Polymer Composites in Additive Manufacturing: Current Technologies, Applications, and Emerging Trends
Abstract
1. Introduction
2. Classification of Polymer Composites in Additive Manufacturing
2.1. Carbon Fiber–Reinforced Polymers (CFRP)
2.1.1. Continuously Reinforced Composites
2.1.2. Nylon 6,6 with 30 wt% CF
2.2. Glass Fiber–Reinforced Polymers
2.3. Aramid Fiber Composites
- Configuration a: Using a large layer height and wide line spacing creates a distinct array of individual fiber bundles, each surrounded by the polymer matrix.
- From a to b: Reducing the line spacing causes the lines to start overlapping within the same layer. However, since the layer height remains large, the new lines do not fully merge with adjacent ones; instead, they are layered on top, with gaps in between filled by the matrix.
- From a to c: Lowering the layer height increases compaction, pressing the lines more firmly into one another. This results in a more organized, layered structure, closely resembling traditional laminated composites.
- From c to d: Further reducing both the layer height and line spacing enhances compaction even more. This minimizes the resin-rich layers between the layers from about 138 ± 13 µm to 88 ± 24 µm, boosting the fiber volume fraction and eliminating large interlayer voids.
2.4. Natural Fiber–Reinforced Composites
Limitations of Natural Fiber–Reinforced Polymer Composites
2.5. Polymer Nanocomposites
2.5.1. Carbon Nanotube (CNT) Composites
2.5.2. Graphene-Based Composites
2.6. Elastomers and Rubber-like Polymers
2.7. Metal Fiber–Reinforced Polymer Composites
2.8. Polymer Blends and Alloys
3. Functionalized and Advanced Behavioral Polymer Composites
3.1. Biodegradable Polymer Composites
3.2. Biomaterials and Biocompatible Polymer Composites
3.3. Intelligent and Surveillance Polymer Composites
3.4. Smart and Stimuli-Responsive Composites
3.4.1. Shape-Memory Polymers
3.4.2. Piezoelectric Polymer Composites
3.4.3. Self-Healing Polymers
3.5. Electrically and Thermally Conductive Composites
3.6. Dielectric and Electronic Functional Composites
3.7. Multi-Functional and Hybrid Composites
4. Additive Manufacturing Techniques for Polymer Composites
4.1. Extrusion-Based Deposition
4.1.1. Fused Filament Fabrication (FFF)
4.1.2. Direct Ink Writing (DIW)
4.2. Powder-Bed Fusion
Selective Laser Sintering (SLS)
4.3. Vat Photopolymerization
4.3.1. Digital Light Processing (DLP)
4.3.2. Stereolithography (SLA)
4.4. Droplet-Based Jetting
Material Jetting (MJ)
4.5. In Situ Curing Strategies
4.6. Multi-Material AM and Functionally Graded AM
4.7. Industrial Adoption and Commercialization Considerations
5. Application Specific Innovations
5.1. Aviation Sector
5.2. Automobile Sector
5.3. Healthcare Sector
5.4. Electronics and Energy Sectors
5.5. Architecture and Construction
5.6. Defense and Sports Sectors
6. Emerging Trends and Research Directions
6.1. Digital Design, AI Integration, and Digital Twins

6.2. Multi-Material and Hybrid Printing Platforms
6.3. Bio-Inspired and Nature-Mimicking Composites
6.4. Sustainable and Circular Economy Approaches in Composite Design
6.5. Real-Time Monitoring and In Situ Quality Control
7. Challenges and Limitations
7.1. Challenges in Material Formulation and Processing
7.1.1. Poor Interfacial Bonding and Dispersion of Fillers
7.1.2. Printability and Rheological Limitations of High Filler-Content Systems
7.2. Performance, Scalability, and Sustainability Limitations
7.2.1. Repetition, Scaling, and Control of the Process
7.2.2. Durability and Environmental Stability
7.2.3. Composites Recycling and End-of-Life Treatment
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Alghamdi, S.S.; John, S.; Choudhury, N.R.; Dutta, N.K. Additive Manufacturing of Polymer Materials: Progress, Promise and Challenges. Polymers 2021, 13, 753. [Google Scholar] [CrossRef]
- Pal, A.K.; Mohanty, A.K.; Misra, M. Additive Manufacturing Technology of Polymeric Materials for Customized Products: Recent Developments and Future Prospective. RSC Adv. 2021, 11, 36398–36438. [Google Scholar] [CrossRef]
- Anderson, I. Mechanical Properties of Specimens 3D Printed with Virgin and Recycled Polylactic Acid. 3D Print Addit. Manuf. 2017, 4, 110–115. [Google Scholar] [CrossRef]
- Parmar, H.; Khan, T.; Tucci, F.; Umer, R.; Carlone, P. Advanced Robotics and Additive Manufacturing of Composites: Towards a New Era in Industry 4.0. Mater. Manuf. Process. 2022, 37, 483–517. [Google Scholar] [CrossRef]
- Yuan, S.; Li, S.; Zhu, J.; Tang, Y. Additive Manufacturing of Polymeric Composites from Material Processing to Structural Design. Compos. B Eng. 2021, 219, 108903. [Google Scholar] [CrossRef]
- Sharafi, S.; Santare, M.H.; Gerdes, J.; Advani, S.G. A Review of Factors That Influence the Fracture Toughness of Extrusion-Based Additively Manufactured Polymer and Polymer Composites. Addit. Manuf. 2021, 38, 101830. [Google Scholar] [CrossRef]
- Rocha, V.G.; Saiz, E.; Tirichenko, I.S.; García-Tuñón, E. Direct Ink Writing Advances in Multi-Material Structures for a Sustainable Future. J. Mater. Chem. A Mater. 2020, 8, 15646–15657. [Google Scholar] [CrossRef]
- Salifu, S.; Desai, D.; Ogunbiyi, O.; Mwale, K. Recent Development in the Additive Manufacturing of Polymer-Based Composites for Automotive Structures—A Review. Int. J. Adv. Manuf. Technol. 2022, 119, 6877–6891. [Google Scholar] [CrossRef]
- Picard, M.; Mohanty, A.K.; Misra, M. Recent Advances in Additive Manufacturing of Engineering Thermoplastics: Challenges and Opportunities. RSC Adv. 2020, 10, 36058–36089. [Google Scholar] [CrossRef]
- Liu, G.; Xiong, Y.; Zhou, L. Additive Manufacturing of Continuous Fiber Reinforced Polymer Composites: Design Opportunities and Novel Applications. Compos. Commun. 2021, 27, 100907. [Google Scholar] [CrossRef]
- Niendorf, K.; Raeymaekers, B. Additive Manufacturing of Polymer Matrix Composite Materials with Aligned or Organized Filler Material: A Review. Adv. Eng. Mater. 2021, 23, 2001002. [Google Scholar] [CrossRef]
- Gibson, I.; Rosen, D.; Stucker, B. Additive Manufacturing Technologies: 3D Printing, Rapid Prototyping, and Direct Digital Manufacturing, 2nd ed.; Springer: New York, NY, USA, 2015; pp. 1–498. [Google Scholar] [CrossRef]
- Gao, W.; Zhang, Y.; Ramanujan, D.; Ramani, K.; Chen, Y.; Williams, C.B.; Wang, C.C.L.; Shin, Y.C.; Zhang, S.; Zavattieri, P.D. The Status, Challenges, and Future of Additive Manufacturing in Engineering. Comput.-Aided Des. 2015, 69, 65–89. [Google Scholar] [CrossRef]
- Ghanem, M.A.; Basu, A.; Behrou, R.; Boechler, N.; Boydston, A.J.; Craig, S.L.; Lin, Y.; Lynde, B.E.; Nelson, A.; Shen, H.; et al. The Role of Polymer Mechanochemistry in Responsive Materials and Additive Manufacturing. Nat. Rev. Mater. 2020, 6, 84–98. [Google Scholar] [CrossRef]
- Markandan, K.; Lai, C.Q. Fabrication, Properties and Applications of Polymer Composites Additively Manufactured with Filler Alignment Control: A Review. Compos. B Eng. 2023, 256, 110661. [Google Scholar] [CrossRef]
- Cao, X.; Xuan, S.; Gao, Y.; Lou, C.; Deng, H.; Gong, X. 3D Printing Ultraflexible Magnetic Actuators via Screw Extrusion Method. Adv. Sci. 2022, 9, 2200898. [Google Scholar] [CrossRef] [PubMed]
- Mitra, I.; Bose, S.; Dernell, W.S.; Dasgupta, N.; Eckstrand, C.; Herrick, J.; Yaszemski, M.J.; Goodman, S.B.; Bandyopadhyay, A. 3D Printing in Alloy Design to Improve Biocompatibility in Metallic Implants. Mater. Today 2021, 45, 20–34. [Google Scholar] [CrossRef]
- Mazzanti, V.; Malagutti, L.; Mollica, F. FDM 3D Printing of Polymers Containing Natural Fillers: A Review of Their Mechanical Properties. Polymers 2019, 11, 1094. [Google Scholar] [CrossRef]
- Bhatia, A.; Sehgal, A.K. Additive Manufacturing Materials, Methods and Applications: A Review. Mater. Today Proc. 2023, 81, 1060–1067. [Google Scholar] [CrossRef]
- Ilyas, R.A.; Sapuan, S.M.; Harussani, M.M.; Hakimi, M.Y.A.Y.; Haziq, M.Z.M.; Atikah, M.S.N.; Asyraf, M.R.M.; Ishak, M.R.; Razman, M.R.; Nurazzi, N.M.; et al. Polylactic Acid (PLA) Biocomposite: Processing, Additive Manufacturing and Advanced Applications. Polymers 2021, 13, 1326. [Google Scholar] [CrossRef]
- Mahmood, A.; Akram, T.; Chen, H.; Chen, S. On the Evolution of Additive Manufacturing (3D/4D Printing) Technologies: Materials, Applications, and Challenges. Polymers 2022, 14, 4698. [Google Scholar] [CrossRef]
- Park, S.; Shou, W.; Makatura, L.; Matusik, W.; Fu, K. (Kelvin) 3D Printing of Polymer Composites: Materials, Processes, and Applications. Matter 2022, 5, 43–76. [Google Scholar] [CrossRef]
- Kipping, J.; Schüppstuhl, T. Load-Oriented Nonplanar Additive Manufacturing Method for Optimized Continuous Carbon Fiber Parts. Materials 2023, 16, 998. [Google Scholar] [CrossRef] [PubMed]
- Kipping, J.; Kállai, Z.; Schüppstuhl, T. A Set of Novel Procedures for Carbon Fiber Reinforcement on Complex Curved Surfaces Using Multi Axis Additive Manufacturing. Appl. Sci. 2022, 12, 5819. [Google Scholar] [CrossRef]
- Zhu, W.; Fu, L.; Tian, X.; Zhi, Q.; Hou, Z.; Zhang, Z.; Wang, N.; Liu, T.; Sun, H.; Matsuzaki, R.; et al. Three-Dimensional Printing of High-Performance Continuous Fiber-Reinforced Thermoplastic Composites: Causes and Elimination of Process-Induced Defects. Compos. B Eng. 2025, 292, 112080. [Google Scholar] [CrossRef]
- Khan, I.; Barsoum, I.; Abas, M.; Al Rashid, A.; Koç, M.; Tariq, M. A Review of Extrusion-Based Additive Manufacturing of Multi-Materials-Based Polymeric Laminated Structures. Compos. Struct. 2024, 349–350, 118490. [Google Scholar] [CrossRef]
- Ahmed, H.; Hussain, G.; Gohar, S.; Ali, A.; Alkahtani, M. Impact Toughness of Hybrid Carbon Fiber-PLA/ABS Laminar Composite Produced through Fused Filament Fabrication. Polymers 2021, 13, 3057. [Google Scholar] [CrossRef]
- Khan, I.; Tariq, M.; Abas, M.; Shakeel, M.; Hira, F.; Al Rashid, A.; Koç, M. Parametric Investigation and Optimisation of Mechanical Properties of Thick Tri-Material Based Composite of PLA-PETG-ABS 3D-Printed Using Fused Filament Fabrication. Compos. Part C Open Access 2023, 12, 100392. [Google Scholar] [CrossRef]
- Khan, I.; Farooq, U.; Tariq, M.; Abas, M.; Ahmad, S.; Shakeel, M.; Riaz, A.A.; Hira, F. Investigation of Effects of Processing Parameters on the Impact Strength and Microstructure of Thick Tri-Material Based Layered Composite Fabricated via Extrusion Based Additive Manufacturing. J. Eng. Res. 2025, 13, 243–250. [Google Scholar] [CrossRef]
- Azam, M.U.; Belyamani, I.; Schiffer, A.; Kumar, S.; Askar, K. Progress in Selective Laser Sintering Ofmultifunctional Polymer Composites for Strain- and Self-Sensing Applications. J. Mater. Res. Technol. 2024, 30, 9625–9646. [Google Scholar] [CrossRef]
- Li, M.; Yuan, H.; Ding, W.; Du, H.; Guo, X.; Li, D.; Xu, Y. Selective Laser Sintering PLA/Mg Composite Scaffold with Promoted Degradation and Enhanced Mechanical. J. Polym. Environ. 2024, 32, 4302–4314. [Google Scholar] [CrossRef]
- Özbay Kisasöz, B.; Koç, E. Thermoplastic Polymers and Polymer Composites Used in Selective Laser Sintering (SLS) Method. In Springer Handbooks; Part F1592; Springer: Cham, Switzerland, 2023; pp. 585–595. [Google Scholar] [CrossRef]
- Dipta, S.D.; Rahman, M.M.; Ansari, M.J.; Uddin, M.N. A Comprehensive Review of Sustainable and Green Additive Manufacturing: Technologies, Practices, and Future Directions. J. Manuf. Mater. Process. 2025, 9, 269. [Google Scholar] [CrossRef]
- Parvez, M.M.H.; Rahman, M.M.; Ferdush, J.; Al Mohotadi, M.A.; Mondal, J.; Uddin, M.N. State-of-the-Art Nanocomposites: Tailoring Material Properties for next-Generation Applications. Next Res. 2025, 2, 100865. [Google Scholar] [CrossRef]
- Meshram, S.D.; Gupta, S.; Kulthe, M.; Kandasubramanian, B. The Role of Additive Manufacturing in the Study of Carbon Fiber-Reinforced Polymer Composite. Polym. Bull. 2024, 81, 15469–15511. [Google Scholar] [CrossRef]
- Hu, Q.; Duan, Y.; Zhang, H.; Liu, D.; Yan, B.; Peng, F. Manufacturing and 3D Printing of Continuous Carbon Fiber Prepreg Filament. J. Mater. Sci. 2018, 53, 1887–1898. [Google Scholar] [CrossRef]
- Qiao, J.; Li, Y.; Li, L. Ultrasound-Assisted 3D Printing of Continuous Fiber-Reinforced Thermoplastic (FRTP) Composites. Addit. Manuf. 2019, 30, 100926. [Google Scholar] [CrossRef]
- Uşun, A.; Gümrük, R. The Mechanical Performance of the 3D Printed Composites Produced with Continuous Carbon Fiber Reinforced Filaments Obtained via Melt Impregnation. Addit. Manuf. 2021, 46, 102112. [Google Scholar] [CrossRef]
- Parandoush, P.; Lin, D. A Review on Additive Manufacturing of Polymer-Fiber Composites. Compos. Struct. 2017, 182, 36–53. [Google Scholar] [CrossRef]
- Pan, L.; Yapici, U. A Comparative Study on Mechanical Properties of Carbon Fiber/PEEK Composites. Adv. Compos. Mater. 2016, 25, 359–374. [Google Scholar] [CrossRef]
- Zhang, Z.; Long, Y.; Yang, Z.; Fu, K.; Li, Y. An Investigation into Printing Pressure of 3D Printed Continuous Carbon Fiber Reinforced Composites. Compos. Part A Appl. Sci. Manuf. 2022, 162, 107162. [Google Scholar] [CrossRef]
- Kabir, S.M.F.; Mathur, K.; Seyam, A.F.M. A Critical Review on 3D Printed Continuous Fiber-Reinforced Composites: History, Mechanism, Materials and Properties. Compos. Struct. 2020, 232, 111476. [Google Scholar] [CrossRef]
- Cheng, P.; Peng, Y.; Li, S.; Rao, Y.; Le Duigou, A.; Wang, K.; Ahzi, S. 3D Printed Continuous Fiber Reinforced Composite Lightweight Structures: A Review and Outlook. Compos. B Eng. 2023, 250, 110450. [Google Scholar] [CrossRef]
- Tian, X.; Todoroki, A.; Liu, T.; Wu, L.; Hou, Z.; Ueda, M.; Hirano, Y.; Matsuzaki, R.; Mizukami, K.; Iizuka, K.; et al. 3D Printing of Continuous Fiber Reinforced Polymer Composites: Development, Application, and Prospective. Chin. J. Mech. Eng. Addit. Manuf. Front. 2022, 1, 100016. [Google Scholar] [CrossRef]
- Ueda, M.; Kishimoto, S.; Yamawaki, M.; Matsuzaki, R.; Todoroki, A.; Hirano, Y.; Le Duigou, A. 3D Compaction Printing of a Continuous Carbon Fiber Reinforced Thermoplastic. Compos. Part A Appl. Sci. Manuf. 2020, 137, 105985. [Google Scholar] [CrossRef]
- Zhang, J.; Zhou, Z.; Zhang, F.; Tan, Y.; Tu, Y.; Yang, B. Performance of 3D-Printed Continuous-Carbon-Fiber-Reinforced Plastics with Pressure. Materials 2020, 13, 471. [Google Scholar] [CrossRef]
- Li, N.; Link, G.; Jelonnek, J. Rapid 3D Microwave Printing of Continuous Carbon Fiber Reinforced Plastics. CIRP Ann. 2020, 69, 221–224. [Google Scholar] [CrossRef]
- Yiwen, T.; Yuegang, T.; Fan, Z.; Jun, Z. Laser Assisted Rapid 3D Printing of Continuous Carbon Fiber Reinforced Plastics: Simulation, Characterization, and Properties. Polym. Compos. 2023, 44, 3084–3094. [Google Scholar] [CrossRef]
- Tu, Y.; Tan, Y.; Zhang, F.; Zou, S.; Zhang, J. High-Throughput Additive Manufacturing of Continuous Carbon Fiber-Reinforced Plastic by Multifilament. Polymers 2024, 16, 704. [Google Scholar] [CrossRef] [PubMed]
- Ramanathan, A.; Thippanna, V.; Kumar, A.S.; Sundaravadivelan, B.; Zhu, Y.; Ravichandran, D.; Yang, S.; Song, K. Highly Loaded Carbon Fiber Filaments for 3D-Printed Composites. J. Polym. Sci. 2024, 62, 2670–2682. [Google Scholar] [CrossRef]
- Shi, J.; Liu, S.; Zhang, L.; Yang, B.; Shu, L.; Yang, Y.; Ren, M.; Wang, Y.; Chen, J.; Chen, W.; et al. Smart Textile-Integrated Microelectronic Systems for Wearable Applications. Adv. Mater. 2020, 32, 1901958. [Google Scholar] [CrossRef]
- Hsissou, R.; Seghiri, R.; Benzekri, Z.; Hilali, M.; Rafik, M.; Elharfi, A. Polymer Composite Materials: A Comprehensive Review. Compos. Struct. 2021, 262, 113640. [Google Scholar] [CrossRef]
- Karatas, E.; Gul, O.; Karsli, N.G.; Yilmaz, T. Synergetic Effect of Graphene Nanoplatelet, Carbon Fiber and Coupling Agent Addition on the Tribological, Mechanical and Thermal Properties of Polyamide 6,6 Composites. Compos. B Eng. 2019, 163, 730–739. [Google Scholar] [CrossRef]
- Badogu, K.; Kumar, R.; Kumar, R. 3D Printing of Glass Fiber-Reinforced Polymeric Composites: A Review. J. Inst. Eng. Ser. C 2022, 103, 1285–1301. [Google Scholar] [CrossRef]
- Goh, G.D.; Dikshit, V.; Nagalingam, A.P.; Goh, G.L.; Agarwala, S.; Sing, S.L.; Wei, J.; Yeong, W.Y. Characterization of Mechanical Properties and Fracture Mode of Additively Manufactured Carbon Fiber and Glass Fiber Reinforced Thermoplastics. Mater. Des. 2018, 137, 79–89. [Google Scholar] [CrossRef]
- Mei, H.; Ali, Z.; Ali, I.; Cheng, L. Tailoring Strength and Modulus by 3D Printing Different Continuous Fibers and Filled Structures into Composites. Adv. Compos. Hybrid Mater. 2019, 2, 312–319. [Google Scholar] [CrossRef]
- Sanei, S.H.R.; Arndt, A.; Doles, R. Open Hole Tensile Testing of 3D Printed Continuous Carbon Fiber Reinforced Composites. J. Compos. Mater. 2020, 54, 2687–2695. [Google Scholar] [CrossRef]
- Stoia, D.I.; Marsavina, L.; Linul, E. Correlations between Process Parameters and Outcome Properties of Laser-Sintered Polyamide. Polymers 2019, 11, 1850. [Google Scholar] [CrossRef] [PubMed]
- Verschatse, O.; Daelemans, L.; Van Paepegem, W.; De Clerck, K. In-Situ Observations of Microscale Ductility in a Quasi-Brittle Bulk Scale Epoxy. Polymers 2020, 12, 2581. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Ladani, R.B.; Brandt, M.; Li, Y.; Mouritz, A.P. Carbon Fibre Damage during 3D Printing of Polymer Matrix Laminates Using the FDM Process. Mater. Des. 2021, 205, 109679. [Google Scholar] [CrossRef]
- Rijckaert, S.; Daelemans, L.; Cardon, L.; Boone, M.; Van Paepegem, W.; De Clerck, K. Continuous Fiber-Reinforced Aramid/PETG 3D-Printed Composites with High Fiber Loading through Fused Filament Fabrication. Polymers 2022, 14, 298. [Google Scholar] [CrossRef] [PubMed]
- Ilyas, R.A.; Aisyah, H.A.; Nordin, A.H.; Ngadi, N.; Zuhri, M.Y.M.; Asyraf, M.R.M.; Sapuan, S.M.; Zainudin, E.S.; Sharma, S.; Abral, H.; et al. Natural-Fiber-Reinforced Chitosan, Chitosan Blends and Their Nanocomposites for Various Advanced Applications. Polymers 2022, 14, 874. [Google Scholar] [CrossRef]
- Soleimanzadeh, H.; Rolfe, B.; Bodaghi, M.; Jamalabadi, M.; Zhang, X.; Zolfagharian, A. Sustainable Robots 4D Printing. Adv. Sustain. Syst. 2023, 7, 2300289. [Google Scholar] [CrossRef]
- Siddiqui, S.; Surananai, S.; Sainath, K.; Zubair Khan, M.; Raja Pandiyan Kuppusamy, R.; Kempaiah Suneetha, Y. Emerging Trends in Development and Application of 3D Printed Nanocomposite Polymers for Sustainable Environmental Solutions. Eur. Polym. J. 2023, 196, 112298. [Google Scholar] [CrossRef]
- Torrado Perez, A.R.; Roberson, D.A.; Wicker, R.B. Fracture surface analysis of 3D-printed tensile specimens of novel ABS-based materials. J. Fail. Anal. Prev. 2014, 14, 343–353. [Google Scholar] [CrossRef]
- Li, M.; Pu, Y.; Thomas, V.M.; Yoo, C.G.; Ozcan, S.; Deng, Y.; Nelson, K.; Ragauskas, A.J. Recent Advancements of Plant-Based Natural Fiber–Reinforced Composites and Their Applications. Compos. B Eng. 2020, 200, 108254. [Google Scholar] [CrossRef]
- Sam-Daliri, O.; Ghabezi, P.; Steinbach, J.; Flanagan, T.; Finnegan, W.; Mitchell, S.; Harrison, N. Experimental Study on Mechanical Properties of Material Extrusion Additive Manufactured Parts from Recycled Glass Fibre-Reinforced Polypropylene Composite. Compos. Sci. Technol. 2023, 241, 110125. [Google Scholar] [CrossRef]
- Balla, V.K.; Tadimeti, J.G.D.; Kate, K.H.; Satyavolu, J. 3D Printing of Modified Soybean Hull Fiber/Polymer Composites. Mater. Chem. Phys. 2020, 254, 123452. [Google Scholar] [CrossRef]
- Patti, A.; Cicala, G.; Acierno, D. Eco-Sustainability of the Textile Production: Waste Recovery and Current Recycling in the Composites World. Polymers 2021, 13, 134. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Lawal, T.; Rodrigues, M.M.; Geib, T.; Vodovotz, Y. Value-Added Use of Invasive Plant-Derived Fibers as PHBV Fillers for Biocomposite Development. Polymers 2021, 13, 1975. [Google Scholar] [CrossRef]
- Shah, N.; Fehrenbach, J.; Ulven, C.A. Hybridization of Hemp Fiber and Recycled-Carbon Fiber in Polypropylene Composites. Sustainability 2019, 11, 3163. [Google Scholar] [CrossRef]
- Aravindh, M.; Sathish, S.; Ranga Raj, R.; Karthick, A.; Mohanavel, V.; Patil, P.P.; Muhibbullah, M.; Osman, S.M. A Review on the Effect of Various Chemical Treatments on the Mechanical Properties of Renewable Fiber-Reinforced Composites. Adv. Mater. Sci. Eng. 2022, 2022, 2009691. [Google Scholar] [CrossRef]
- Alao, P.F.; Press, R.; Ruponen, J.; Mikli, V.; Kers, J. Influence of Protic Ionic Liquid-Based Flame Retardant on the Flammability and Water Sorption of Alkalized Hemp Fiber-Reinforced PLA Composites. Polymers 2023, 15, 3661. [Google Scholar] [CrossRef]
- Khilji, I.A.; Chilakamarry, C.R.; Surendran, A.N.; Kate, K.; Satyavolu, J. Natural Fiber Composite Filaments for Additive Manufacturing: A Comprehensive Review. Sustainability 2023, 15, 16171. [Google Scholar] [CrossRef]
- Nor, M.A.M.; Sapuan, S.M.; Yusoff, M.Z.M.; Zainudin, E.S. Mechanical, Thermal and Morphological Properties of Woven Kenaf Fiber Reinforced Polylactic Acid (PLA) Composites. Fibers Polym. 2022, 23, 2875–2884. [Google Scholar] [CrossRef]
- Radzuan, N.A.M.; Tholibon, D.; Sulong, A.B.; Muhamad, N.; Haron, C.H.C. Effects of High-Temperature Exposure on the Mechanical Properties of Kenaf Composites. Polymers 2020, 12, 1643. [Google Scholar] [CrossRef] [PubMed]
- Sahayaraj, A.F.; Muthukrishnan, M.; Ramesh, M.; Rajeshkumar, L. Effect of Hybridization on Properties of Tamarind (Tamarindus indica L.) Seed Nano-Powder Incorporated Jute-Hemp Fibers Reinforced Epoxy Composites. Polym. Compos. 2021, 42, 6611–6620. [Google Scholar] [CrossRef]
- Selver, E.; Ucar, N.; Gulmez, T. Effect of Stacking Sequence on Tensile, Flexural and Thermomechanical Properties of Hybrid Flax/Glass and Jute/Glass Thermoset Composites. J. Ind. Text. 2018, 48, 494–520. [Google Scholar] [CrossRef]
- He, L.; Xia, F.; Chen, D.; Peng, S.; Hou, S.; Zheng, J. Optimization of Molding Process Parameters for Enhancing Mechanical Properties of Jute Fiber Reinforced Composites. J. Reinf. Plast. Compos. 2023, 42, 446–454. [Google Scholar] [CrossRef]
- Junio, R.F.P.; Fontes, J.C.F.; Silva, D.S.; de Cêa, B.S.A.; Monteiro, S.N.; Nascimento, L.F.C. Thermal and Chemical Characterization of Digital Light Processing (DLP)-Manufactured Polymer Composites Reinforced with Jute Fibers. Polymers 2025, 17, 1504. [Google Scholar] [CrossRef]
- Rytlewski, P.; Gohs, U.; Stepczyńska, M.; Malinowski, R.; Karasiewicz, T.; Moraczewski, K. Electron-Induced Structural Changes in Flax Fiber Reinforced PLA/PCL Composites, Analyzed Using the Rule of Mixtures. Ind. Crops Prod. 2022, 188, 115587. [Google Scholar] [CrossRef]
- Georgiopoulos, P.; Kontou, E.; Georgousis, G. Effect of Silane Treatment Loading on the Flexural Properties of PLA/Flax Unidirectional Composites. Compos. Commun. 2018, 10, 6–10. [Google Scholar] [CrossRef]
- Ramanan, G.; Isaac, R.R.S.R.; Suresh, S.; Singh, P.; Paavana, M.; Sneha, S.K.; Vinodhini, A.; Arputharaj, B.S.; Singh, S.; Varshney, D.; et al. Exploration and Characterization of Biodegradable Hybrid Composites Reinforced with Areca Leaf Sheath Fiber and Tamarind Seed Powder. Results Eng. 2025, 25, 104474. [Google Scholar] [CrossRef]
- Alao, P.F.; Marrot, L.; Burnard, M.D.; Lavrič, G.; Saarna, M.; Kers, J. Impact of Alkali and Silane Treatment on Hemp/PLA Composites’ Performance: From Micro to Macro Scale. Polymers 2021, 13, 851. [Google Scholar] [CrossRef]
- Dayo, A.Q.; Babar, A.A.; Qin, Q.; Kiran, S.; Wang, J.; Shah, A.H.; Zegaoui, A.; Ghouti, H.A.; Liu, W. bin Effects of Accelerated Weathering on the Mechanical Properties of Hemp Fibre/Polybenzoxazine Based Green Composites. Compos. Part A Appl. Sci. Manuf. 2020, 128, 105653. [Google Scholar] [CrossRef]
- Seculi, F.; Espinach, F.X.; Julián, F.; Delgado-Aguilar, M.; Mutjé, P.; Tarrés, Q. Evaluation of the Interface Strength in the Abaca-Fiber-Reinforced Bio-Polyethylene Composites. Polymers 2023, 15, 2686. [Google Scholar] [CrossRef] [PubMed]
- Seculi, F.; Espinach, F.X.; Julián, F.; Delgado-Aguilar, M.; Mutjé, P.; Tarrés, Q. Evaluation of the Strength of the Interface for Abaca Fiber Reinforced Hdpe and Biope Composite Materials, and Its Influence over Tensile Properties. Polymers 2022, 14, 5412. [Google Scholar] [CrossRef]
- Haque, M.; Rahman, R.; Islam, N.; Huque, M.; Hasan, M. Mechanical Properties of Polypropylene Composites Reinforced with Chemically Treated Coir and Abaca Fiber. J. Reinf. Plast. Compos. 2010, 29, 2253–2261. [Google Scholar] [CrossRef]
- Hasan, K.M.F.; Horváth, P.G.; Kóczán, Z.; Alpár, T. Thermo-Mechanical Properties of Pretreated Coir Fiber and Fibrous Chips Reinforced Multilayered Composites. Sci. Rep. 2021, 11, 3618. [Google Scholar] [CrossRef]
- Bensalah, H.; Raji, M.; Abdellaoui, H.; Essabir, H.; Bouhfid, R.; Qaiss, A. el kacem Thermo-Mechanical Properties of Low-Cost “Green” Phenolic Resin Composites Reinforced with Surface Modified Coir Fiber. Int. J. Adv. Manuf. Technol. 2021, 112, 1917–1930. [Google Scholar] [CrossRef]
- Kasraie, M.; Pour Shahid Saeed Abadi, P. Additive Manufacturing of Conductive and High-Strength Epoxy-Nanoclay-Carbon Nanotube Composites. Addit. Manuf. 2021, 46, 102098. [Google Scholar] [CrossRef]
- Ponnamma, D.; Yin, Y.; Salim, N.; Parameswaranpillai, J.; Thomas, S.; Hameed, N. Recent Progress and Multifunctional Applications of 3D Printed Graphene Nanocomposites. Compos. B Eng. 2021, 204, 108493. [Google Scholar] [CrossRef]
- Pinargote, N.W.S.; Smirnov, A.; Peretyagin, N.; Seleznev, A.; Peretyagin, P. Direct Ink Writing Technology (3D Printing) of Graphene-Based Ceramic Nanocomposites: A Review. Nanomaterials 2020, 10, 1300. [Google Scholar] [CrossRef] [PubMed]
- Ertugrul, I. The Fabrication of Micro Beam from Photopolymer by Digital Light Processing 3D Printing Technology. Micromachines 2020, 11, 518. [Google Scholar] [CrossRef]
- Zhao, X.; Wang, T. Laser powder bed fusion of powder material: A review. 3D Print. Addit. Manuf. 2023, 10, 1439–1454. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; An, C.; Guo, Y. 3D Printed Graphene and Graphene/Polymer Composites for Multifunctional Applications. Materials 2023, 16, 5681. [Google Scholar] [CrossRef]
- Xu, W.; Jambhulkar, S.; Zhu, Y.; Ravichandran, D.; Kakarla, M.; Vernon, B.; Lott, D.G.; Cornella, J.L.; Shefi, O.; Miquelard-Garnier, G.; et al. 3D Printing for Polymer/Particle-Based Processing: A Review. Compos. B Eng. 2021, 223, 109102. [Google Scholar] [CrossRef]
- Valot, L.; Martinez, J.; Mehdi, A.; Subra, G. Chemical Insights into Bioinks for 3D Printing. Chem. Soc. Rev. 2019, 48, 4049–4086. [Google Scholar] [CrossRef]
- Yu, C.; Schimelman, J.; Wang, P.; Miller, K.L.; Ma, X.; You, S.; Guan, J.; Sun, B.; Zhu, W.; Chen, S. Photopolymerizable Biomaterials and Light-Based 3D Printing Strategies for Biomedical Applications. Chem. Rev. 2020, 120, 10695–10743. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Wu, X.; Chen, Y.; Yang, C.; Yang, R.; Tan, J.; Liu, Y.; Qiu, L.; Cheng, H.M. 3D Printed Template-Directed Assembly of Multiscale Graphene Structures. Adv. Funct. Mater. 2022, 32, 2105879. [Google Scholar] [CrossRef]
- Yuan, Y.; Liu, B.; Li, H.; Li, M.; Song, Y.; Wang, R.; Wang, T.; Zhang, H. Flexible Wearable Sensors in Medical Monitoring. Biosensors 2022, 12, 1069. [Google Scholar] [CrossRef]
- Alam, M.N. Advances in Functional Rubber and Elastomer Composites. Polymers 2024, 16, 1726. [Google Scholar] [CrossRef]
- Souri, H.; Banerjee, H.; Jusufi, A.; Radacsi, N.; Stokes, A.A.; Park, I.; Sitti, M.; Amjadi, M. Wearable and Stretchable Strain Sensors: Materials, Sensing Mechanisms, and Applications. Adv. Intell. Syst. 2020, 2, 2000039. [Google Scholar] [CrossRef]
- Sanderson, K. Electronic Skin: From Flexibility to a Sense of Touch. Nature 2021, 591, 685–687. [Google Scholar] [CrossRef] [PubMed]
- Alam, M.N.; Choi, J. Highly Reinforced Magneto-Sensitive Natural-Rubber Nanocomposite Using Iron Oxide/Multilayer Graphene as Hybrid Filler. Compos. Commun. 2022, 32, 101169. [Google Scholar] [CrossRef]
- Alam, M.N.; Kumar, V.; Lee, D.J.; Choi, J. Synergistically Toughened Silicone Rubber Nanocomposites Using Carbon Nanotubes and Molybdenum Disulfide for Stretchable Strain Sensors. Compos. B Eng. 2023, 259, 110759. [Google Scholar] [CrossRef]
- Kazmer, D.O.; Kodra, S.; Mubasshir, A.A.; Keaney, E.E.; Mead, J.L. Additive Ram Material Extrusion and Diddling of Fully Compounded Thermoset Nitrile Rubber. Polym. Compos. 2021, 42, 5237–5248. [Google Scholar] [CrossRef]
- Justino Netto, J.M.; Idogava, H.T.; Frezzatto Santos, L.E.; de Castro Silveira, Z.; Romio, P.; Alves, J.L. Screw-Assisted 3D Printing with Granulated Materials: A Systematic Review. Int. J. Adv. Manuf. Technol. 2021, 115, 2711–2727. [Google Scholar] [CrossRef]
- Leineweber, S.; Sundermann, L.; Bindszus, L.; Overmeyer, L.; Klie, B.; Wittek, H.; Giese, U. Additive Manufacturing and Vulcanization of Carbon Black–Filled Natural Rubber–Based Components. Rubber Chem. Technol. 2022, 95, 46–57. [Google Scholar] [CrossRef]
- Yang, L.; Ou, Z.; Jiang, G. Research Progress of Elastomer Materials and Application of Elastomers in Drilling Fluid. Polymers 2023, 15, 918. [Google Scholar] [CrossRef]
- Drossel, W.-G.; Ihlemann, J.; Landgraf, R.; Oelsch, E.; Schmidt, M. Basic Research for Additive Manufacturing of Rubber. Polymers 2020, 12, 2266. [Google Scholar] [CrossRef]
- Akhil, M.G.; Arsha, A.G.; Manoj, V.; Rajan, T.P.D.; Pai, B.C.; Huber, P.; Gries, T. Metal Fiber Reinforced Composites. In Fiber Reinforced Composites: Constituents, Compatibility, Perspectives, and Applications; Woodhead Publishing: Cambridge, UK, 2021; pp. 479–513. [Google Scholar] [CrossRef]
- Fayzulla, B.J.; Eroglu, M.; Qader, I.N. Multifunctional Properties of Metal Fibers Reinforced Polymer Composites—A Review. Mech. Adv. Compos. Struct. 2024, 11, 217–230. [Google Scholar] [CrossRef]
- Qu, X.H.; Zhang, L.; Wu, M.; Ren, S. Bin Review of Metal Matrix Composites with High Thermal Conductivity for Thermal Management Applications. Prog. Nat. Sci. Mater. Int. 2011, 21, 189–197. [Google Scholar] [CrossRef]
- Abderrafai, Y.; Hadi Mahdavi, M.; Sosa-Rey, F.; Hérard, C.; Otero Navas, I.; Piccirelli, N.; Lévesque, M.; Therriault, D. Additive Manufacturing of Short Carbon Fiber-Reinforced Polyamide Composites by Fused Filament Fabrication: Formulation, Manufacturing and Characterization. Mater. Des. 2022, 214, 110358. [Google Scholar] [CrossRef]
- Hmeidat, N.S.; Elkins, D.S.; Peter, H.R.; Kumar, V.; Compton, B.G. Processing and Mechanical Characterization of Short Carbon Fiber-Reinforced Epoxy Composites for Material Extrusion Additive Manufacturing. Compos. B Eng. 2021, 223, 109122. [Google Scholar] [CrossRef]
- Wickramasinghe, S.; Do, T.; Tran, P. FDM-Based 3D Printing of Polymer and Associated Composite: A Review on Mechanical Properties, Defects and Treatments. Polymers 2020, 12, 1529. [Google Scholar] [CrossRef] [PubMed]
- Ashebir, D.A.; Hendlmeier, A.; Dunn, M.; Arablouei, R.; Lomov, S.V.; Di Pietro, A.; Nikzad, M. Detecting Multi-Scale Defects in Material Extrusion Additive Manufacturing of Fiber-Reinforced Thermoplastic Composites: A Review of Challenges and Advanced Non-Destructive Testing Techniques. Polymers 2024, 16, 2986. [Google Scholar] [CrossRef]
- Mohanty, D.P.; Arnold, B.J.; Chandrasekar, S.; Mann, J.B. Additive Manufacturing of Metal Micro-Fiber Reinforced Polymer Composites: Processing, Mechanical Properties, and Laminate Behavior. Mater. Des. 2025, 260, 114962. [Google Scholar] [CrossRef]
- Moradi, M.; Mehrabi, O.; Rasoul, F.A.; Mattie, A.A.; Schaber, F.; Khandan, R. Enhancing 3D Printing Copper-PLA Composite Fabrication via Fused Deposition Modeling through Statistical Process Parameter Study. Micromachines 2024, 15, 1082. [Google Scholar] [CrossRef]
- Kumaresan, R.; Kottasamy, A.; Mogan, J.; Sandanamsamy, L.; Samykano, M.; Kadirgama, K.; Harun, W.S.W. Preliminary Investigation on the Tensile Properties of FDM Printed PLA/ Copper Composite. Mater. Today Proc. 2024, 109, 87–92. [Google Scholar] [CrossRef]
- Gupta, V.; Bankapalli, N.K.; Saxena, P.; Bajpai, A.; Ruan, D. Additive Manufacturing of Fiber-Reinforced Polymer Matrix Composites through Material Extrusion: A Comprehensive Review on Filament Fabrication, Printing, Testing Methods, Applications, and Challenges. Adv. Eng. Mater. 2025, 2500676. [Google Scholar] [CrossRef]
- Hu, W.H.; Chen, T.T.; Tamura, R.; Terayama, K.; Wang, S.; Watanabe, I.; Naito, M. Topological Alternation from Structurally Adaptable to Mechanically Stable Crosslinked Polymer. Sci. Technol. Adv. Mater. 2022, 23, 66–75. [Google Scholar] [CrossRef]
- Flint, Z.; Grannemann, H.; Baffour, K.; Koti, N.; Taylor, E.; Grier, E.; Sutton, C.; Johnson, D.; Dandawate, P.; Patel, R.; et al. Mechanistic Insights Behind the Self-Assembly of Human Insulin under the Influence of Surface-Engineered Gold Nanoparticles. ACS Chem. Neurosci. 2024, 15, 2359–2371. [Google Scholar] [CrossRef]
- Goodson, A.D.; Rick, M.S.; Troxler, J.E.; Ashbaugh, H.S.; Albert, J.N.L. Blending Linear and Cyclic Block Copolymers to Manipulate Nanolithographic Feature Dimensions. ACS Appl. Polym. Mater. 2022, 4, 327–337. [Google Scholar] [CrossRef] [PubMed]
- Mohd, A.; Baba, N.B.; Umor, M.Z.; Mohamed, R.M. Composites of Polymer Blends and Their Applications Using Natural Fibres: A Review. IOP Conf. Ser. Mater. Sci. Eng. 2021, 1068, 012006. [Google Scholar] [CrossRef]
- Huang, Y.; Kormakov, S.; He, X.; Gao, X.; Zheng, X.; Liu, Y.; Sun, J.; Wu, D. Conductive Polymer Composites from Renewable Resources: An Overview of Preparation, Properties, and Applications. Polymers 2019, 11, 187. [Google Scholar] [CrossRef]
- Tan, L.J.; Zhu, W.; Zhou, K. Recent Progress on Polymer Materials for Additive Manufacturing. Adv. Funct. Mater. 2020, 30, 2003062. [Google Scholar] [CrossRef]
- Jingcheng, L.; Reddy, V.S.; Jayathilaka, W.A.D.M.; Chinnappan, A.; Ramakrishna, S.; Ghosh, R. Intelligent Polymers, Fibers and Applications. Polymers 2021, 13, 1427. [Google Scholar] [CrossRef]
- Oladele, I.O.; Omotosho, T.F.; Adediran, A.A. Polymer-Based Composites: An Indispensable Material for Present and Future Applications. Int. J. Polym. Sci. 2020, 2020, 8834518. [Google Scholar] [CrossRef]
- Samir, A.; Ashour, F.H.; Hakim, A.A.A.; Bassyouni, M. Recent Advances in Biodegradable Polymers for Sustainable Applications. npj Mater. Degrad. 2022, 6, 68. [Google Scholar] [CrossRef]
- Mohiuddin, M.; Rahman, M.M.; Uddin, M.N.; Hasan, R.; Rahman, I. Biodegradable Graphene Nanocomposites as Functional Biomaterials: A Review of Their Role in Controlled Drug Delivery and Tissue Engineering. RSC Adv. 2025, 15, 45387–45416. [Google Scholar] [CrossRef] [PubMed]
- Norrrahim, M.N.F.; Nurazzi, N.M.; Shazleen, S.S.; Najmuddin, S.U.F.S.; Yasim-Anuar, T.A.T.; Naveen, J.; Ilyas, R.A. Biocompatibility, Biodegradability, and Environmental Safety of PLA/Cellulose Composites. In Polylactic Acid-Based Nanocellulose and Cellulose Composites; CRC Press: Boca Raton, FL, USA, 2022; pp. 251–264. [Google Scholar] [CrossRef]
- Idumah, C.I. Poly (α-Caprolactone) (PCL) Biopolymeric Bionanoarchitectures for Tissue Engineering Applications. Int. J. Polym. Mater. Polym. Biomater. 2025, 74, 733–762. [Google Scholar] [CrossRef]
- Bernard, M.; Jubeli, E.; Pungente, M.D.; Yagoubi, N. Biocompatibility of Polymer-Based Biomaterials and Medical Devices—Regulations, in Vitro Screening and Risk-Management. Biomater. Sci. 2018, 6, 2025–2053. [Google Scholar] [CrossRef]
- Trucillo, P. Biomaterials for Drug Delivery and Human Applications. Materials 2024, 17, 456. [Google Scholar] [CrossRef]
- Corcione, C.E.; Gervaso, F.; Scalera, F.; Montagna, F.; Maiullaro, T.; Sannino, A.; Maffezzoli, A. 3D Printing of Hydroxyapatite Polymer-Based Composites for Bone Tissue Engineering. J. Polym. Eng. 2017, 37, 741–746. [Google Scholar] [CrossRef]
- Paneer Selvam, S.; Ayyappan, S.; I Jamir, S.; Sellappan, L.K.; Manoharan, S. Recent Advancements of Hydroxyapatite and Polyethylene Glycol (PEG) Composites for Tissue Engineering Applications—A Comprehensive Review. Eur. Polym. J. 2024, 215, 113226. [Google Scholar] [CrossRef]
- Meng, H.; Li, G. A Review of Stimuli-Responsive Shape Memory Polymer Composites. Polymer 2013, 54, 2199–2221. [Google Scholar] [CrossRef]
- Mirabedini, A.; Ang, A.; Nikzad, M.; Fox, B.; Lau, K.T.; Hameed, N. Evolving Strategies for Producing Multiscale Graphene-Enhanced Fiber-Reinforced Polymer Composites for Smart Structural Applications. Adv. Sci. 2020, 7, 1903501. [Google Scholar] [CrossRef]
- Nurazzi, N.M.; Sabaruddin, F.A.; Harussani, M.M.; Kamarudin, S.H.; Rayung, M.; Asyraf, M.R.M.; Aisyah, H.A.; Norrrahim, M.N.F.; Ilyas, R.A.; Abdullah, N.; et al. Mechanical Performance and Applications of CNTs Reinforced Polymer Composites—A Review. Nanomaterials 2021, 11, 2186. [Google Scholar] [CrossRef] [PubMed]
- Boudjellal, A.; Trache, D.; Khimeche, K.; Hafsaoui, S.L.; Bougamra, A.; Tcharkhtchi, A.; Durastanti, J.F. Stimulation and Reinforcement of Shape-Memory Polymers and Their Composites: A Review. J. Thermoplast. Compos. Mater. 2022, 35, 2227–2260. [Google Scholar] [CrossRef]
- Dayyoub, T.; Maksimkin, A.V.; Filippova, O.V.; Tcherdyntsev, V.V.; Telyshev, D.V. Shape Memory Polymers as Smart Materials: A Review. Polymers 2022, 14, 3511. [Google Scholar] [CrossRef] [PubMed]
- Luo, X.; Wu, Y.; Guo, M.; Yang, X.; Xie, L.; Lai, J.; Li, Z.; Zhou, H. Multi-Functional Polyurethane Composites with Self-Healing and Shape Memory Properties Enhanced by Graphene Oxide. J. Appl. Polym. Sci. 2021, 138, 50827. [Google Scholar] [CrossRef]
- Basak, S.; Bandyopadhyay, A. Solvent Responsive Shape Memory Polymers- Evolution, Current Status, and Future Outlook. Macromol. Chem. Phys. 2021, 222, 2100195. [Google Scholar] [CrossRef]
- Maksimkin, A.V.; Dayyoub, T.; Telyshev, D.V.; Gerasimenko, A.Y. Electroactive Polymer-Based Composites for Artificial Muscle-like Actuators: A Review. Nanomaterials 2022, 12, 2272. [Google Scholar] [CrossRef] [PubMed]
- Chang, S.M.; Hur, S.; Park, J.; Lee, D.G.; Shin, J.; Kim, H.S.; Song, S.E.; Baik, J.M.; Kim, M.; Song, H.C.; et al. Optimization of Piezoelectric Polymer Composites and 3D Printing Parameters for Flexible Tactile Sensors. Addit. Manuf. 2023, 67, 103470. [Google Scholar] [CrossRef]
- Okhay, O.; Tkach, A. Current Achievements in Flexible Piezoelectric Nanogenerators Based on Barium Titanate. Nanomaterials 2023, 13, 988. [Google Scholar] [CrossRef]
- Bouhamed, A.; Jöhrmann, N.; Naifar, S.; Böhm, B.; Hellwig, O.; Wunderle, B.; Kanoun, O. Collaborative Filler Network for Enhancing the Performance of BaTiO3/PDMS Flexible Piezoelectric Polymer Composite Nanogenerators. Sensors 2022, 22, 4181. [Google Scholar] [CrossRef]
- Huang, Z.X.; Li, L.W.; Huang, Y.Z.; Rao, W.X.; Jiang, H.W.; Wang, J.; Zhang, H.H.; He, H.Z.; Qu, J.P. Self-Poled Piezoelectric Polymer Composites via Melt-State Energy Implantation. Nat. Commun. 2024, 15, 819. [Google Scholar] [CrossRef] [PubMed]
- Bouhamed, A.; Missaoui, S.; Ben Ayed, A.; Attaoui, A.; Missaoui, D.; Jeder, K.; Guesmi, N.; Njeh, A.; Khemakhem, H.; Kanoun, O. A Comprehensive Review of Strategies toward Efficient Flexible Piezoelectric Polymer Composites Based on BaTiO3 for Next-Generation Energy Harvesting. Energies 2024, 17, 4066. [Google Scholar] [CrossRef]
- Idumah, C.I. Recent Advancements in Self-Healing Polymers, Polymer Blends, and Nanocomposites. Polym. Polym. Compos. 2021, 29, 246–258. [Google Scholar] [CrossRef]
- Srivastav, R.S.; More, A.P. A Comprehensive Review of Self-Healing Polymers: Mechanisms, Types, and Industry Implications. Polym. Adv. Technol. 2025, 36, e70092. [Google Scholar] [CrossRef]
- Dzhardimalieva, G.I.; Yadav, B.C.; Uflyand, I.E.; Oliva González, C.M.; Kharisov, B.I.; Kharissova, O.V.; García, B.O. A Review on the Polymers with Shape Memory Assisted Self-Healing Properties for Triboelectric Nanogenerators. J. Mater. Res. 2021, 36, 1225–1240. [Google Scholar] [CrossRef]
- Irzhak, V.I.; Uflyand, I.E.; Dzhardimalieva, G.I. Self-Healing of Polymers and Polymer Composites. Polymers 2022, 14, 5404. [Google Scholar] [CrossRef]
- Utrera-Barrios, S.; Verdejo, R.; López-Manchado, M.A.; Hernández Santana, M. Evolution of Self-Healing Elastomers, from Extrinsic to Combined Intrinsic Mechanisms: A Review. Mater. Horiz. 2020, 7, 2882–2902. [Google Scholar] [CrossRef]
- Kontiza, A.; Kartsonakis, I.A. Smart Composite Materials with Self-Healing Properties: A Review on Design and Applications. Polymers 2024, 16, 2115. [Google Scholar] [CrossRef]
- Tian, K.; Hu, D.; Wei, Q.; Fu, Q.; Deng, H. Recent Progress on Multifunctional Electromagnetic Interference Shielding Polymer Composites. J. Mater. Sci. Technol. 2023, 134, 106–131. [Google Scholar] [CrossRef]
- Kruželák, J.; Kvasničáková, A.; Hložeková, K.; Hudec, I. Progress in Polymers and Polymer Composites Used as Efficient Materials for EMI Shielding. Nanoscale Adv. 2021, 3, 123–172. [Google Scholar] [CrossRef]
- Al-Saleh, M.H.; Al-Sharman, M.M. Influence of Carbon Nanofiller Geometry on EMI Shielding and Electrical Percolation Behaviors of Polymer Composites. Synth. Met. 2023, 294, 117314. [Google Scholar] [CrossRef]
- Pornea, A.G.M.; Choi, K.I.; Jung, J.H.; Hanif, Z.; Kwak, C.; Kim, J. Enhancement of Isotropic Heat Dissipation of Polymer Composites by Using Ternary Filler Systems Consisting of Boron Nitride Nanotubes, h-BN, and Al2O3. ACS Omega 2023, 8, 24454–24466. [Google Scholar] [CrossRef] [PubMed]
- Yadav, D.; Amini, F.; Ehrmann, A. Recent Advances in Carbon Nanofibers and Their Applications—A Review. Eur. Polym. J. 2020, 138, 109963. [Google Scholar] [CrossRef]
- Alemour, B.; Badran, O.; Hassan, M.R. A Review of Using Conductive Composite Materials in Solving Lightening Strike and Ice Accumulation Problems in Aviation. J. Aerosp. Technol. Manag. 2019, 11., e1919. [Google Scholar] [CrossRef]
- Tran, T.Q.; Deshpande, S.; Dasari, S.S.; Arole, K.; Johnson, D.; Zhang, Y.; Harkin, E.M.; Djire, A.; Seet, H.L.; Nai, S.M.L.; et al. 3D Printed Carbon Nanotube/Phenolic Composites for Thermal Dissipation and Electromagnetic Interference Shielding. ACS Appl. Mater. Interfaces 2024, 16, 69929–69939. [Google Scholar] [CrossRef]
- Ren, L.; Yang, L.; Zhang, S.; Li, H.; Zhou, Y.; Ai, D.; Xie, Z.; Zhao, X.; Peng, Z.; Liao, R.; et al. Largely Enhanced Dielectric Properties of Polymer Composites with HfO2 Nanoparticles for High-Temperature Film Capacitors. Compos. Sci. Technol. 2021, 201, 108528. [Google Scholar] [CrossRef]
- Coetzee, D.; Venkataraman, M.; Militky, J.; Petru, M. Influence of Nanoparticles on Thermal and Electrical Conductivity of Composites. Polymers 2020, 12, 742. [Google Scholar] [CrossRef] [PubMed]
- Ranjbar, N.; Zhang, M. Fiber-Reinforced Geopolymer Composites: A Review. Cem. Concr. Compos. 2020, 107, 103498. [Google Scholar] [CrossRef]
- Camargo, M.M.; Adefrs Taye, E.; Roether, J.A.; Tilahun Redda, D.; Boccaccini, A.R. A Review on Natural Fiber-Reinforced Geopolymer and Cement-Based Composites. Materials 2020, 13, 4603. [Google Scholar] [CrossRef]
- Silva, G.; Kim, S.; Bertolotti, B.; Nakamatsu, J.; Aguilar, R. Optimization of a Reinforced Geopolymer Composite Using Natural Fibers and Construction Wastes. Constr. Build. Mater. 2020, 258, 119697. [Google Scholar] [CrossRef]
- Mahmood, A.; Noman, M.T.; Pechočiaková, M.; Amor, N.; Petrů, M.; Abdelkader, M.; Militký, J.; Sozcu, S.; Ul Hassan, S.Z. Geopolymers and Fiber-reinforced Concrete Composites in Civil Engineering. Polymers 2021, 13, 2099. [Google Scholar] [CrossRef] [PubMed]
- Dyson, C.; Rajagopal, V.S.G. Enhancing Fire Resistance in Reinforced Concrete Members through the Application of Hybrid Fiber-Reinforced Polymers. Rev. Mater. 2024, 29, e20240398. [Google Scholar] [CrossRef]
- Zhang, B.; Jia, L.; Tian, M.; Ning, N.; Zhang, L.; Wang, W. Surface and Interface Modification of Aramid Fiber and Its Reinforcement for Polymer Composites: A Review. Eur. Polym. J. 2021, 147, 110352. [Google Scholar] [CrossRef]
- Hou, Y.; Xu, Z.; Chu, F.; Gui, Z.; Song, L.; Hu, Y.; Hu, W. A Review on Metal-Organic Hybrids as Flame Retardants for Enhancing Fire Safety of Polymer Composites. Compos. B Eng. 2021, 221, 109014. [Google Scholar] [CrossRef]
- Nagaraja, S.; Anand, P.B.; Shivakumar, H.D.; Ammarullah, M.I. Influence of Fly Ash Filler on the Mechanical Properties and Water Absorption Behaviour of Epoxy Polymer Composites Reinforced with Pineapple Leaf Fibre for Biomedical Applications. RSC Adv. 2024, 14, 14680–14696. [Google Scholar] [CrossRef]
- Wang, Z.; Fang, Z.; Xie, Z.; Smith, D.E. A Review on Microstructural Formations of Discontinuous Fiber-Reinforced Polymer Composites Prepared via Material Extrusion Additive Manufacturing: Fiber Orientation, Fiber Attrition, and Micro-Voids Distribution. Polymers 2022, 14, 4941. [Google Scholar] [CrossRef] [PubMed]
- Al Rashid, A.; Koç, M. Fused Filament Fabrication Process: A Review of Numerical Simulation Techniques. Polymers 2021, 13, 3534. [Google Scholar] [CrossRef]
- Patti, A.; Acierno, S. Rheological Changes in Bio-Based Filaments Induced by Extrusion-Based 3D Printing Process. Materials 2024, 17, 3839. [Google Scholar] [CrossRef]
- Acierno, D.; Patti, A. Fused Deposition Modelling (FDM) of Thermoplastic-Based Filaments: Process and Rheological Properties—An Overview. Materials 2023, 16, 7664. [Google Scholar] [CrossRef]
- Jacob, J.; Pejak Simunec, D.; Kandjani, A.E.Z.; Trinchi, A.; Sola, A. A Review of Fused Filament Fabrication of Metal Parts (Metal FFF): Current Developments and Future Challenges. Technologies 2024, 12, 267. [Google Scholar] [CrossRef]
- Zheng, Q.; Xie, B.; Xu, Z.; Wu, H. A Systematic Printability Study of Direct Ink Writing towards High-Resolution Rapid Manufacturing. Int. J. Extrem. Manuf. 2023, 5, 035002. [Google Scholar] [CrossRef]
- Wan, X.; Luo, L.; Liu, Y.; Leng, J. Direct Ink Writing Based 4D Printing of Materials and Their Applications. Adv. Sci. 2020, 7, 2001000. [Google Scholar] [CrossRef]
- Saadi, M.A.S.R.; Maguire, A.; Pottackal, N.T.; Thakur, M.S.H.; Ikram, M.M.; Hart, A.J.; Ajayan, P.M.; Rahman, M.M. Direct Ink Writing: A 3D Printing Technology for Diverse Materials. Adv. Mater. 2022, 34, 2108855. [Google Scholar] [CrossRef] [PubMed]
- Nayyar, G.; Williams, C.B.; Long, T.E. Polymer Characterization Techniques to Accelerate Discovery in Vat Photopolymerization and UV-Assisted Direct Ink Write 3D Printing. Polymer 2025, 326, 128355. [Google Scholar] [CrossRef]
- Gaurav; Gohal, H.; Kumar, V.; Jena, H. Study of Natural Fibre Composite Material and Its Hybridization Techniques. Mater. Today Proc. 2020, 26, 1368–1372. [Google Scholar] [CrossRef]
- Rubio, L.D.; Potomkin, M.; Baker, R.D.; Sen, A.; Berlyand, L.; Aranson, I.S. Self-Propulsion and Shear Flow Align Active Particles in Nozzles and Channels. Adv. Intell. Syst. 2021, 3, 2000178. [Google Scholar] [CrossRef]
- Yang, G.; Sun, Y.; Qin, L.; Li, M.; Ou, K.; Fang, J.; Fu, Q. Direct-Ink-Writing (DIW) 3D Printing Functional Composite Materials Based on Supra-Molecular Interaction. Compos. Sci. Technol. 2021, 215, 109013. [Google Scholar] [CrossRef]
- Gueche, Y.A.; Sanchez-Ballester, N.M.; Bataille, B.; Aubert, A.; Leclercq, L.; Rossi, J.-C.; Soulairol, I. Selective Laser Sintering of Solid Oral Dosage Forms with Copovidone and Paracetamol Using a CO2 Laser. Pharmaceutics 2021, 13, 160. [Google Scholar] [CrossRef]
- Gueche, Y.A.; Sanchez-Ballester, N.M.; Cailleaux, S.; Bataille, B.; Soulairol, I. Selective Laser Sintering (SLS), a New Chapter in the Production of Solid Oral Forms (SOFs) by 3D Printing. Pharmaceutics 2021, 13, 1212. [Google Scholar] [CrossRef] [PubMed]
- Chaudhary, R.; Fabbri, P.; Leoni, E.; Mazzanti, F.; Akbari, R.; Antonini, C. Additive Manufacturing by Digital Light Processing: A Review. Prog. Addit. Manuf. 2022, 8, 331–351. [Google Scholar] [CrossRef]
- Salifu, S.; Ogunbiyi, O.; Olubambi, P.A. Potentials and Challenges of Additive Manufacturing Techniques in the Fabrication of Polymer Composites. Int. J. Adv. Manuf. Technol. 2022, 122, 577–600. [Google Scholar] [CrossRef]
- Majca-Nowak, N.; Pyrzanowski, P. The Analysis of Mechanical Properties and Geometric Accuracy in Specimens Printed in Material Jetting Technology. Materials 2023, 16, 3014. [Google Scholar] [CrossRef] [PubMed]
- Gülcan, O.; Günaydın, K.; Tamer, A. The State of the Art of Material Jetting—A Critical Review. Polymers 2021, 13, 2829. [Google Scholar] [CrossRef]
- Gao, C.; Qiu, J.; Wang, S. In-Situ Curing of 3d Printed Freestanding Thermosets. J. Adv. Manuf. Process. 2022, 4, e10114. [Google Scholar] [CrossRef]
- Dojan, C.F.; Ziaee, M.; Masoumipour, A.; Radosevich, S.J.; Yourdkhani, M. Additive Manufacturing of Carbon Fiber-Reinforced Thermoset Composites via in-Situ Thermal Curing. Nat. Commun. 2025, 16, 4691. [Google Scholar] [CrossRef]
- Li, Y.; Feng, Z.; Hao, L.; Huang, L.; Xin, C.; Wang, Y.; Bilotti, E.; Essa, K.; Zhang, H.; Li, Z.; et al. A Review on Functionally Graded Materials and Structures via Additive Manufacturing: From Multi-Scale Design to Versatile Functional Properties. Adv. Mater. Technol. 2020, 5, 1900981. [Google Scholar] [CrossRef]
- Nazir, A.; Gokcekaya, O.; Md Masum Billah, K.; Ertugrul, O.; Jiang, J.; Sun, J.; Hussain, S. Multi-Material Additive Manufacturing: A Systematic Review of Design, Properties, Applications, Challenges, and 3D Printing of Materials and Cellular Metamaterials. Mater. Des. 2023, 226, 111661. [Google Scholar] [CrossRef]
- Ngo, T.D.; Kashani, A.; Imbalzano, G.; Nguyen, K.T.Q.; Hui, D. Additive manufacturing (3D printing): A review of materials, methods, applications and challenges. Compos. Part B Eng. 2018, 143, 172–196. [Google Scholar] [CrossRef]
- Rahman, M.M.; Khan, K.H.; Parvez, M.M.H.; Irizarry, N.; Uddin, M.N. Polymer Nanocomposites with Optimized Nanoparticle Dispersion and Enhanced Functionalities for Industrial Applications. Processes 2025, 13, 994. [Google Scholar] [CrossRef]
- Shelare, S.D.; Aglawe, K.R.; Giri, S.S.; Waghmare, S.N. Additive Manufacturing of Polymer Composites: Applications, Challenges and Opportunities. Indian J. Eng. Mater. Sci. 2023, 30, 872–881. [Google Scholar] [CrossRef]
- Mohammadi, H.; Ahmad, Z.; Mazlan, S.A.; Faizal Johari, M.A.; Siebert, G.; Petrů, M.; Rahimian Koloor, S.S. Lightweight Glass Fiber-Reinforced Polymer Composite for Automotive Bumper Applications: A Review. Polymers 2023, 15, 193. [Google Scholar] [CrossRef]
- Murugu Nachippan, N.; Alphonse, M.; Bupesh Raja, V.K.; Palanikumar, K.; Sai Uday Kiran, R.; Gopala Krishna, V. Numerical Analysis of Natural Fiber Reinforced Composite Bumper. Mater. Today Proc. 2021, 46, 3817–3823. [Google Scholar] [CrossRef]
- Athukorala, S.S.; Tran, T.S.; Balu, R.; Truong, V.K.; Chapman, J.; Dutta, N.K.; Choudhury, N.R. 3D Printable Electrically Conductive Hydrogel Scaffolds for Biomedical Applications: A Review. Polymers 2021, 13, 474. [Google Scholar] [CrossRef] [PubMed]
- Ullah, M.; Awan, U.A.; Ali, H.; Wahab, A.; Khan, S.U.; Naeem, M.; Ruslin, M.; Mustopa, A.Z.; Hasan, N. Carbon Dots: New Rising Stars in the Carbon Family for Diagnosis and Biomedical Applications. J. Nanotheranostics 2025, 6, 1. [Google Scholar] [CrossRef]
- Adam, G.O.; Sharker, S.M.; Ryu, J.H. Emerging Biomedical Applications of Carbon Dot and Polymer Composite Materials. Appl. Sci. 2022, 12, 10565. [Google Scholar] [CrossRef]
- Dhanasekar, S.; Stella, T.J.; Thenmozhi, A.; Bharathi, N.D.; Thiyagarajan, K.; Singh, P.; Reddy, Y.S.; Srinivas, G.; Jayakumar, M. Study of Polymer Matrix Composites for Electronics Applications. J. Nanomater. 2022, 1, 8605099. [Google Scholar] [CrossRef]
- Kumar Panda, P.; Jebastine, J.; Ramarao, M.; Fairooz, S.; Reddy, C.K.; Nasif, O.; Alfarraj, S.; Manikandan, V.; Jenish, I. Exploration on Mechanical Behaviours of Hyacinth Fibre Particles Reinforced Polymer Matrix-Based Hybrid Composites for Electronic Applications. Adv. Mater. Sci. Eng. 2021, 2, 4933450. [Google Scholar] [CrossRef]
- Aziz, S.B.; Hamsan, M.H.; Kadir, M.F.Z.; Woo, H.J. Design of Polymer Blends Based on Chitosan:POZ with Improved Dielectric Constant for Application in Polymer Electrolytes and Flexible Electronics. Adv. Polym. Technol. 2020, 1, 8586136. [Google Scholar] [CrossRef]
- Díez-Pascual, A.M.; Rahdar, A. Graphene-Based Polymer Composites for Flexible Electronic Applications. Micromachines 2022, 13, 1123. [Google Scholar] [CrossRef] [PubMed]
- Yildirim, M.O.; Gok, E.C.; Hemasiri, N.H.; Eren, E.; Kazim, S.; Oksuz, A.U.; Ahmad, S. A Machine Learning Approach for Metal Oxide Based Polymer Composites as Charge Selective Layers in Perovskite Solar Cells. Chempluschem 2021, 86, 785–793. [Google Scholar] [CrossRef] [PubMed]
- Fan, L.Z.; He, H.; Nan, C.W. Tailoring Inorganic–Polymer Composites for the Mass Production of Solid-State Batteries. Nat. Rev. Mater. 2021, 6, 1003–1019. [Google Scholar] [CrossRef]
- Rashed Labanieh, A.; Placet, V.; Grzegorz Kossakowski, P.; Wci, W. Fiber-Reinforced Polymer Composites in the Construction of Bridges: Opportunities, Problems and Challenges. Fibers 2022, 10, 37. [Google Scholar] [CrossRef]
- Yinh, S.; Hussain, Q.; Joyklad, P.; Chaimahawan, P.; Rattanapitikon, W.; Limkatanyu, S.; Pimanmas, A. Strengthening Effect of Natural Fiber Reinforced Polymer Composites (NFRP) on Concrete. Case Stud. Constr. Mater. 2021, 15, e00653. [Google Scholar] [CrossRef]
- Rupal, A.; Meda, S.R.; Gupta, A.; Tank, I.; Kapoor, A.; Sharma, S.K.; Sathish, T.; Murugan, P. Utilization of Polymer Composite for Development of Sustainable Construction Material. Adv. Mater. Sci. Eng. 2022, 6, 1240738. [Google Scholar] [CrossRef]
- Yang, S.; Bieliatynskyi, A.; Trachevskyi, V.; Shao, M.; Ta, M. Technological Aspects of the Preparation of Polymer Composites of Building Materials and Coatings. Polym. Polym. Compos. 2022, 30, 09673911221135690. [Google Scholar] [CrossRef]
- Vesmawala, G.R.; Vaghela, A.R.; Yadav, K.D.; Patil, Y. Effectiveness of Polycarboxylate as a Dispersant of Carbon Nanotubes in Concrete. Mater. Today Proc. 2020, 28, 1170–1174. [Google Scholar] [CrossRef]
- Tatar, J.; Milev, S. Durability of Externally Bonded Fiber-Reinforced Polymer Composites in Concrete Structures: A Critical Review. Polymers 2021, 13, 765. [Google Scholar] [CrossRef]
- Alzahrani, M.M.; Alamry, K.A.; Hussein, M.A. Recent Advances of Fiber-Reinforced Polymer Composites for Defense Innovations. Results Chem. 2025, 15, 102199. [Google Scholar] [CrossRef]
- Czech, K.; Oliwa, R.; Krajewski, D.; Bulanda, K.; Oleksy, M.; Budzik, G.; Mazurkow, A. Hybrid Polymer Composites Used in the Arms Industry: A Review. Materials 2021, 14, 3047. [Google Scholar] [CrossRef] [PubMed]
- Suthar, J.; Patel, K.M. Processing Issues, Machining, and Applications of Aluminum Metal Matrix Composites. Mater. Manuf. Process. 2018, 33, 499–527. [Google Scholar] [CrossRef]
- Hayat, M.D.; Singh, H.; He, Z.; Cao, P. Titanium Metal Matrix Composites: An Overview. Compos. Part A Appl. Sci. Manuf. 2019, 121, 418–438. [Google Scholar] [CrossRef]
- Srinivasan, V.; Kunjiappan, S.; Palanisamy, P. A Brief Review of Carbon Nanotube Reinforced Metal Matrix Composites for Aerospace and Defense Applications. Int. Nano Lett. 2021, 11, 321–345. [Google Scholar] [CrossRef]
- Feng, Q.; Wang, L. The Effect of Polymer Composite Materials on the Comfort of Sports and Fitness Facilities. J. Nanomater. 2022, 2022, 9108458. [Google Scholar] [CrossRef]
- Fan, Q.; Duan, H.; Xing, X. A Review of Composite Materials for Enhancing Support, Flexibility and Strength in Exercise. Alex. Eng. J. 2024, 94, 90–103. [Google Scholar] [CrossRef]
- Vijaya Ramnath, B.; Elanchezhian, C.; Keshavan, D.; Ashok Kumar, K. Prediction of Tensile Behavior of Polymer Composite Golf Shaft. Mater. Today Proc. 2017, 4, 3356–3360. [Google Scholar] [CrossRef]
- Lunchev, A.V.; Kashcheev, A.; Tok, A.l.Y.; Lipik, V. Mechanical Characteristics of Poly (Ethylene Vinyl Acetate) Foams with Graphene for the Applications in Sport Footwear. Polym. Test 2022, 113, 107688. [Google Scholar] [CrossRef]
- Mater Sci, L.J.; Eng, M.; Lin, C.; Li, C. Application and Development of Graphene Functional Materials in Sports Equipment: A Review. J. Mater. Sci. Mater. Eng. 2025, 20, 98. [Google Scholar] [CrossRef]
- Zhang, L.; Chen, X.; Zhou, W.; Cheng, T.; Chen, L.; Guo, Z.; Han, B.; Lu, L. Digital Twins for Additive Manufacturing: A State-of-the-Art Review. Appl. Sci. 2020, 10, 8350. [Google Scholar] [CrossRef]
- Ben Amor, S.; Elloumi, N.; Eltaief, A.; Louhichi, B.; Alrasheedi, N.H.; Seibi, A. Digital Twin Implementation in Additive Manufacturing: A Comprehensive Review. Processes 2024, 12, 1062. [Google Scholar] [CrossRef]
- Jyeniskhan, N.; Shomenov, K.; Ali, M.H.; Shehab, E. Exploring the Integration of Digital Twin and Additive Manufacturing Technologies. Int. J. Lightweight Mater. Manuf. 2024, 7, 860–881. [Google Scholar] [CrossRef]
- Mayer, A.; Greif, L.; Häußermann, T.M.; Otto, S.; Kastner, K.; El Bobbou, S.; Chardonnet, J.R.; Reichwald, J.; Fleischer, J.; Ovtcharova, J. Digital Twins, Extended Reality, and Artificial Intelligence in Manufacturing Reconfiguration: A Systematic Literature Review. Sustainability 2025, 17, 2318. [Google Scholar] [CrossRef]
- Bandyopadhyay, A.; Heer, B. Additive Manufacturing of Multi-Material Structures. Mater. Sci. Eng. R Rep. 2018, 129, 1–16. [Google Scholar] [CrossRef]
- Wu, H.; Fahy, W.P.; Kim, S.; Kim, H.; Zhao, N.; Pilato, L.; Kafi, A.; Bateman, S.; Koo, J.H. Recent Developments in Polymers/Polymer Nanocomposites for Additive Manufacturing. Prog. Mater. Sci. 2020, 111, 100638. [Google Scholar] [CrossRef]
- Ghimire, A.; Tsai, Y.Y.; Chen, P.Y.; Chang, S.W. Tunable Interface Hardening: Designing Tough Bio-Inspired Composites through 3D Printing, Testing, and Computational Validation. Compos. B Eng. 2021, 215, 108754. [Google Scholar] [CrossRef]
- Tauberová, R.; Knapčíková, L.; Strametz, D.; Hadi, M.A. Sustainability and Circular Economy Through Application and Processing of Recycled Materials into Additive Manufacturing. In Proceedings of the 8th EAI International Conference on Management of Manufacturing Systems, Bratislava, Slovakia, 24–26 October 2023; pp. 21–32. [Google Scholar] [CrossRef]
- Al Rashid, A.; Koç, M. Additive Manufacturing for Sustainability and Circular Economy: Needs, Challenges, and Opportunities for 3D Printing of Recycled Polymeric Waste. Mater. Today Sustain. 2023, 24, 100529. [Google Scholar] [CrossRef]
- Real-Time In-Process Monitoring for Additive Manufacturing—Chain Reaction Innovations. Available online: https://chainreaction.anl.gov/optical-in-situ-monitoring-for-metal-additive-manufacturing/ (accessed on 5 August 2025).
- In-Situ Monitoring for Additive Manufacturing: Opportunities and Challenges|Quality Magazine. Available online: https://www.qualitymag.com/articles/97540-in-situ-monitoring-for-additive-manufacturing-opportunities-and-challenges (accessed on 5 August 2025).
- Wang, Y.; Zhang, B.; Mao, M.; Cao, L.; Mohamad, A.A.; Alshoaibi, A.A.; Abdurakhmanov, G.; Lou, X.; Wang, D.; Song, K. Optimization Strategies of Filler Morphology and Spatial Design in Polymer Nanocomposites for Next-Generation Energy Storage. J. Adv. Dielectr. 2025, 15, 2530001. [Google Scholar] [CrossRef]
- Olonisakin, K.; Fan, M.; Zhang, X.-X.; Li, R.; Lin, W.S.; Zhang, W.; Yang, W. Key Improvements in Interfacial Adhesion and Dispersion of Fibers/Fillers in Polymer Matrix Composites; Focus on PLA Matrix Composites. Compos. Interfaces 2022, 29, 1071–1120. [Google Scholar] [CrossRef]
- Tuli, N.T.; Khatun, S.; Rashid, A. Bin Unlocking the Future of Precision Manufacturing: A Comprehensive Exploration of 3D Printing with Fiber-Reinforced Composites in Aerospace, Automotive, Medical, and Consumer Industries. Heliyon 2024, 10, e27328. [Google Scholar] [CrossRef]
- Duty, C.E.; Kunc, V.; Compton, B.; Post, B.; Erdman, D.; Smith, R.; Lind, R.; Lloyd, P.; Love, L. Structure and Mechanical Behavior of Big Area Additive Manufacturing (BAAM) Materials. Rapid Prototyp. J. 2017, 23, 181–189. [Google Scholar] [CrossRef]
- Nagaraja, S.; Anand, P.B.; Ammarullah, M.I. Synergistic Advances in Natural Fibre Composites: A Comprehensive Review of the Eco-Friendly Bio-Composite Development, Its Characterization and Diverse Applications. RSC Adv. 2024, 14, 17594–17611. [Google Scholar] [CrossRef]
- Clare, A.T.; Woizeschke, P.; Rankouhi, B.; Pfefferkorn, F.E.; Bartels, D.; Schmidt, M.; Wits, W.W. Metal Multi-Material Additive Manufacturing: Overcoming Barriers to Implementation. CIRP Ann. 2025, 74, 869–893. [Google Scholar] [CrossRef]
- Munimathan, A.; Muthu, K.; Subramani, S.; Rajendran, S. Environmental Behaviour of Synthetic and Natural Fibre Reinforced Composites: A Review. Adv. Mech. Eng. 2024, 16., 16878132241286020. [Google Scholar] [CrossRef]
- Rahmani, R.; Bashiri, B.; Lopes, S.I.; Hussain, A.; Maurya, H.S.; Vilu, R. Sustainable Additive Manufacturing: An Overview on Life Cycle Impacts and Cost Efficiency of Laser Powder Bed Fusion. J. Manuf. Mater. Process. 2025, 9, 18. [Google Scholar] [CrossRef]
























| Sample | Nylon 6,6 | Nylon 6,6/30%CF |
|---|---|---|
| Printing temperature (°C) | 270 | 360 |
| Bed temperature (°C) | 60 | 80 |
| Printing speed (mm/s) | 15 | 15 |
| Layer thickness (mm) | 0.2 | 0.2 |
| Infill (%) | 100 | 100 |
| Infill pattern | Rectilinear | Rectilinear |
| Nozzle diameter (mm) | 0.5 mm | 0.5 mm |
| Material flow rate multiplier | 1.0 | 1.5 |
| Natural Fiber | wt.% Loading | Matrix Material | Tensile Strength (MPa) | Flexural Strength (MPa) | Impact Strength | References |
|---|---|---|---|---|---|---|
| Kenaf | 30–40 | PLA | 50–61 | 58–62 | 15–48 kJ/m2 | [75] |
| 40 | PP | 90 | 50 | - | [76] | |
| 30 | PLA | 36.18 | 64.90 | 116.6 J/m | ||
| Jute | 50 | Epoxy | 39.52 | 89.62 | 2.22 J | [77,78] |
| 26.9 | Epoxy | 70.4 | 84 | - | [78] | |
| 33 | PP | 27.49 | 43.33 | 25.54 kJ/m2 | [79] | |
| Flax | 37.9 | Epoxy | 95.4 | 95 | - | [78,80] |
| 20 | PLA/PCL (70:30) | 49–60 | - | 3.3–6 kJ/m2 | [81] | |
| 22 | PLA | - | 160–185 | - | [82] | |
| Hemp | 50 | Epoxy | 22.43 | 57.11 | 1.25 J | [77,83] |
| 30–50 | PLA | 39–65 | 51–113 | - | [84] | |
| 30 | Polybenzoxazine | 52 | 122 | 4.23 kJ/m2 | [85] | |
| Abaca | 10–30 | PP | 22–30 | 46–54 | 0.040–0.048 kJ/m2 | [86] |
| 20–50 | BioPE | 26.64–47.73 | - | - | [86] | |
| 30 | HDPE | 33.13 | - | - | [87] | |
| Coir | 10–30 | PP | 24–30 | 48–57 | 0.040–0.055 kJ/m2 | [88] |
| Melamine-Urea- | ||||||
| 84–90 | Formaldehyde (MUF) | 3.05–4.4 | 2.099–5.149 | - | [89] | |
| Biopolymer | ||||||
| 5–30 | Bakelite resin | - | 53–61 | - | [90] |
| Natural Rubber (NR) | Ethylene-Propylene-Diene Rubber (EPDM) | Nitrile-Butadiene Rubber (NBR) | |
|---|---|---|---|
| Mooney viscosity (ML1 + 4; 100 °C) | 57 | 112 | 37 |
| Vulcanization Conditions Dumbbell specimen S2 (10 min) | 160 °C | 170 °C | 170 °C |
| Method of Activation | Functioning Mechanism | |
|---|---|---|
| By heating | Direct heating | Warming the polymer above its transition temperature |
| Indirect heating | Activated by means of joule heating through the application of electrical voltage | |
| Induction heating | Activation of the SMPs via eddy currents induced using an alternating electromagnetic field | |
| By solvents | Water | By acting as a plasticizer, the solvent increases the movement of polymer chains, which in turn shortens relaxation time and lowers the glass transition temperature. |
| Solvent | ||
| By light | Photo-reversible cycloaddition reactions | SMPs can effectively undergo photo-reversible cycloaddition reactions in response to specific wavelengths of light |
| Photo-thermal effect | By incorporating photo-thermal fillers into the SMP matrix, electromagnetic radiation can be converted into heat. | |
| Constituents | Composition | Temperature [°C] | Chemicals | Compressive Strength [MPa] |
|---|---|---|---|---|
| Coal fly ash and metakaolin | - | 250 | NaOH | - |
| Fly ash, GGBFS, and zeolite | Al/Si | 32 | NaOH | 100 |
| Coal fly ash | Al/Si | 80 | NaOH | 18 |
| Fly ash | SiO2/Al2O3 | 85 | KOH | 19 |
| AM Process Family | Composite Feedstock Readiness | Industrial Strengths | Key Limitations | QA/QC Scale-Up Focus | Typical Best Use |
|---|---|---|---|---|---|
| Material extrusion (FFF, DIW) | High | Low cost, flexible | Anisotropy, clogging | Moisture, bead control | Prototypes, fixtures |
| Vat photopolymerization (DLP, SLA) | Moderate | High resolution | Scattering, brittleness | Cure depth, resin stability | Precision parts |
| Polymer PBF (SLS) | Moderate–High | Support-free, complex | Porosity, powder variation | Powder size, energy density | Batch components |
| Material jetting (MJ) | Low–Moderate | Multi-material accuracy | Limited fillers, cost | Droplet control, curing | Multi-material prototypes |
| Continuous fiber AM (CFR-AM) | Low–Moderate | Very high strength | Fiber steering limits | Fiber alignment, bonding | Structural parts |
| Automobile Modules | Manufacturing Company | Key Findings |
|---|---|---|
| Leaf spring | Chevrolet Corvette C4 | 15 kg weight reduction |
| Suspension spring | Audi AG | Achieves a 40% lower weight than its steel equivalent |
| Instrument and indoor panel modules | Landover Evoque | - |
| Door module | Faurecia Jeep Liberty SUV | - |
| Fluid filter module | Daimler AGT–Mercedes | - |
| Bumper beam | - | Improved ability to absorb shocks without damage |
| Compressive Strength, MPa | ||||
|---|---|---|---|---|
| Time Duration in Days | ||||
| Carbon Nanotube Content, Mass % | Normal Density % | 1 | 7 | 28 |
| 0.1 | 26.0 | 23.7 | 32.8 | 60.8 |
| 0.5 | 25.6 | 21.2 | 30.4 | 62.9 |
| Challenge | Description |
|---|---|
| Filler Dispersion and Bonding | Weak interactions leading to reduced mechanical strength. |
| Fiber Trade-offs | Balancing the properties of synthetic and natural fibers. |
| High Filler Content | Causes poor flow behavior, clogging, and reduced structural integrity. |
| System Limitations | Issues like poor resolution, clogging, and slow processing speeds. |
| Repetition and Scale-up | Inconsistent quality and performance across production batches. |
| Software and Design Gaps | Limited modeling, slicing, and simulation capabilities. |
| Durability and Exposure | Degradation from UV radiation, moisture, and microbial attack. |
| Recycling Barriers | Inefficient recycling due to material heterogeneity. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Rahman, M.M.; Islam, S.; Mubasshira; Islam, M.S.; Ahammad, R.; Islam, M.A.; Hasib, M.A.; Rahman, M.S.; Moshwan, R.; Ehsan, M.M.; et al. Polymer Composites in Additive Manufacturing: Current Technologies, Applications, and Emerging Trends. Polymers 2026, 18, 192. https://doi.org/10.3390/polym18020192
Rahman MM, Islam S, Mubasshira, Islam MS, Ahammad R, Islam MA, Hasib MA, Rahman MS, Moshwan R, Ehsan MM, et al. Polymer Composites in Additive Manufacturing: Current Technologies, Applications, and Emerging Trends. Polymers. 2026; 18(2):192. https://doi.org/10.3390/polym18020192
Chicago/Turabian StyleRahman, Md Mahbubur, Safkat Islam, Mubasshira, Md Shaiful Islam, Raju Ahammad, Md Ashraful Islam, Md Abdul Hasib, Md Shohanur Rahman, Raza Moshwan, M. Monjurul Ehsan, and et al. 2026. "Polymer Composites in Additive Manufacturing: Current Technologies, Applications, and Emerging Trends" Polymers 18, no. 2: 192. https://doi.org/10.3390/polym18020192
APA StyleRahman, M. M., Islam, S., Mubasshira, Islam, M. S., Ahammad, R., Islam, M. A., Hasib, M. A., Rahman, M. S., Moshwan, R., Ehsan, M. M., Rabbi, M. S., Moniruzzaman, M., Nazir, M. A., & Liu, W.-D. (2026). Polymer Composites in Additive Manufacturing: Current Technologies, Applications, and Emerging Trends. Polymers, 18(2), 192. https://doi.org/10.3390/polym18020192

