Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,155)

Search Parameters:
Keywords = carbon gel

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 6941 KiB  
Article
Isolation and Characterization of Lignin from Sapele (Entandrophragma cylindricum): Application in Flexible Polyurethane Foam Production
by Hubert Justin Nnanga Guissele, Arnaud Maxime Cheumani Yona, Armel Edwige Mewoli, Désiré Chimeni-Yomeni, Lucioni Fabien Tsague, Tatiane Marina Abo, Jean-Bosco Saha-Tchinda, Maurice Kor Ndikontar and Antonio Pizzi
Polymers 2025, 17(15), 2156; https://doi.org/10.3390/polym17152156 (registering DOI) - 6 Aug 2025
Abstract
Lignin used in this work was isolated from sapele (Entandrophragma cylindricum) wood through a hybrid pulping process using soda/ethanol as pulping liquor and denoted soda-oxyethylated lignin (SOL). SOL was mixed with a polyethylene glycol (PEG)–glycerol mixture (80/20 v/v) [...] Read more.
Lignin used in this work was isolated from sapele (Entandrophragma cylindricum) wood through a hybrid pulping process using soda/ethanol as pulping liquor and denoted soda-oxyethylated lignin (SOL). SOL was mixed with a polyethylene glycol (PEG)–glycerol mixture (80/20 v/v) as liquefying solvent with 98% wt. sulfur acid as catalyst, and the mixture was taken to boil at 140 °C for 2, 2.5, and 3 h. Three bio-polyols LBP1, LBP2, and LBP3 were obtained, and each of them exhibited a high proportion of -OH groups. Lignin-based polyurethane foams (LBPUFs) were prepared using the bio-polyols obtained with a toluene diisocyanate (TDI) prepolymer by the one-shot method. Gel permeation chromatography (GPC), Fourier transform infrared spectroscopy (FTIR), and carbon-13 nuclear magnetic resonance spectroscopy (13C NMR) were used characterize lignin in order to determine viscosity, yield, and composition and to characterize their structure. The PEG-400–glycerol mixture was found to react with the lignin bio-polyols’ phenolic -OHs. The bio-polyols’ viscosity was found to increase as the liquefaction temperature increased, while simultaneously their molecular weights decreased. All the NCO groups were eliminated from the samples, which had high thermal stability as the liquefaction temperature increased, leading to a decrease in cell size, density, and crystallinity and an improvement in mechanical performance. Based on these properties, especially the presence of some aromatic rings in the bio-polyols, the foams produced can be useful in automotive applications and for floor carpets. Full article
(This article belongs to the Section Circular and Green Sustainable Polymer Science)
Show Figures

Figure 1

14 pages, 4013 KiB  
Review
Crystallization Studies of Poly(Trimethylene Terephthalate) Nanocomposites—A Review
by Nadarajah Vasanthan
J. Compos. Sci. 2025, 9(8), 417; https://doi.org/10.3390/jcs9080417 - 5 Aug 2025
Abstract
Poly(trimethylene terephthalate) (PTT) is a thermoplastic polyester with a unique structure due to having three methylene groups in the glycol unit. PTT competes with poly(ethylene terephthalate) (PET) and poly(butylene terephthalate) (PBT) in carpets, textiles, and thermoplastic materials, primarily due to the development of [...] Read more.
Poly(trimethylene terephthalate) (PTT) is a thermoplastic polyester with a unique structure due to having three methylene groups in the glycol unit. PTT competes with poly(ethylene terephthalate) (PET) and poly(butylene terephthalate) (PBT) in carpets, textiles, and thermoplastic materials, primarily due to the development of economically efficient synthesis methods. PTT is widely utilized in textiles, carpets, and engineering plastics because of its advantageous properties, including quick-drying capabilities and wrinkle resistance. However, its low melting point, resistance to chemicals, and brittleness compared to PET, have limited its applications. To address some of these limitations for targeted applications, PTT nanocomposites incorporating clay, carbon nanotube, silica, and ZnO have been developed. The distribution of nanoparticles within the PTT matrix remains a significant challenge for its potential applications. Several techniques, including sol–gel blending, melt blending, in situ polymerization, and in situ forming methods have been developed to obtain better dispersion. This review discusses advancements in the synthesis of various PTT nanocomposites and the effects of nanoparticles on the isothermal and nonisothermal crystallization of PTT. Full article
(This article belongs to the Special Issue Feature Papers in Journal of Composites Science in 2025)
Show Figures

Figure 1

14 pages, 4979 KiB  
Article
Oxygen Vacancy-Engineered Ni:Co3O4/Attapulgite Photothermal Catalyst from Recycled Spent Lithium-Ion Batteries for Efficient CO2 Reduction
by Jian Shi, Yao Xiao, Menghan Yu and Xiazhang Li
Catalysts 2025, 15(8), 732; https://doi.org/10.3390/catal15080732 - 1 Aug 2025
Viewed by 245
Abstract
Accelerated industrialization and surging energy demands have led to continuously rising atmospheric CO2 concentrations. Developing sustainable methods to reduce atmospheric CO2 levels is crucial for achieving carbon neutrality. Concurrently, the rapid development of new energy vehicles has driven a significant increase [...] Read more.
Accelerated industrialization and surging energy demands have led to continuously rising atmospheric CO2 concentrations. Developing sustainable methods to reduce atmospheric CO2 levels is crucial for achieving carbon neutrality. Concurrently, the rapid development of new energy vehicles has driven a significant increase in demand for lithium-ion batteries (LIBs), which are now approaching an end-of-life peak. Efficient recycling of valuable metals from spent LIBs represents a critical challenge. This study employs conventional hydrometallurgical processing to recover valuable metals from spent LIBs. Subsequently, Ni-doped Co3O4 (Ni:Co3O4) supported on the natural mineral attapulgite (ATP) was synthesized via a sol–gel method. The incorporation of a small amount of Ni into the Co3O4 lattice generates oxygen vacancies, inducing a localized surface plasmon resonance (LSPR) effect, which significantly enhances charge carrier transport and separation efficiency. During the photocatalytic reduction of CO2, the primary product CO generated by the Ni:Co3O4/ATP composite achieved a high production rate of 30.1 μmol·g−1·h−1. Furthermore, the composite maintains robust catalytic activity even after five consecutive reaction cycles. Full article
(This article belongs to the Special Issue Heterogeneous Catalysis in Air Pollution Control)
Show Figures

Figure 1

24 pages, 4143 KiB  
Article
Time-Delayed Cold Gelation of Low-Ester Pectin and Gluten with CaCO3 to Facilitate Manufacture of Raw-Fermented Vegan Sausage Analogs
by Maurice Koenig, Kai Ahlborn, Kurt Herrmann, Myriam Loeffler and Jochen Weiss
Appl. Sci. 2025, 15(15), 8510; https://doi.org/10.3390/app15158510 (registering DOI) - 31 Jul 2025
Viewed by 177
Abstract
To advance the development of protein-rich plant-based foods, a novel binder system for vegan sausage alternatives without the requirement of heat application was investigated. This enables long-term ripening of plant-based analogs similar to traditional fermented meat or dairy products, allowing for refined flavor [...] Read more.
To advance the development of protein-rich plant-based foods, a novel binder system for vegan sausage alternatives without the requirement of heat application was investigated. This enables long-term ripening of plant-based analogs similar to traditional fermented meat or dairy products, allowing for refined flavor and texture development. This was achieved by using a poorly water-soluble calcium source (calcium carbonate) to introduce calcium ions into a low-ester pectin—gluten matrix susceptible to crosslinking via divalent ions. The gelling reaction of pectin–gluten dispersions with Ca2+ ions was time-delayed due to the gradual production of lactic acid during fermentation. Firm, sliceable matrices were formed, in which particulate substances such as texturized proteins and solid vegetable fat could be integrated, hence forming an unheated raw-fermented plant-based salami-type sausage model matrix which remained safe for consumption over 21 days of ripening. Gluten as well as pectin had a significant influence on the functional properties of the matrices, especially water holding capacity (increasing with higher pectin or gluten content), hardness (increasing with higher pectin or gluten content), tensile strength (increasing with higher pectin or gluten content) and cohesiveness (decreasing with higher pectin or gluten content). A combination of three simultaneously occurring effects was observed, modulating the properties of the matrices, namely, (a) an increase in gel strength due to increased pectin concentration forming more brittle gels, (b) an increase in gel strength with increasing gluten content forming more elastic gels and (c) interactions of low-ester pectin with the gluten network, with pectin addition causing increased aggregation of gluten, leading to strengthened networks. Full article
(This article belongs to the Special Issue Processing and Application of Functional Food Ingredients)
Show Figures

Figure 1

20 pages, 4901 KiB  
Article
Study on the Adaptability of FBG Sensors Encapsulated in CNT-Modified Gel Material for Asphalt Pavement
by Tengteng Guo, Xu Guo, Yuanzhao Chen, Chenze Fang, Jingyu Yang, Zhenxia Li, Jiajie Feng, Jiahua Kong, Haijun Chen, Chaohui Wang, Qian Chen and Jiachen Wang
Gels 2025, 11(8), 590; https://doi.org/10.3390/gels11080590 - 31 Jul 2025
Viewed by 147
Abstract
To prolong the service life of asphalt pavement and reduce its maintenance cost, a fiber Bragg grating (FBG) sensor encapsulated in carboxylated carbon nanotube (CNT-COOH)-modified gel material suitable for strain monitoring of asphalt pavement was developed. Through tensile and bending tests, the effects [...] Read more.
To prolong the service life of asphalt pavement and reduce its maintenance cost, a fiber Bragg grating (FBG) sensor encapsulated in carboxylated carbon nanotube (CNT-COOH)-modified gel material suitable for strain monitoring of asphalt pavement was developed. Through tensile and bending tests, the effects of carboxylated carbon nanotubes on the mechanical properties of gel materials under different dosages were evaluated and the optimal dosage of carbon nanotubes was determined. Infrared spectrometer and scanning electron microscopy were used to compare and analyze the infrared spectra and microstructure of carbon nanotubes before and after carboxyl functionalization and modified gel materials. The results show that the incorporation of CNTs-COOH increased the tensile strength, elongation at break, and tensile modulus of the gel material by 36.2%, 47%, and 17.2%, respectively, and increased the flexural strength, flexural modulus, and flexural strain by 89.7%, 7.5%, and 63.8%, respectively. Through infrared spectrum analysis, it was determined that carboxyl (COOH) and hydroxyl (OH) were successfully introduced on the surface of carbon nanotubes. By analyzing the microstructure, it can be seen that the carboxyl functionalization of CNTs improved the agglomeration of carbon nanotubes. The tensile section of the modified gel material is rougher than that of the pure epoxy resin, showing obvious plastic deformation, and the toughness is improved. According to the data from the calibration experiment, the strain and temperature sensitivity coefficients of the packaged sensor are 1.9864 pm/μm and 0.0383 nm/°C, respectively, which are 1.63 times and 3.61 times higher than those of the bare fiber grating. The results of an applicability study show that the internal structure strain of asphalt rutting specimen changed linearly with the external static load, and the fitting sensitivity is 0.0286 με/N. Combined with ANSYS finite element analysis, it is verified that the simulation analysis results are close to the measured data, which verifies the effectiveness and monitoring accuracy of the sensor. The dynamic load test results reflect the internal strain change trend of asphalt mixture under external rutting load, confirming that the encapsulated FBG sensor is suitable for the long-term monitoring of asphalt pavement strain. Full article
(This article belongs to the Special Issue Synthesis, Properties, and Applications of Novel Polymer-Based Gels)
Show Figures

Figure 1

12 pages, 2164 KiB  
Article
Preparation of Inverse-Loaded MWCNTs@Fe2O3 Composites and Their Impact on Glycidyl Azide Polymer-Based Energetic Thermoplastic Elastomer
by Shuo Pang, Yihao Lv, Shuxia Liu, Chao Sang, Bixin Jin and Yunjun Luo
Polymers 2025, 17(15), 2080; https://doi.org/10.3390/polym17152080 - 30 Jul 2025
Viewed by 200
Abstract
As a novel carbon material, multi-walled carbon nanotubes (MWCNTs) have attracted significant research interest in energetic applications due to their high aspect ratio and exceptional physicochemical properties. However, their inherent structural characteristics and poor dispersion severely limit their practical utilization in solid propellant [...] Read more.
As a novel carbon material, multi-walled carbon nanotubes (MWCNTs) have attracted significant research interest in energetic applications due to their high aspect ratio and exceptional physicochemical properties. However, their inherent structural characteristics and poor dispersion severely limit their practical utilization in solid propellant formulations. To address these challenges, this study developed an innovative reverse-engineering strategy that precisely confines MWCNTs within a three-dimensional Fe2O3 gel framework through a controllable sol-gel process followed by low-temperature calcination. This advanced material architecture not only overcomes the traditional limitations of MWCNTs but also creates abundant Fe-C interfacial sites that synergistically catalyze the thermal decomposition of glycidyl azide polymer-based energetic thermoplastic elastomer (GAP-ETPE). Systematic characterization reveals that the MWCNTs@Fe2O3 nanocomposite delivers exceptional catalytic performance for azido group decomposition, achieving a >200% enhancement in decomposition rate compared to physical mixtures while simultaneously improving the mechanical strength of GAP-ETPE-based propellants by 15–20%. More importantly, this work provides fundamental insights into the rational design of advanced carbon-based nanocomposites for next-generation energetic materials, opening new avenues for the application of nanocarbons in propulsion systems. Full article
(This article belongs to the Special Issue Eco-Friendly Polymeric Coatings and Adhesive Technology, 2nd Edition)
Show Figures

Figure 1

26 pages, 11239 KiB  
Review
Microbial Mineral Gel Network for Enhancing the Performance of Recycled Concrete: A Review
by Yuanxun Zheng, Liwei Wang, Hongyin Xu, Tianhang Zhang, Peng Zhang and Menglong Qi
Gels 2025, 11(8), 581; https://doi.org/10.3390/gels11080581 - 27 Jul 2025
Viewed by 225
Abstract
The dramatic increase in urban construction waste poses severe environmental challenges. Utilizing waste concrete to produce recycled aggregates (RA) for manufacturing recycled concrete (RC) represents an effective strategy for resource utilization. However, inherent defects in RA, such as high porosity, microcracks, and adherent [...] Read more.
The dramatic increase in urban construction waste poses severe environmental challenges. Utilizing waste concrete to produce recycled aggregates (RA) for manufacturing recycled concrete (RC) represents an effective strategy for resource utilization. However, inherent defects in RA, such as high porosity, microcracks, and adherent old mortar layers, lead to significant performance degradation of the resulting RC, limiting its widespread application. Traditional methods for enhancing RA often suffer from limitations, including high energy consumption, increased costs, or the introduction of new pollutants. MICP offers an innovative approach for enhancing RC performance. This technique employs the metabolic activity of specific microorganisms to induce the formation of a three-dimensionally interwoven calcium carbonate gel network within the pores and on the surface of RA. This gel network can improve the inherent defects of RA, thereby enhancing the performance of RC. Compared to conventional techniques, this approach demonstrates significant environmental benefits and enhances concrete compressive strength by 5–30%. Furthermore, embedding mineralizing microbial spores within the pores of RA enables the production of self-healing RC. This review systematically explores recent research advances in microbial mineral gel network for improving RC performance. It begins by delineating the fundamental mechanisms underlying microbial mineralization, detailing the key biochemical reactions driving the formation of calcium carbonate (CaCO3) gel, and introducing the common types of microorganisms involved. Subsequently, it critically discusses the key environmental factors influencing the effectiveness of MICP treatment on RA and strategies for their optimization. The analysis focuses on the enhancement of critical mechanical properties of RC achieved through MICP treatment, elucidating the underlying strengthening mechanisms at the microscale. Furthermore, the review synthesizes findings on the self-healing efficiency of MICP-based RC, including such metrics as crack width healing ratio, permeability recovery, and restoration of mechanical properties. Key factors influencing self-healing effectiveness are also discussed. Finally, building upon the current research landscape, the review provides perspectives on future research directions for advancing microbial mineralization gel techniques to enhance RC performance, offering a theoretical reference for translating this technology into practical engineering applications. Full article
(This article belongs to the Special Issue Novel Polymer Gels: Synthesis, Properties, and Applications)
Show Figures

Graphical abstract

21 pages, 8515 KiB  
Article
Preparation and Performance Study of Alkali-Activated Conductive Mortar via Response Surface Methodology
by Wenfang Lv, Wenhua Zha, Tao Xu and Minqian Sun
Minerals 2025, 15(8), 787; https://doi.org/10.3390/min15080787 - 26 Jul 2025
Viewed by 190
Abstract
In this study, alkali-activated coal gangue-slag material (AACGS) was prepared using coal gangue and slag as precursors, and its feasibility as conductive mortar substrate material was preliminarily investigated. Firstly, this study employed Response Surface Methodology (RSM) to develop statistical models correlating the alkali [...] Read more.
In this study, alkali-activated coal gangue-slag material (AACGS) was prepared using coal gangue and slag as precursors, and its feasibility as conductive mortar substrate material was preliminarily investigated. Firstly, this study employed Response Surface Methodology (RSM) to develop statistical models correlating the alkali equivalent, water-to-binder ratio, and slag content with the compressive strength, flexural strength, and resistivity of AACGS, aiming to identify the optimal mix proportions. Secondly, based on the optimal ratio identified above and using carbon fibers (CF) as the conductive phase, an alkali-activated conductive mortar (CF-AACGS) was prepared, and its compressive strength, flexural strength, and resistivity were tested. Lastly, XRD and SEM-EDS were conducted to characterize the mineral composition and microstructure of CF-AACGS. The results indicate that when the alkali equivalent, water-to-binder ratio, and slag content are 13.34%, 0.54, and 57.52%, respectively, the AACGS achieves compressive strength, flexural strength, and resistivity of 72.5 MPa, 7.0 MPa, and 62.41 Ω·m at 28 days. Under the action of the alkali activator, coal gangue and slag undergo hydration reactions, forming a denser N, C-(A)-S-H gel. This effectively improves the interface transition zone between the CF and AACGS, endowing the CF-AACGS with superior mechanical properties. Furthermore, the AACGS matrix enhances the conductive contact point density by optimizing CF dispersion, which significantly reduces the resistivity of the CF-AACGS. Full article
(This article belongs to the Special Issue Development in Alkali-Activated Materials and Applications)
Show Figures

Figure 1

15 pages, 5557 KiB  
Article
Rheological and Physical Properties of Mucilage Hydrogels from Cladodes of Opuntia ficus-indica: Comparative Study with Pectin
by Federica Torregrossa, Matteo Pollon, Giorgia Liguori, Francesco Gargano, Donatella Albanese, Francesca Malvano and Luciano Cinquanta
Gels 2025, 11(7), 556; https://doi.org/10.3390/gels11070556 - 19 Jul 2025
Viewed by 275
Abstract
The physical and rheological properties of mucilage hydrogels derived from the cladodes of Opuntia ficus-indica (L. Mill) were compared with those of commercial pectin for potential applications in the food industry. All hydrogels—formulated by incorporating sucrose and either calcium chloride or calcium carbonate [...] Read more.
The physical and rheological properties of mucilage hydrogels derived from the cladodes of Opuntia ficus-indica (L. Mill) were compared with those of commercial pectin for potential applications in the food industry. All hydrogels—formulated by incorporating sucrose and either calcium chloride or calcium carbonate to promote favorable gel network formation—exhibited pseudoplastic (shear-thinning) behavior. The flow characteristics of the hydrogels prepared with mucilage or pectin conformed to the Casson fluid model. Moreover, all samples consistently displayed loss modulus (G″) values exceeding their corresponding storage modulus (G′) values, indicating a dominant viscous behavior over elastic properties. The ζ-potential of all samples was negative across the pH range studied. Mucilage-based samples exhibited lower ionizability per unit mass and reduced phase stability compared to those containing pectin. Principal component analysis (PCA) revealed that mucilage hydrogels exhibited multivariate profiles similar to pectin hydrogels containing calcium carbonate, though the latter demonstrated greater polydispersity than standard pectic gels. Infrared spectroscopy further highlighted distinct spectral differences between pectins and mucilages, offering valuable insights into their respective functional characteristics. Collectively, these findings underscore the potential of Opuntia ficus-indica mucilages as viable additives in food formulations. Full article
Show Figures

Figure 1

17 pages, 2470 KiB  
Article
Correlation Between Packing Voids and Fatigue Performance in Sludge Gasification Slag-Cement-Stabilized Macadam
by Yunfei Tan, Xiaoqi Wang, Hao Zheng, Yingxu Liu, Juntao Ma and Shunbo Zhao
Sustainability 2025, 17(14), 6587; https://doi.org/10.3390/su17146587 - 18 Jul 2025
Viewed by 353
Abstract
The fatigue resistance of cement-stabilized macadam (CSM) plays a vital role in ensuring the long-term durability of pavement structures. However, limited cementitious material (CM) content often leads to high packing voids, which significantly compromise fatigue performance. Existing studies have rarely explored the coupled [...] Read more.
The fatigue resistance of cement-stabilized macadam (CSM) plays a vital role in ensuring the long-term durability of pavement structures. However, limited cementitious material (CM) content often leads to high packing voids, which significantly compromise fatigue performance. Existing studies have rarely explored the coupled mechanism between pore structure and fatigue behavior, especially in the context of solid-waste-based CMs. In this study, a cost-effective alkali-activated sludge gasification slag (ASS) was proposed as a sustainable CM substitute for ordinary Portland cement (OPC) in CSM. A dual evaluation approach combining cross-sectional image analysis and fatigue loading tests was employed to reveal the effect pathway of void structure optimization on fatigue resistance. The results showed that ASS exhibited excellent cementitious reactivity, forming highly polymerized C-A-S-H/C-S-H gels that contributed to a denser microstructure and superior mechanical performance. At a 6% binder dosage, the void ratio of ASS–CSM was reduced to 30%, 3% lower than that of OPC–CSM. The 28-day unconfined compressive strength and compressive resilient modulus reached 5.7 MPa and 1183 MPa, representing improvements of 35.7% and 4.1% compared to those of OPC. Under cyclic loading, the ASS system achieved higher energy absorption and more uniform stress distribution, effectively suppressing fatigue crack initiation and propagation. Moreover, the production cost and carbon emissions of ASS were 249.52 CNY/t and 174.51 kg CO2e/t—reductions of 10.9% and 76.2% relative to those of OPC, respectively. These findings demonstrate that ASS not only improves fatigue performance through pore structure refinement but also offers significant economic and environmental advantages, providing a theoretical foundation for the large-scale application of solid-waste-based binders in pavement engineering. Full article
Show Figures

Figure 1

18 pages, 1944 KiB  
Article
Experimental Study on the Adsorption Performance of Metal–Organic Framework MIL-101 (Cr) for Indoor Toluene
by Zirong Zhao, Jinzhe Nie, Honghao Huang, Fuqun He, Kaiqiao Wang and Pu Yang
Buildings 2025, 15(14), 2506; https://doi.org/10.3390/buildings15142506 - 17 Jul 2025
Viewed by 434
Abstract
In this study, MIL-101 (Cr) was synthesized and characterized in terms of its physical properties. The adsorption breakthrough curves for toluene were measured and compared to those of conventional adsorbents (i.e., silica gel and activated carbon) at typical indoor concentrations of toluene. The [...] Read more.
In this study, MIL-101 (Cr) was synthesized and characterized in terms of its physical properties. The adsorption breakthrough curves for toluene were measured and compared to those of conventional adsorbents (i.e., silica gel and activated carbon) at typical indoor concentrations of toluene. The results show that MIL-101 (Cr) exhibits a 5–8 times higher adsorption capacity for toluene compared to silica gel at low concentrations. The adsorption isotherm of MIL-101 (Cr) for toluene conforms to the Langmuir model. Increasing temperature reduces the adsorption breakthrough time and saturation time, but it leads to a significant decrease in the adsorption capacity. During the breakthrough experiment, flow rate had little effect on adsorption capacity, but higher flow rates notably decreased the breakthrough and saturation times. The negative values of ΔG, ΔH, and ΔS indicate that the adsorption of toluene on MIL-101 (Cr) is a spontaneous and exothermic process. Compared to traditional adsorbents, MIL-101 (Cr) exhibits desirable performance in toluene adsorption in indoor environments. It shows significant potential for indoor air purification applications. Full article
Show Figures

Figure 1

27 pages, 14650 KiB  
Article
Development of High-Performance Composite Cementitious Materials for Offshore Engineering Applications
by Risheng Wang, Hongrui Wu, Zengwu Liu, Hanyu Wang and Yongzhuang Zhang
Materials 2025, 18(14), 3324; https://doi.org/10.3390/ma18143324 - 15 Jul 2025
Viewed by 212
Abstract
This study focuses on the development of high-performance composite cementitious materials for offshore engineering applications, addressing the critical challenges of durability, environmental degradation, and carbon emissions. By incorporating polycarboxylate superplasticizers (PCE) and combining fly ash (FA), ground granulated blast furnace slag (GGBS), and [...] Read more.
This study focuses on the development of high-performance composite cementitious materials for offshore engineering applications, addressing the critical challenges of durability, environmental degradation, and carbon emissions. By incorporating polycarboxylate superplasticizers (PCE) and combining fly ash (FA), ground granulated blast furnace slag (GGBS), and silica fume (SF) in various proportions, composite mortars were designed and evaluated. A series of laboratory tests were conducted to assess workability, mechanical properties, volume stability, and durability under simulated marine conditions. The results demonstrate that the optimized composite exhibits superior performance in terms of strength development, shrinkage control, and resistance to chloride penetration and freeze–thaw cycles. Microstructural analysis further reveals that the enhanced performance is attributed to the formation of additional calcium silicate hydrate (C–S–H) gel and a denser internal matrix resulting from secondary hydration. These findings suggest that the proposed material holds significant potential for enhancing the long-term durability and sustainability of marine infrastructure. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

18 pages, 4996 KiB  
Article
Mechanical Properties and Microstructures of Solid Waste Composite-Modified Lateritic Clay via NaOH/Na2CO3 Activation: A Sustainable Recycling Solution of Steel Slag, Fly Ash, and Granulated Blast Furnace Slag
by Wei Qiao, Bing Yue, Zhihua Luo, Shengli Zhu, Lei Li, Heng Yang and Biao Luo
Materials 2025, 18(14), 3307; https://doi.org/10.3390/ma18143307 - 14 Jul 2025
Viewed by 307
Abstract
The utilization of steel slag (SS), fly ash (FA), and ground granulated blast furnace slag (GGBFS) as soil additives in construction represents a critical approach to achieving resource recycling of these industrial by-products. This study aims to activate the SS-FA-GGBFS composite with a [...] Read more.
The utilization of steel slag (SS), fly ash (FA), and ground granulated blast furnace slag (GGBFS) as soil additives in construction represents a critical approach to achieving resource recycling of these industrial by-products. This study aims to activate the SS-FA-GGBFS composite with a NaOH solution and Na2CO3 and employ the activated solid waste blend as an admixture for lateritic clay modification. By varying the concentration of the NaOH solution and the dosage of Na2CO3 relative to the SS-FA-GGBFS composite, the effects of these parameters on the activation efficiency of the composite as a lateritic clay additive were investigated. Results indicate that the NaOH solution activates the SS-FA-GGBFS composite more effectively than Na2CO3. The NaOH solution significantly promotes the depolymerization of aluminosilicates in the solid waste materials and the generation of Calcium-Silicate-Hydrate and Calcium-Aluminate-Hydrate gels. In contrast, Na2CO3 relies on its carbonate ions to react with calcium ions in the materials, forming calcium carbonate precipitates. As a rigid cementing phase, calcium carbonate exhibits a weaker cementing effect on soil compared to Calcium-Silicate-Hydrate and Calcium-Aluminate-Hydrate gels. However, excessive NaOH leads to inefficient dissolution of the solid waste and induces a transformation of hydration products in the modified lateritic clay from Calcium-Silicate-Hydrate and Calcium-Aluminate-Hydrate to Sodium-Silicate-Hydrate and Sodium-Aluminate-Hydrate, which negatively impacts the strength and microstructural compactness of the alkali-activated solid waste composite-modified lateritic clay. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

21 pages, 4856 KiB  
Article
Mechanical Properties of Recycled Concrete with Carbide Slag Slurry Pre-Immersed and Carbonated Recycled Aggregate
by Xiangfei Wang, Guoliang Guo, Jinglei Liu, Chun Lv and Mingyan Bi
Materials 2025, 18(14), 3281; https://doi.org/10.3390/ma18143281 - 11 Jul 2025
Viewed by 266
Abstract
This research focuses on improving the characteristics of recycled concrete and utilizing solid waste resources through the combination of industrial waste pre-impregnation and the carbonation process. A novel pre-impregnation–carbonation aggregate method is proposed to increase the content of carbonatable components in the surface-bonded [...] Read more.
This research focuses on improving the characteristics of recycled concrete and utilizing solid waste resources through the combination of industrial waste pre-impregnation and the carbonation process. A novel pre-impregnation–carbonation aggregate method is proposed to increase the content of carbonatable components in the surface-bonded mortar of recycled coarse aggregate by pre-impregnating it with carbide slag slurry (CSS). This approach enhances the subsequent carbonation effect and thus the properties of recycled aggregates. The experimental results showed that the method significantly improved the water absorption, crushing value, and apparent density of the recycled aggregate. Additionally, it enhanced the compressive strength, split tensile strength, and flexural strength of the recycled concrete produced using the aggregate improved by this method. Microanalysis revealed that CO2 reacts with calcium hydroxide and hydrated calcium silicate (C-S-H) to produce calcite-type calcium carbonate and amorphous silica gel. These reaction products fill microcracks and pores on the aggregate and densify the aggregate–paste interfacial transition zone (ITZ), thereby improving the properties of recycled concrete. This study presents a practical approach for the high-value utilization of construction waste and the production of low-carbon building materials by enhancing the quality of recycled concrete. Additionally, carbon sequestration demonstrates broad promise for engineering applications. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Graphical abstract

30 pages, 8184 KiB  
Review
A State-of-the-Art Review on the Freeze–Thaw Resistance of Sustainable Geopolymer Gel Composites: Mechanisms, Determinants, and Models
by Peng Zhang, Baozhi Shi, Xiaobing Dai, Cancan Chen and Canhua Lai
Gels 2025, 11(7), 537; https://doi.org/10.3390/gels11070537 - 11 Jul 2025
Viewed by 447
Abstract
Geopolymer, as a sustainable, low-carbon gel binder, is regarded as a potential alternative to cement. Freeze–thaw (F-T) resistance, which has a profound influence on the service life of structures, is a crucial indicator for assessing the durability of geopolymer composites (GCs). Consequently, comprehending [...] Read more.
Geopolymer, as a sustainable, low-carbon gel binder, is regarded as a potential alternative to cement. Freeze–thaw (F-T) resistance, which has a profound influence on the service life of structures, is a crucial indicator for assessing the durability of geopolymer composites (GCs). Consequently, comprehending the F-T resistance of GCs is of the utmost significance for their practical implementation. In this article, a comprehensive and in-depth review of the F-T resistance of GCs is conducted. This review systematically synthesizes several frequently employed theories regarding F-T damage, with the aim of elucidating the underlying mechanisms of F-T damage in geopolymers. The factors influencing the F-T resistance of GCs, including raw materials, curing conditions, and modified materials, are meticulously elaborated upon. The results indicate that the F-T resistance of GCs can be significantly enhanced through using high-calcium-content precursors, mixed alkali activators, and rubber aggregates. Moreover, appropriately increasing the curing temperature has been shown to improve the F-T resistance of GCs, especially for those fabricated with low-calcium-content precursors. Among modified materials, the addition of most fibers and nano-materials remarkably improves the F-T resistance of GCs. Conversely, the effect of air-entraining agents on the F-T resistance of GCs seems to be negligible. Furthermore, evaluation and prediction models for the F-T damage of GCs are summarized, including empirical models and machine learning models. In comparison with empirical models, the models established by machine learning algorithms exhibit higher predictive accuracy. This review promotes a more profound understanding of the factors affecting the F-T resistance of GCs and their mechanisms, providing a basis for engineering and academic research. Full article
(This article belongs to the Special Issue Synthesis, Properties, and Applications of Novel Polymer-Based Gels)
Show Figures

Figure 1

Back to TopTop