Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,079)

Search Parameters:
Keywords = carbon emission balance

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 8682 KiB  
Article
Urban Carbon Metabolism Optimization Based on a Source–Sink–Flow Framework at the Functional Zone Scale
by Cui Wang, Liuchang Xu, Xingyu Xue and Xinyu Zheng
Land 2025, 14(8), 1600; https://doi.org/10.3390/land14081600 - 6 Aug 2025
Abstract
Carbon flow tracking and spatial pattern optimization at the scale of urban functional zones are key scientific challenges in achieving carbon neutrality. However, due to the complexity of carbon metabolism processes within urban functional zones, related studies remain limited. To address these scientific [...] Read more.
Carbon flow tracking and spatial pattern optimization at the scale of urban functional zones are key scientific challenges in achieving carbon neutrality. However, due to the complexity of carbon metabolism processes within urban functional zones, related studies remain limited. To address these scientific challenges, this study, based on the “source–sink–flow” ecosystem services framework, develops an integrated analytical approach at the scale of urban functional zones. The carbon balance is quantified using the CASA model in combination with multi-source data. A network model is employed to trace carbon flow pathways, identify critical nodes and interruption points, and optimize the urban spatial pattern through a low-carbon land use structure model. The research results indicate that the overall carbon balance in Hangzhou exhibits a spatial pattern of “deficit in the center and surplus in the periphery.” The main urban area shows a significant carbon deficit and relatively poor connectivity in the carbon flow network. Carbon sequestration services primarily flow from peripheral areas (such as Fuyang and Yuhang) with green spaces and agricultural functional zones toward high-emission residential–commercial and commercial–public functional zones in the central area. However, due to the interruption of multiple carbon flow paths, the overall carbon flow transmission capacity is significantly constrained. Through spatial optimization, some carbon deficit nodes were successfully converted into carbon surplus nodes, and disrupted carbon flow edges were repaired, particularly in the main urban area, where 369 carbon flow edges were restored, resulting in a significant improvement in the overall transmission efficiency of the carbon flow network. The carbon flow visualization and spatial optimization methods proposed in this paper provide a new perspective for urban carbon metabolism analysis and offer theoretical support for low-carbon city planning practices. Full article
(This article belongs to the Special Issue The Second Edition: Urban Planning Pathways to Carbon Neutrality)
Show Figures

Figure 1

21 pages, 16545 KiB  
Article
Multi-Objective Land Use Optimization Based on NSGA-II and PLUS Models: Balancing Economic Development and Carbon Neutrality Goals
by Hanlong Gu, Shuoxin Liu, Chongyang Huan, Ming Cheng, Xiuru Dong and Haohang Sun
Land 2025, 14(8), 1585; https://doi.org/10.3390/land14081585 - 3 Aug 2025
Viewed by 296
Abstract
Land use/land cover (LULC) change constitutes a critical driver influencing regional carbon cycling processes. Optimizing LULC structures represents a significant pathway toward the realization of carbon neutrality. This study takes Liaoning Province as a case area to analyze LULC changes from 2000 to [...] Read more.
Land use/land cover (LULC) change constitutes a critical driver influencing regional carbon cycling processes. Optimizing LULC structures represents a significant pathway toward the realization of carbon neutrality. This study takes Liaoning Province as a case area to analyze LULC changes from 2000 to 2020 and to assess their impacts on land use carbon emissions (LUCE) and ecosystem carbon storage (ECS). To accelerate the achievement of carbon neutrality, four development scenarios are established: natural development (ND), low-carbon emission (LCE), high-carbon storage (HCS), and carbon neutrality (CN). For each scenario, corresponding optimization objectives and constraint conditions are defined, and a multi-objective LULC optimization coupling model is formulated to optimize both the quantity structure and spatial pattern of LULC. On this basis, the model quantifies ECS and LUCE under the four scenarios and evaluates the economic value of each scenario and its contribution to the carbon neutrality target. Results indicate the following: (1) From 2000 to 2020, the extensive expansion of construction land resulted in a reduction in ECS by 12.72 × 106 t and an increase in LUCE by 150.44 × 106 t; (2) Compared to the ND scenario, the LCE scenario exhibited the most significant performance in controlling carbon emissions, while the HCS scenario achieved the highest increase in carbon sequestration. The CN scenario showed significant advantages in reducing LUCE, enhancing ECS, and promoting economic growth, achieving a reduction of 0.18 × 106 t in LUCE, an increase of 118.84 × 106 t in ECS, and an economic value gain of 3386.21 × 106 yuan. This study optimizes the LULC structure from the perspective of balancing economic development, LUCE reduction, and ECS enhancement. It addresses the inherent conflict between regional economic growth and ecological conservation, providing scientific evidence and policy insights for promoting LULC optimization and advancing carbon neutrality in similar regions. Full article
Show Figures

Figure 1

16 pages, 1541 KiB  
Article
Economic Dispatch Strategy for Power Grids Considering Waste Heat Utilization in High-Energy-Consuming Enterprises
by Lei Zhou, Ping He, Siru Wang, Cailian Ma, Yiming Zhou, Can Cai and Hongbo Zou
Processes 2025, 13(8), 2450; https://doi.org/10.3390/pr13082450 - 2 Aug 2025
Viewed by 231
Abstract
Under the construction background of carbon peak and carbon neutrality, high-energy-consuming enterprises, represented by the electrolytic aluminum industry, have become important carriers for energy conservation and emission reduction. These enterprises are characterized by significant energy consumption and high carbon emissions, greatly impacting the [...] Read more.
Under the construction background of carbon peak and carbon neutrality, high-energy-consuming enterprises, represented by the electrolytic aluminum industry, have become important carriers for energy conservation and emission reduction. These enterprises are characterized by significant energy consumption and high carbon emissions, greatly impacting the economic and environmental benefits of regional power grids. Existing research often focuses on grid revenue, leaving high-energy-consuming enterprises in a passive regulatory position. To address this, this paper constructs an economic dispatch strategy for power grids that considers waste heat utilization in high-energy-consuming enterprises. A typical representative, electrolytic aluminum load and its waste heat utilization model, for the entire production process of high-energy-consuming loads, is established. Using a tiered carbon trading calculation formula, a low-carbon production scheme for high-energy-consuming enterprises is developed. On the grid side, considering local load levels, the uncertainty of wind power output, and the energy demands of aluminum production, a robust day-ahead economic dispatch model is established. Case analysis based on the modified IEEE-30 node system demonstrates that the proposed method balances economic efficiency and low-carbon performance while reducing the conservatism of traditional optimization approaches. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

18 pages, 6506 KiB  
Article
Realizing the Role of Hydrogen Energy in Ports: Evidence from Ningbo Zhoushan Port
by Xiaohui Zhong, Yuxin Li, Daogui Tang, Hamidreza Arasteh and Josep M. Guerrero
Energies 2025, 18(15), 4069; https://doi.org/10.3390/en18154069 - 31 Jul 2025
Viewed by 315
Abstract
The maritime sector’s transition to sustainable energy is critical for achieving global carbon neutrality, with container terminals representing a key focus due to their high energy consumption and emissions. This study explores the potential of hydrogen energy as a decarbonization solution for port [...] Read more.
The maritime sector’s transition to sustainable energy is critical for achieving global carbon neutrality, with container terminals representing a key focus due to their high energy consumption and emissions. This study explores the potential of hydrogen energy as a decarbonization solution for port operations, using the Chuanshan Port Area of Ningbo Zhoushan Port (CPANZP) as a case study. Through a comprehensive analysis of hydrogen production, storage, refueling, and consumption technologies, we demonstrate the feasibility and benefits of integrating hydrogen systems into port infrastructure. Our findings highlight the successful deployment of a hybrid “wind-solar-hydrogen-storage” energy system at CPANZP, which achieves 49.67% renewable energy contribution and an annual reduction of 22,000 tons in carbon emissions. Key advancements include alkaline water electrolysis with 64.48% efficiency, multi-tier hydrogen storage systems, and fuel cell applications for vehicles and power generation. Despite these achievements, challenges such as high production costs, infrastructure scalability, and data integration gaps persist. The study underscores the importance of policy support, technological innovation, and international collaboration to overcome these barriers and accelerate the adoption of hydrogen energy in ports worldwide. This research provides actionable insights for port operators and policymakers aiming to balance operational efficiency with sustainability goals. Full article
Show Figures

Figure 1

33 pages, 7374 KiB  
Article
Exploration of Carbon Emission Reduction Pathways for Urban Residential Buildings at the Provincial Level: A Case Study of Jiangsu Province
by Jian Xu, Tao Lei, Milun Yang, Huixuan Xiang, Ronge Miao, Huan Zhou, Ruiqu Ma, Wenlei Ding and Genyu Xu
Buildings 2025, 15(15), 2687; https://doi.org/10.3390/buildings15152687 - 30 Jul 2025
Viewed by 278
Abstract
Achieving carbon emission reductions in the residential building sector while maintaining economic growth represents a global challenge, particularly in rapidly developing regions with internal disparities. This study examines Jiangsu Province in eastern China—a economic hub with north-south development gradients—to develop an integrated framework [...] Read more.
Achieving carbon emission reductions in the residential building sector while maintaining economic growth represents a global challenge, particularly in rapidly developing regions with internal disparities. This study examines Jiangsu Province in eastern China—a economic hub with north-south development gradients—to develop an integrated framework for differentiated carbon reduction pathways. The methodology combines spatial autocorrelation analysis, logarithmic mean Divisia index (LMDI) decomposition, system dynamics modeling, and Tapio decoupling analysis to examine urban residential building emissions across three regions from 2016–2022. Results reveal significant spatial clustering of emissions (Moran’s I peaking at 0.735), with energy consumption per unit area as the dominant driver across all regions (contributing 147.61%, 131.82%, and 147.57% respectively). Scenario analysis demonstrates that energy efficiency policies can reduce emissions by 10.1% while maintaining 99.2% of economic performance, enabling carbon peak achievement by 2030. However, less developed northern regions emerge as binding constraints, requiring technology investments. Decoupling analysis identifies region-specific optimal pathways: conventional development for advanced regions, balanced approaches for transitional areas, and subsidies for lagging regions. These findings challenge assumptions about environment-economy trade-offs and provide a replicable framework for designing differentiated climate policies in heterogeneous territories, offering insights for similar regions worldwide navigating the transition to sustainable development. Full article
(This article belongs to the Section Building Energy, Physics, Environment, and Systems)
Show Figures

Figure 1

25 pages, 1103 KiB  
Article
The Low-Carbon Development Strategy of Russia Until 2050 and the Role of Forests in Its Implementation
by Evgeny A. Shvarts, Andrey V. Ptichnikov, Anna A. Romanovskaya, Vladimir N. Korotkov and Anastasia S. Baybar
Sustainability 2025, 17(15), 6917; https://doi.org/10.3390/su17156917 - 30 Jul 2025
Viewed by 207
Abstract
This article examines the role of managed ecosystems, and particularly forests, in achieving carbon neutrality in Russia. The range of estimates of Russia’s forests’ net carbon balance in different studies varies by up to 7 times. The. A comparison of Russia’s National GHG [...] Read more.
This article examines the role of managed ecosystems, and particularly forests, in achieving carbon neutrality in Russia. The range of estimates of Russia’s forests’ net carbon balance in different studies varies by up to 7 times. The. A comparison of Russia’s National GHG inventory data for 2023 and 2024 (with the latter showing 37% higher forest sequestration) is presented and explained. The possible changes in the Long-Term Low-Emission Development Strategy of Russia (LT LEDS) carbon neutrality scenario due to new land use, land use change and forestry (LULUCF) data in National GHG Inventory Document (NID) 2024 are discussed. It is demonstrated that the refined net carbon balance should not impact the mitigation ambition in the Russian forestry sector. An assessment of changes in the drafts of the Operational plan of the LT LEDS is presented and it is concluded that its structure and content have significantly improved; however, a delay in operationalization nullifies efforts. The article highlights the problem of GHG emissions increases in forest fires and compares the gap between official “ground-based” and Remote Sensing approaches in calculations of such emissions. Considering the intention to increase net absorption by implementing forest carbon projects, the latest changes in the regulations of such projects are discussed. The limitations of reforestation carbon projects in Russia are provided. Proposals are presented for the development of the national forest policy towards increasing the net forest carbon absorption, including considering the projected decrease in annual net absorption by Russian forests by 2050. The role of government and private investment in improving the forest management of structural measures to adapt forestry to modern climate change and the place of forest climate projects need to be clearly defined in the LT LEDS. Full article
(This article belongs to the Section Sustainable Forestry)
Show Figures

Figure 1

18 pages, 1033 KiB  
Article
Analyzing the Impact of Carbon Mitigation on the Eurozone’s Trade Dynamics with the US and China
by Pathairat Pastpipatkul and Terdthiti Chitkasame
Econometrics 2025, 13(3), 28; https://doi.org/10.3390/econometrics13030028 - 29 Jul 2025
Viewed by 163
Abstract
This study focusses on the transmission of carbon pricing mechanisms in shaping trade dynamics between the Eurozone and key partners: the USA and China. Using Bayesian variable selection methods and a Time-Varying Structural Vector Autoregressions (TV-SVAR) model, the research identifies the key variables [...] Read more.
This study focusses on the transmission of carbon pricing mechanisms in shaping trade dynamics between the Eurozone and key partners: the USA and China. Using Bayesian variable selection methods and a Time-Varying Structural Vector Autoregressions (TV-SVAR) model, the research identifies the key variables impacting EU carbon emissions over time. The results reveal that manufactured products from the US have a diminishing positive impact on EU carbon emissions, suggesting potential exemption from future regulations. In contrast, manufactured goods from the US and petroleum products from China are expected to increase emissions, indicating a need for stricter trade policies. These findings provide strategic insights for policymakers aiming to balance trade and environmental objectives. Full article
Show Figures

Figure 1

25 pages, 10240 KiB  
Article
Present and Future Energy Potential of Run-of-River Hydropower in Mainland Southeast Asia: Balancing Climate Change and Environmental Sustainability
by Saman Maroufpoor and Xiaosheng Qin
Water 2025, 17(15), 2256; https://doi.org/10.3390/w17152256 - 29 Jul 2025
Viewed by 331
Abstract
Southeast Asia relies heavily on hydropower from dams and reservoir projects, but this dependence comes at the cost of ecological damage and increased vulnerability to extreme events. This dilemma necessitates a choice between continued dam development and adopting alternative renewable options. Concerns over [...] Read more.
Southeast Asia relies heavily on hydropower from dams and reservoir projects, but this dependence comes at the cost of ecological damage and increased vulnerability to extreme events. This dilemma necessitates a choice between continued dam development and adopting alternative renewable options. Concerns over these environmental impacts have already led to halts in dam construction across the region. This study assesses the potential of run-of-river hydropower plants (RHPs) across 199 hydrometric stations in Mainland Southeast Asia (MSEA). The assessment utilizes power duration curves for the historical period and projections from the HBV hydrological model, which is driven by an ensemble of 31 climate models for future scenarios. Energy production was analyzed at four levels (minimum, maximum, balanced, and optimal) for both historical and future periods under varying Shared Socioeconomic Pathways (SSPs). To promote sustainable development, environmental flow constraints and carbon dioxide (CO2) emissions were evaluated for both historical and projected periods. The results indicate that the aggregate energy production potential during the historical period ranges from 111.15 to 229.62 MW (Malaysia), 582.78 to 3615.36 MW (Myanmar), 555.47 to 3142.46 MW (Thailand), 1067.05 to 6401.25 MW (Laos), 28.07 to 189.77 MW (Vietnam), and 566.13 to 2803.75 MW (Cambodia). The impact of climate change on power production varies significantly across countries, depending on the level and scenarios. At the optimal level, an average production change of −9.2–5.9% is projected for the near future, increasing to 15.3–19% in the far future. Additionally, RHP development in MSEA is estimated to avoid 32.5 Mt of CO2 emissions at the optimal level. The analysis further shows avoidance change of 8.3–25.3% and −8.6–25.3% under SSP245 and SSP585, respectively. Full article
Show Figures

Graphical abstract

20 pages, 1979 KiB  
Article
Energy Storage Configuration Optimization of a Wind–Solar–Thermal Complementary Energy System, Considering Source-Load Uncertainty
by Guangxiu Yu, Ping Zhou, Zhenzhong Zhao, Yiheng Liang and Weijun Wang
Energies 2025, 18(15), 4011; https://doi.org/10.3390/en18154011 - 28 Jul 2025
Viewed by 363
Abstract
The large-scale integration of new energy is an inevitable trend to achieve the low-carbon transformation of power systems. However, the strong randomness of wind power, photovoltaic power, and loads poses severe challenges to the safe and stable operation of systems. Existing studies demonstrate [...] Read more.
The large-scale integration of new energy is an inevitable trend to achieve the low-carbon transformation of power systems. However, the strong randomness of wind power, photovoltaic power, and loads poses severe challenges to the safe and stable operation of systems. Existing studies demonstrate insufficient integration and handling of source-load bilateral uncertainties in wind–solar–fossil fuel storage complementary systems, resulting in difficulties in balancing economy and low-carbon performance in their energy storage configuration. To address this insufficiency, this study proposes an optimal energy storage configuration method considering source-load uncertainties. Firstly, a deterministic bi-level model is constructed: the upper level aims to minimize the comprehensive cost of the system to determine the energy storage capacity and power, and the lower level aims to minimize the system operation cost to solve the optimal scheduling scheme. Then, wind and solar output, as well as loads, are treated as fuzzy variables based on fuzzy chance constraints, and uncertainty constraints are transformed using clear equivalence class processing to establish a bi-level optimization model that considers uncertainties. A differential evolution algorithm and CPLEX are used for solving the upper and lower levels, respectively. Simulation verification in a certain region shows that the proposed method reduces comprehensive cost by 8.9%, operation cost by 10.3%, the curtailment rate of wind and solar energy by 8.92%, and carbon emissions by 3.51%, which significantly improves the economy and low-carbon performance of the system and provides a reference for the future planning and operation of energy systems. Full article
Show Figures

Figure 1

17 pages, 594 KiB  
Article
Diversifying Rural Economies: Identifying Factors That Discourage Primary Producers from Engaging in Emerging Carbon and Environmental Offsetting Markets in Queensland, Australia
by Lila Singh-Peterson, Fynn De Daunton, Andrew Drysdale, Lorinda Otto, Wim Linström and Ben Lyons
Sustainability 2025, 17(15), 6847; https://doi.org/10.3390/su17156847 - 28 Jul 2025
Viewed by 238
Abstract
Commitments to carbon neutrality at both international and national levels have spurred the development of market-based mechanisms that incentivize low-carbon technologies while penalizing emissions-intensive activities. These policies have wide ranging impacts for the Australian agricultural sector, and associated rural communities, where the majority [...] Read more.
Commitments to carbon neutrality at both international and national levels have spurred the development of market-based mechanisms that incentivize low-carbon technologies while penalizing emissions-intensive activities. These policies have wide ranging impacts for the Australian agricultural sector, and associated rural communities, where the majority of carbon credits and biodiversity credits are sourced in Australia. Undeniably, the introduction of carbon and environmental markets has created the opportunity for an expansion and diversification of local, rural economies beyond a traditional agricultural base. However, there is much complexity for the agricultural sector to navigate as environmental markets intersect and compete with food and fiber livelihoods, and entrenched ideologies of rural identity and purpose. As carbon and environmental markets focused on primary producers have expanded rapidly, there is little understanding of the associated situated and relational impacts for farming households and rural communities. Nor has there been much work to identify the barriers to engagement. This study explores these tensions through qualitative research in Stanthorpe and Roma, Queensland, offering insights into the barriers and benefits of market engagement. The findings inform policy development aimed at balancing climate goals with agricultural sustainability and rural community resilience. Full article
Show Figures

Figure 1

25 pages, 1583 KiB  
Article
Predicting China’s Provincial Carbon Peak: An Integrated Approach Using Extended STIRPAT and GA-BiLSTM Models
by Lian Chen, Hailan Chen and Yao Guo
Sustainability 2025, 17(15), 6819; https://doi.org/10.3390/su17156819 - 27 Jul 2025
Viewed by 412
Abstract
As China commits to reaching peak carbon emissions and achieving carbon neutrality, accurately predicting the provincial carbon peak year is vital for designing effective, region-specific policies. This study proposes an integrated approach based on extended STIRPAT and GA-BiLSTM models to predict China’s provincial [...] Read more.
As China commits to reaching peak carbon emissions and achieving carbon neutrality, accurately predicting the provincial carbon peak year is vital for designing effective, region-specific policies. This study proposes an integrated approach based on extended STIRPAT and GA-BiLSTM models to predict China’s provincial carbon peak year. First, based on panel data across 30 provinces in China from 2000 to 2023, we construct a multidimensional indicator system that encompasses socioeconomic factors, energy consumption dynamics, and technological innovation using the extended STIRPAT model, which explains 87.42% of the variation in carbon emissions. Second, to improve prediction accuracy, a hybrid model combining GA-optimized BiLSTM networks is proposed, capturing temporal dynamics and optimizing parameters to address issues like overfitting. The GA-BiLSTM model achieves an R2 of 0.9415, significantly outperforming benchmark models with lower error metrics. Third, based on the model constructed above, the peak years are projected for baseline, low-carbon, and high-carbon scenarios. In the low-carbon scenario, 19 provinces are projected to peak before 2030, which is 8 more than in the baseline scenario. Meanwhile, under the high-carbon scenario, some provinces such as Jiangsu and Hebei may fail to peak by 2040. Finally, based on the predicted carbon peak year, provinces are categorized into four pathways—early, recent, later, and non-peaking—to provide targeted policy recommendations. This integrated framework significantly enhances prediction precision and captures regional disparities, enabling tailored decarbonization strategies that support China’s dual carbon goals of balancing economic growth with environmental protection. The approach provides critical insights for region-specific low-carbon transitions and advances sustainable climate policy modeling. Full article
Show Figures

Figure 1

27 pages, 1739 KiB  
Article
Hybrid Small Modular Reactor—Renewable Systems for Smart Cities: A Simulation-Based Assessment for Clean and Resilient Urban Energy Transitions
by Nikolay Hinov
Energies 2025, 18(15), 3993; https://doi.org/10.3390/en18153993 - 27 Jul 2025
Viewed by 536
Abstract
The global transition to clean energy necessitates integrated solutions that ensure both environmental sustainability and energy security. This paper proposes a scenario-based modeling framework for urban hybrid energy systems combining small modular reactors (SMRs), photovoltaic (PV) generation, and battery storage within a smart [...] Read more.
The global transition to clean energy necessitates integrated solutions that ensure both environmental sustainability and energy security. This paper proposes a scenario-based modeling framework for urban hybrid energy systems combining small modular reactors (SMRs), photovoltaic (PV) generation, and battery storage within a smart grid architecture. SMRs offer compact, low-carbon, and reliable baseload power suitable for urban environments, while PV and storage enhance system flexibility and renewable integration. Six energy mix scenarios are evaluated using a lifecycle-based cost model that incorporates both capital expenditures (CAPEX) and cumulative carbon costs over a 25-year horizon. The modeling results demonstrate that hybrid SMR–renewable systems—particularly those with high nuclear shares—can reduce lifecycle CO2 emissions by over 90%, while maintaining long-term economic viability under carbon pricing assumptions. Scenario C, which combines 50% SMR, 40% PV, and 10% battery, emerges as a balanced configuration offering deep decarbonization with moderate investment levels. The proposed framework highlights key trade-offs between emissions and capital cost and seeking resilient and scalable pathways to support the global clean energy transition and net-zero commitments. Full article
(This article belongs to the Special Issue Challenges and Opportunities in the Global Clean Energy Transition)
Show Figures

Figure 1

28 pages, 5172 KiB  
Article
Machine Learning-Assisted Sustainable Mix Design of Waste Glass Powder Concrete with Strength–Cost–CO2 Emissions Trade-Offs
by Yuzhuo Zhang, Jiale Peng, Zi Wang, Meng Xi, Jinlong Liu and Lei Xu
Buildings 2025, 15(15), 2640; https://doi.org/10.3390/buildings15152640 - 26 Jul 2025
Viewed by 527
Abstract
Glass powder, a non-degradable waste material, offers significant potential to reduce cement consumption and carbon emissions in concrete production. However, existing mix design methods for glass powder concrete (GPC) fail to systematically balance economic efficiency, environmental sustainability, and mechanical performance. To address this [...] Read more.
Glass powder, a non-degradable waste material, offers significant potential to reduce cement consumption and carbon emissions in concrete production. However, existing mix design methods for glass powder concrete (GPC) fail to systematically balance economic efficiency, environmental sustainability, and mechanical performance. To address this gap, this study proposes an AI-assisted framework integrating machine learning (ML) and Multi-Objective Optimization (MOO) to achieve a sustainable GPC design. A robust database of 1154 experimental records was developed, focusing on five key predictors: cement content, water-to-binder ratio, aggregate composition, glass powder content, and curing age. Seven ML models were optimized via Bayesian tuning, with the Ensemble Tree model achieving superior accuracy (R2 = 0.959 on test data). SHapley Additive exPlanations (SHAP) analysis further elucidated the contribution mechanisms and underlying interactions of material components on GPC compressive strength. Subsequently, a MOO framework minimized unit cost and CO2 emissions while meeting compressive strength targets (15–70 MPa), solved using the NSGA-II algorithm for Pareto solutions and TOPSIS for decision-making. The Pareto-optimal solutions provide actionable guidelines for engineers to align GPC design with circular economy principles and low-carbon policies. This work advances sustainable construction practices by bridging AI-driven innovation with building materials, directly supporting global goals for waste valorization and carbon neutrality. Full article
Show Figures

Figure 1

22 pages, 4670 KiB  
Article
Integrated Carbon Flow Tracing and Topology Reconfiguration for Low-Carbon Optimal Dispatch in DG-Embedded Distribution Networks
by Rao Fu, Guofeng Xia, Sining Hu, Yuhao Zhang, Handaoyuan Li and Jiachuan Shi
Mathematics 2025, 13(15), 2395; https://doi.org/10.3390/math13152395 - 25 Jul 2025
Viewed by 241
Abstract
Addressing the imperative for energy transition amid depleting fossil fuels, distributed generation (DG) is increasingly integrated into distribution networks (DNs). This integration necessitates low-carbon dispatching solutions that reconcile economic and environmental objectives. To bridge the gap between conventional “electricity perspective” optimization and emerging [...] Read more.
Addressing the imperative for energy transition amid depleting fossil fuels, distributed generation (DG) is increasingly integrated into distribution networks (DNs). This integration necessitates low-carbon dispatching solutions that reconcile economic and environmental objectives. To bridge the gap between conventional “electricity perspective” optimization and emerging “carbon perspective” requirements, this research integrated Carbon Emission Flow (CEF) theory to analyze spatiotemporal carbon flow characteristics within DN. Recognizing the limitations of the single-objective approach in balancing multifaceted demands, a multi-objective optimization model was formulated. This model could capture the spatiotemporal dynamics of nodal carbon intensity for low-carbon dispatching while comprehensively incorporating diverse operational economic costs to achieve collaborative low-carbon and economic dispatch in DG-embedded DN. To efficiently solve this complex constrained model, a novel Q-learning enhanced Moth Flame Optimization (QMFO) algorithm was proposed. QMFO synergized the global search capability of the Moth Flame Optimization (MFO) algorithm with the adaptive decision-making of Q-learning, embedding an adaptive exploration strategy to significantly enhance solution efficiency and accuracy for multi-objective problems. Validated on a 16-node three-feeder system, the method co-optimizes switch configurations and DG outputs, achieving dual objectives of loss reduction and carbon emission mitigation while preserving radial topology feasibility. Full article
(This article belongs to the Special Issue Mathematical and Computational Methods for Mechanics and Engineering)
Show Figures

Figure 1

19 pages, 2530 KiB  
Article
Soil Microbiome Drives Depth-Specific Priming Effects in Picea schrenkiana Forests Following Labile Carbon Input
by Kejie Yin, Lu Gong, Xinyu Ma, Xiaochen Li and Xiaonan Sun
Microorganisms 2025, 13(8), 1729; https://doi.org/10.3390/microorganisms13081729 - 24 Jul 2025
Viewed by 311
Abstract
The priming effect (PE), a microbially mediated process, critically regulates the balance between carbon sequestration and mineralization. This study used soils from different soil depths (0–20 cm, 20–40 cm, and 40–60 cm) under Picea schrenkiana forest in the Tianshan Mountains as the research [...] Read more.
The priming effect (PE), a microbially mediated process, critically regulates the balance between carbon sequestration and mineralization. This study used soils from different soil depths (0–20 cm, 20–40 cm, and 40–60 cm) under Picea schrenkiana forest in the Tianshan Mountains as the research object. An indoor incubation experiment was conducted by adding three concentrations (1% SOC, 2% SOC, and 3% SOC) of 13C-labelled glucose. We applied 13C isotope probe-phospholipid fatty acid (PLFA-SIP) technology to investigate the influence of readily labile organic carbon inputs on soil priming effect (PE), microbial community shifts at various depths, and the mechanisms underlying soil PE. The results indicated that the addition of 13C-labeled glucose accelerated the mineralization of soil organic carbon (SOC); CO2 emissions were highest in the 0–20 cm soil layer and decreased trend with increasing soil depth, with significant differences observed across different soil layers (p < 0.05). Soil depth had a positive direct effect on the cumulative priming effect (CPE); however, it showed negative indirect effects through physico-chemical properties and microbial biomass. The CPE of the 0–20 cm soil layer was significantly positively correlated with 13C-Gram-positive bacteria, 13C-Gram-negative bacteria, and 13C-actinomycetes. The CPE of the 20–40 cm and 40–60 cm soil layers exhibited a significant positive correlation with cumulative mineralization (CM) and microbial biomass carbon (MBC). Glucose addition had the largest and most significant positive effect on the CPE. Glucose addition positively affected PLFAs and particularly microbial biomass. This study provides valuable insights into the dynamics of soil carbon pools at varying depths following glucose application, advancing the understanding of forest soil carbon sequestration. Full article
(This article belongs to the Section Environmental Microbiology)
Show Figures

Figure 1

Back to TopTop