can effectively balance the drilling quality and processing efficiency. This research provides theoretical and experimental support for optimizing CFRP hole-making parameters, addressing delamination control challenges in traditional drilling, and facilitating CFRP applications in aerospace and intelligent manufacturing. Full article
Show Figures

Figure 1

20 pages, 3786 KB  
Article
Mechanical Behavior of CFRP Laminates Manufactured from Plasma-Assisted Solvolysis Recycled Carbon Fibers
by Ilektra Tourkantoni, Konstantinos Tserpes, Dimitrios Marinis, Ergina Farsari, Eleftherios Amanatides, Nikolaos Koutroumanis and Panagiotis Nektarios Pappas
J. Compos. Sci. 2026, 10(1), 49; https://doi.org/10.3390/jcs10010049 - 14 Jan 2026
Viewed by 232
Abstract
The mechanical behavior of carbon-fiber-reinforced polymer (CFRP) laminates manufactured using plasma-assisted solvolysis recycled fibers was evaluated experimentally through a comprehensive mechanical testing campaign. The plasma-assisted solvolysis parameters were selected based on an earlier sensitivity analysis. Prepregs made from both virgin and recycled carbon [...] Read more.
The mechanical behavior of carbon-fiber-reinforced polymer (CFRP) laminates manufactured using plasma-assisted solvolysis recycled fibers was evaluated experimentally through a comprehensive mechanical testing campaign. The plasma-assisted solvolysis parameters were selected based on an earlier sensitivity analysis. Prepregs made from both virgin and recycled carbon fibers were fabricated via a hand lay-up process and manually stacked to produce unidirectional laminates. Longitudinal tension tests, longitudinal compression tests, and interlaminar shear strength (ILSS) tests were performed to assess the fundamental mechanical response of the recycled laminates and quantify the retention of mechanical properties relative to the virgin-reference material. Prior to mechanical testing, all laminates underwent ultrasonic C-scan inspection to assess manufacturing quality. While both laminate types exhibited generally satisfactory quality, the recycled-fiber laminates showed a higher density of defects. The recycled laminates preserved around 80% of their original tensile strength and maintained an essentially unchanged elastic modulus. Compressive strength was more susceptible to imperfections introduced during remanufacturing, with the recycled laminates exhibiting roughly a 14% decrease compared with the virgin material. On the contrary, the compressive modulus was largely retained. The most substantial reduction occurred in ILSS, which dropped by 58%. Overall, the results demonstrate that plasma-assisted solvolysis enables the recovery of carbon fibers suitable for remanufacturing CFRP laminates, while the observed reduction in mechanical properties of recycled CFRPs is mainly attributed to defects in manufacturing quality rather than to intrinsic degradation of the recycled carbon fibers. Full article
(This article belongs to the Section Composites Manufacturing and Processing)
Show Figures

Figure 1

21 pages, 4661 KB  
Article
Fatigue Performance Enhancement of Open-Hole Steel Plates Under Alternating Tension–Compression Loading via Hotspot-Targeted CFRP Reinforcement
by Zhenpeng Jian, Byeong Hwa Kim, Jinlei Gai, Yunlong Zhao and Xujiao Yang
Buildings 2026, 16(2), 313; https://doi.org/10.3390/buildings16020313 - 11 Jan 2026
Viewed by 259
Abstract
Steel plates with open holes are common in engineering structures such as bridges and towers for pipeline penetrations and connections. These openings, however, induce significant stress concentration under alternating tension–compression loading (stress ratio R = −1), drastically accelerating fatigue crack initiation and threatening [...] Read more.
Steel plates with open holes are common in engineering structures such as bridges and towers for pipeline penetrations and connections. These openings, however, induce significant stress concentration under alternating tension–compression loading (stress ratio R = −1), drastically accelerating fatigue crack initiation and threatening structural integrity. Effective identification and mitigation of such stress concentrations is crucial for enhancing the fatigue resistance of perforated components. This study proposes a closed-loop methodology integrating theoretical weak zone identification, targeted CFRP reinforcement, and experimental validation to improve the fatigue performance of open-hole steel plates. Analytical solutions for dynamic stresses around the hole were derived using complex function theory and conformal mapping, identifying critical stress concentration angles. Experimental tests compared unreinforced and CFRP-reinforced specimens in terms of circumferential strain distribution, dynamic stress concentration behavior, and fatigue life. Results indicate that Carbon fiber-reinforced polymer (CFRP) reinforcement significantly reduces stress concentration near 90°, smooths polar strain distributions, and slows strain decay. The S–N curves shift upward, indicating extended fatigue life under identical stress amplitude and increased allowable stress at identical life cycles. Comparison with standardized design curves confirms that reinforced specimens meet higher fatigue categories, providing practical design guidance for perforated plates under alternating loads. This work establishes a systematic framework from theoretical prediction to experimental verification, offering a reliable reference for engineering applications. Full article
Show Figures

Figure 1

49 pages, 7983 KB  
Review
Polymer Composites in Additive Manufacturing: Current Technologies, Applications, and Emerging Trends
by Md Mahbubur Rahman, Safkat Islam, Mubasshira, Md Shaiful Islam, Raju Ahammad, Md Ashraful Islam, Md Abdul Hasib, Md Shohanur Rahman, Raza Moshwan, M. Monjurul Ehsan, Md Sanaul Rabbi, Md Moniruzzaman, Muhammad Altaf Nazir and Wei-Di Liu
Polymers 2026, 18(2), 192; https://doi.org/10.3390/polym18020192 - 10 Jan 2026
Viewed by 714
Abstract
Polymer composites have opened a novel innovation phase in additive manufacturing (AM), and now lightweight, high-strength, and geometrical advanced components with tailored functionalities can be produced. The present study introduces advances in polymer composite materials and their integration into AM processes, particularly in [...] Read more.
Polymer composites have opened a novel innovation phase in additive manufacturing (AM), and now lightweight, high-strength, and geometrical advanced components with tailored functionalities can be produced. The present study introduces advances in polymer composite materials and their integration into AM processes, particularly in rapidly growing industries such as aerospace, automotive, biomedical, and electronics. The embedding of cutting-edge reinforcement materials, such as nanoparticles, carbon fibers, and natural fibers, into polymer matrices enhances mechanical, thermal, electrical, and multifunctional properties. These material developments are combined with advanced fabrication techniques, including multi-material printing, in situ curing, and functionally graded manufacturing, which achieves accurate regulation of microstructures and properties. Furthermore, high-impact innovations such as smart polymer composites with self-healing or stimuli-responsive behaviors, the growing shift toward sustainable, bio-based composite alternatives, are driving progress. Despite significant advances, challenges remain in interfacial bonding, printability, process repeatability, and long-term durability. This review offers a comprehensive overview of current advancements and outlines future directions in polymer composite–based AM. Full article
Show Figures

Figure 1

19 pages, 1487 KB  
Article
Valorizing Food Waste into Functional Bio-Composite Façade Cladding: A Circular Approach to Sustainable Construction Materials
by Olga Ioannou and Fieke Konijnenberg
Clean Technol. 2026, 8(1), 11; https://doi.org/10.3390/cleantechnol8010011 - 9 Jan 2026
Viewed by 456
Abstract
Façades account for approximately 15–20% of a building’s embodied carbon, making them a key target for material decarbonization. While bio-composites are increasingly explored for façade insulation, cladding systems remain dominated by carbon-intensive materials such as aluminum and fiber-reinforced polymers (FRPs). This paper presents [...] Read more.
Façades account for approximately 15–20% of a building’s embodied carbon, making them a key target for material decarbonization. While bio-composites are increasingly explored for façade insulation, cladding systems remain dominated by carbon-intensive materials such as aluminum and fiber-reinforced polymers (FRPs). This paper presents findings from a study investigating the use of food-waste-derived bulk fillers in bio-composite materials for façade cladding applications. Several food-waste streams, including hazelnut and pistachio shells, date seeds, avocado and mango pits, tea leaves, and brewing waste, were processed into fine powders (<0.125 μm) and combined with a furan-based biobased thermoset resin to produce flat composite sheets. The samples were evaluated through mechanical testing (flexural strength, stiffness, and impact resistance), water absorption, freeze–thaw durability, and optical microscopy to assess microstructural characteristics before and after testing. The results reveal substantial performance differences between waste streams. In particular, hazelnut and pistachio shell fillers produced bio-composites suitable for façade cladding, achieving flexural strengths of 62.6 MPa and 53.6 MPa and impact strengths of 3.42 kJ/m2 and 1.39 kJ/m2, respectively. These findings demonstrate the potential of food-waste-based bio-composites as low-carbon façade cladding materials and highlight future opportunities for optimization of processing, supply chains, and material design. Full article
(This article belongs to the Special Issue Selected Papers from Circular Materials Conference 2025)
Show Figures

Figure 1

28 pages, 5461 KB  
Article
Free Vibration and Static Behavior of Bio-Inspired Helicoidal Composite Spherical Caps on Elastic Foundations Applying a 3D Finite Element Method
by Amin Kalhori, Mohammad Javad Bayat, Masoud Babaei and Kamran Asemi
Buildings 2026, 16(2), 273; https://doi.org/10.3390/buildings16020273 - 8 Jan 2026
Viewed by 230
Abstract
Spherical caps exploit their intrinsic curvature to achieve efficient stress distribution, delivering exceptional strength-to-weight ratios. This advantage renders them indispensable for aerospace systems, pressurized containers, architectural domes, and structures operating in extreme environments, such as deep-sea or nuclear containment. Their superior load-bearing capacity [...] Read more.
Spherical caps exploit their intrinsic curvature to achieve efficient stress distribution, delivering exceptional strength-to-weight ratios. This advantage renders them indispensable for aerospace systems, pressurized containers, architectural domes, and structures operating in extreme environments, such as deep-sea or nuclear containment. Their superior load-bearing capacity enables diverse applications, including satellite casings and high-pressure vessels. Meticulous optimization of geometric parameters and material selection ensures robustness in demanding scenarios. Given their significance, this study examines the natural frequency and static response of bio-inspired helicoidally laminated carbon fiber–reinforced polymer matrix composite spherical panels surrounded by Winkler elastic foundation support. Utilizing a 3D elasticity approach and the finite element method (FEM), the governing equations of motion are derived via Hamilton’s Principle. The study compares five helicoidal stacking configurations—recursive, exponential, linear, semicircular, and Fibonacci—with traditional laminate designs, including cross-ply, quasi-isotropic, and unidirectional arrangements. Parametric analyses explore the influence of lamination patterns, number of plies, panel thickness, support rigidity, polar angles, and edge constraints on natural frequencies, static deflections, and stress distributions. The analysis reveals that the quasi-isotropic (QI) laminate configuration yields optimal vibrational performance, attaining the highest fundamental frequency. In contrast, the cross-ply (CP) laminate demonstrates marginally best static performance, exhibiting minimal deflection. The unidirectional (UD) laminate consistently shows the poorest performance across both static and dynamic metrics. These investigations reveal stress transfer mechanisms across layers and elucidate vibration and bending behaviors in laminated spherical shells. Crucially, the results underscore the ability of helicoidal arrangements in augmenting mechanical and structural performance in engineering applications. Full article
(This article belongs to the Special Issue Applications of Computational Methods in Structural Engineering)
Show Figures

Figure 1

5 pages, 153 KB  
Editorial
Advances in Carbon Fiber Reinforced Polymers
by Francesca Lionetto
Materials 2026, 19(2), 231; https://doi.org/10.3390/ma19020231 - 7 Jan 2026
Viewed by 259
Abstract
Carbon fiber reinforced polymers (CFRPs) have become increasingly widespread across a remarkable range of industries thanks to their unique combination of strength, lightness and durability [...] Full article
(This article belongs to the Special Issue Carbon Fiber Reinforced Polymers (2nd Edition))
Back to TopTop