Machine Learning-Assisted Sustainable Mix Design of Waste Glass Powder Concrete with Strength–Cost–CO2 Emissions Trade-Offs
Abstract
1. Introduction
2. Methodology
2.1. Database Establishment and Analysis
2.2. ML Models
2.2.1. Ensemble Tree (ET)
2.2.2. Gaussian Process Regression (GPR)
2.2.3. Decision Tree (DT)
2.2.4. Kernel Ridge Regression (KRR)
2.2.5. Artificial Neural Network (ANN)
2.2.6. Support Vector Machine (SVM)
2.2.7. Efficient Linear (EL)
2.3. Bayesian Optimization
2.4. Performance Evaluation Indicators
3. ML Model Training Results and Analysis
3.1. Hyperparameter Optimization Results
3.2. Performance Evaluation of the Model
3.3. Interpretability Analysis of the ET Model
3.3.1. SHAP Analysis
3.3.2. Partial Dependence Plot (PDP)
4. Multi-Objective Optimization (MOO) Model for GPC Mix Design
4.1. Establishment of MOO Model
4.2. Pareto Frontier Analysis
4.3. Optimal Mix Design Results
5. Limitations and Future Research
6. Conclusions
- (1)
- Among Bayesian-optimized ML models, performance ranked as ET > GPR > DT > KRR > ANN > S-VM > EL. The ET model achieved superior accuracy with R2 = 0.954 (0.959), RMSE = 3.157 (2.949), MSE = 9.967 (8.698), and MAE = 2.033 (2.007) on test (training) sets.
- (2)
- SHAP-based interpretability analysis revealed mechanistic insights: compressive strength showed positive correlations with Age, cement, and sand, but negative correlations with gravel, water, and GP. Age and cement emerged as dominant features, while GP’s moderate SHAP values confirmed its contributive role in concrete performance.
- (3)
- The developed MOO model incorporated dual objectives (emissions/cost) and four constraints (strength requirement, variable bounds, volumetric, and water-binder ratio constraints), solved via NSGA-II to effectively balance cost and emissions per m3 across strength grades. Strength constraints ensured that the predicted compressive strength met or exceeded the target design strength, which is crucial for practical applications. Topsis-based selection yielded optimal mixes that simultaneously minimized economic and environmental impacts.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Al Khaffaf, I.; Hawileh, R.A.; Sahoo, S.; Abdalla, J.A.; Kim, J.H. Toward Carbon-Neutral Construction: A Review of Zero-Carbon Concrete. J. Build. Eng. 2025, 99, 111578. [Google Scholar] [CrossRef]
- Kumar, S.; Gangotra, A.; Barnard, M. Towards a Net Zero Cement: Strategic Policies and Systems Thinking for a Low-Carbon Future. Curr. Sustain. Renew. Energy Rep. 2025, 12, 5. [Google Scholar] [CrossRef]
- Benhelal, E.; Shamsaei, E.; Rashid, M.I. Challenges against CO2 Abatement Strategies in Cement Industry: A Review. J. Environ. Sci. 2021, 104, 84–101. [Google Scholar] [CrossRef]
- Ferdous, W.; Manalo, A.; Siddique, R.; Mendis, P.; Zhuge, Y.; Wong, H.S.; Lokuge, W.; Aravinthan, T.; Schubel, P. Recycling of Landfill Wastes (Tyres, Plastics and Glass) in Construction—A Review on Global Waste Generation, Performance, Application and Future Opportunities. Resour. Conserv. Recycl. 2021, 173, 105745. [Google Scholar] [CrossRef]
- Huang, Y.; Chen, Z.; Liu, Y.; Lu, J.-X.; Bian, Z.; Yio, M.; Cheeseman, C.; Wang, F.; Sun Poon, C. Recycling of Waste Glass and Incinerated Sewage Sludge Ash in Glass-Ceramics. Waste Manag. 2024, 174, 229–239. [Google Scholar] [CrossRef]
- Zhang, Q.; Wang, R.; Shen, Y.; Zhan, L.; Xu, Z. An Ignored Potential Microplastic Contamination of a Typical Waste Glass Recycling Base. J. Hazard. Mater. 2022, 422, 126854. [Google Scholar] [CrossRef]
- Li, K. Study on Properties of Reinforced Concrete Structures in Seismic Regions. Ain Shams Eng. J. 2024, 15, 102927. [Google Scholar] [CrossRef]
- Taoufiq, L.; Chourak, M.; Guendouli, E.M.; Arrakhiz, F. Structural Failure of Reinforced Concrete Buildings: The Case of Al Haouz Earthquake on 8 September 2023, Morocco. Structures 2025, 75, 108747. [Google Scholar] [CrossRef]
- Song, J.; Banthia, N.; Yoo, D.-Y. Effect of Supplementary Cementitious Materials on Durability of Ultra-High-Performance Concrete: A Review. Cem. Concr. Compos. 2025, 163, 106198. [Google Scholar] [CrossRef]
- Wang, W.; Ling, H.; Hu, X.; Zhang, J.; Lu, Z.; Guo, Y.; Gu, Y.; Zhao, H. A Review of Coal-Based Solid Waste Cementitious Materials and Their Applications. J. Build. Eng. 2025, 111, 113405. [Google Scholar] [CrossRef]
- Jani, Y.; Hogland, W. Waste Glass in the Production of Cement and Concrete—A Review. J. Environ. Chem. Eng. 2014, 2, 1767–1775. [Google Scholar] [CrossRef]
- Khan, M.d.N.N.; Saha, A.K.; Sarker, P.K. Reuse of Waste Glass as a Supplementary Binder and Aggregate for Sustainable Cement-Based Construction Materials: A Review. J. Build. Eng. 2020, 28, 101052. [Google Scholar] [CrossRef]
- Dey, A.; Rumman, R.; Wakjira, T.G.; Jindal, A.; Bediwy, A.G.; Islam, M.S.; Alam, M.S.; Al Martini, S.; Sabouni, R. Towards Net-Zero Emission: A Case Study Investigating Sustainability Potential of Geopolymer Concrete with Recycled Glass Powder and Gold Mine Tailings. J. Build. Eng. 2024, 86, 108683. [Google Scholar] [CrossRef]
- Nilimaa, J. Smart Materials and Technologies for Sustainable Concrete Construction. Dev. Built Environ. 2023, 15, 100177. [Google Scholar] [CrossRef]
- Schwarz, N.; Cam, H.; Neithalath, N. Influence of a Fine Glass Powder on the Durability Characteristics of Concrete and Its Comparison to Fly Ash. Cem. Concr. Compos. 2008, 30, 486–496. [Google Scholar] [CrossRef]
- Aliabdo, A.A.; Abd Elmoaty, A.E.M.; Aboshama, A.Y. Utilization of Waste Glass Powder in the Production of Cement and Concrete. Constr. Build. Mater. 2016, 124, 866–877. [Google Scholar] [CrossRef]
- Omran, A.; Tagnit-Hamou, A. Performance of Glass-Powder Concrete in Field Applications. Constr. Build. Mater. 2016, 109, 84–95. [Google Scholar] [CrossRef]
- Zhou, Y.; Luo, H.; Anand, K.; Singh, A.; Xie, Y.M. Sustainable Use of Ultrafine Recycled Glass in Additive Manufactured (3D Printed) Reactive Powder Concrete. Constr. Build. Mater. 2024, 419, 135556. [Google Scholar] [CrossRef]
- Shayan, A.; Xu, A. Value-Added Utilisation of Waste Glass in Concrete. Cem. Concr. Res. 2004, 34, 81–89. [Google Scholar] [CrossRef]
- Omran, A.F.; Etienne, D.; Harbec, D.; Tagnit-Hamou, A. Long-Term Performance of Glass-Powder Concrete in Large-Scale Field Applications. Constr. Build. Mater. 2017, 135, 43–58. [Google Scholar] [CrossRef]
- Wang, Y.; Fan, X.; Wu, R.; Lin, H.; Feng, W. Experimental Study on Long-Term Impermeability of Recycled Aggregate Concrete Mixed with Crystalline Admixture and Waste Glass Powder. J. Clean. Prod. 2024, 458, 142551. [Google Scholar] [CrossRef]
- Ibrahim, S.; Meawad, A. Towards Green Concrete: Study the Role of Waste Glass Powder on Cement/Superplasticizer Compatibility. J. Build. Eng. 2022, 47, 103751. [Google Scholar] [CrossRef]
- Elaqra, H.A.; Al-Afghany, M.J.; Abo-Hasseira, A.B.; Elmasry, I.H.; Tabasi, A.M.; Alwan, M.D. Effect of Immersion Time of Glass Powder on Mechanical Properties of Concrete Contained Glass Powder as Cement Replacement. Constr. Build. Mater. 2019, 206, 674–682. [Google Scholar] [CrossRef]
- He, Z.; Zhan, P.; Du, S.; Liu, B.; Yuan, W. Creep Behavior of Concrete Containing Glass Powder. Compos. Part B Eng. 2019, 166, 13–20. [Google Scholar] [CrossRef]
- Mo, J.; Tian, S.; Ren, F.; Ho, J.C.M. Improving the Performance of Crumb Rubber Concrete Using Waste Ultrafine Glass Powder. Structures 2024, 70, 107775. [Google Scholar] [CrossRef]
- Schwarz, N.; Neithalath, N. Influence of a Fine Glass Powder on Cement Hydration: Comparison to Fly Ash and Modeling the Degree of Hydration. Cem. Concr. Res. 2008, 38, 429–436. [Google Scholar] [CrossRef]
- Fallah, S.; Nematzadeh, M. Mechanical Properties and Durability of High-Strength Concrete Containing Macro-Polymeric and Polypropylene Fibers with Nano-Silica and Silica Fume. Constr. Build. Mater. 2017, 132, 170–187. [Google Scholar] [CrossRef]
- Başyiğit, C.; Çomak, B.; Kılınçarslan, Ş.; Serkan Üncü, İ. Assessment of Concrete Compressive Strength by Image Processing Technique. Constr. Build. Mater. 2012, 37, 526–532. [Google Scholar] [CrossRef]
- Wang, J.; Xia, Y.; Zhang, C.; Wang, C.; Xue, B.; Sun, R.; Pan, Y.; Chen, J.; Li, P.; Shi, M.; et al. Evaluation of Compressive Strength of Concrete Durability Degradation in Dry and Wet Environments Using Destructive and Non-Destructive Testing. Measurement 2023, 223, 113702. [Google Scholar] [CrossRef]
- Wang, H.; Wen, B.; Xu, P.; Gao, G.; Zhang, L.; Niu, D. Effect of CO2 Curing on the Strength and Microstructure of Composite Waste Glass Concrete. Constr. Build. Mater. 2025, 463, 140042. [Google Scholar] [CrossRef]
- Asgarian, A.; Roshan, N.; Ghalehnovi, M. The Strength, Microstructure, and Ecological Assessment of Concrete Mix Incorporating Waste Glass Powder and Polypropylene Fiber. Constr. Build. Mater. 2023, 371, 130726. [Google Scholar] [CrossRef]
- Ying, X.; Zhao, X.; Cui, H.; Zhao, J. Recycled Glass Concrete with Cementitious Materials: Study of Mechanical Prediction Model and Dry Shrinkage Mechanism. Constr. Build. Mater. 2024, 438, 137159. [Google Scholar] [CrossRef]
- Ahmed, S.; Al-Dawood, Z.; Abed, F.; Mannan, M.A.; Al-Samarai, M. Impact of Using Different Materials, Curing Regimes, and Mixing Procedures on Compressive Strength of Reactive Powder Concrete—A Review. J. Build. Eng. 2021, 44, 103238. [Google Scholar] [CrossRef]
- Omer, B.; Saeed, J. Investigating the Flexural Strength Characteristics of Reinforced Concrete Beams Utilising Waste Glass Powder as a Sustainable Cement Alternative. Innov. Infrastruct. Solut. 2024, 9, 207. [Google Scholar] [CrossRef]
- Ullah, W.; Bin Inqiad, W.; Ayub, B.; Khan, M.S.; Javed, M.F. An Explainable Machine Learning (XML) Approach to Determine Strength of Glass Powder Concrete. Mater. Today Commun. 2025, 45, 112181. [Google Scholar] [CrossRef]
- Cree, D.; Green, M.; Noumowé, A. Residual Strength of Concrete Containing Recycled Materials after Exposure to Fire: A Review. Constr. Build. Mater. 2013, 45, 208–223. [Google Scholar] [CrossRef]
- Choi, W.-C.; Yun, H.-D. Compressive Behavior of Reinforced Concrete Columns with Recycled Aggregate under Uniaxial Loading. Eng. Struct. 2012, 41, 285–293. [Google Scholar] [CrossRef]
- Wang, S.; Xia, P.; Gong, F.; Zhao, Y.; Lin, P. A Bayesian-Physical Informed Conditional Tabular Generative Adversarial Network Framework for Low-Carbon Concrete Data Augmentation and Hyperparameter Optimization. Eng. Appl. Artif. Intell. 2025, 152, 110811. [Google Scholar] [CrossRef]
- Wang, S.; Wu, R.; Gong, F.; Xia, J.; Zhao, Y.; Zeng, B. Service Life Evaluation of Marine Concrete Structures Considering Spatial and Temporal Characteristics: A Framework Based on Multi Training-MCS-NLS. Eng. Struct. 2025, 322, 119193. [Google Scholar] [CrossRef]
- Wang, S.; Cao, J.; Gong, F.; Peng, Y.; Wang, Z.; Zhao, Y.; Zeng, B. Insights on the Multiple Ions Distribution in Concrete under Stray Current: From Experiments to Multi-Field Simulation. J. Build. Eng. 2024, 98, 111502. [Google Scholar] [CrossRef]
- Zhang, H.; Liu, J.; Wang, S.; Chen, K.; Xu, L.; Ma, J.; Wang, Q. Prediction and Optimization Framework of Shear Strength of Reinforced Concrete Flanged Shear Wall Based on Machine Learning and Non-Dominated Sorting Genetic Algorithm-II. Adv. Struct. Eng. 2025, 28, 275–295. [Google Scholar] [CrossRef]
- Li, Y.; Guan, J.; Guo, L. Peridynamic-Driven Feature-Enhanced Vision Transformer for Predicting Defects and Heterogeneous Materials Locations: Applications of Deep Learning in Inverse Problems. Eng. Appl. Artif. Intell. 2025, 151, 110677. [Google Scholar] [CrossRef]
- Li, Y.; Sun, Z.; Li, Y.; Yang, H.; Liu, X.; He, W. A Vision Transformer-Based Method for Predicting Seismic Damage States of RC Piers: Database Development and Efficient Assessment. Reliab. Eng. Syst. Saf. 2025, 263, 111287. [Google Scholar] [CrossRef]
- Sun, Z.; Wang, X.; Han, T.; Wang, L.; Zhu, Z.; Huang, H.; Ding, J.; Wu, Z. Pipeline Deformation Prediction Based on Multi-Source Monitoring Information and Novel Data-Driven Model. Eng. Struct. 2025, 337, 120461. [Google Scholar] [CrossRef]
- Li, Y.; Sun, Z.; Mangalathu, S.; Li, Y.; Yang, H.; He, W. Seismic Damage States Prediction of In-Service Bridges Using Feature-Enhanced Swin Transformer without Reliance on Damage Indicators. Eng. Appl. Artif. Intell. 2025, 159, 111651. [Google Scholar] [CrossRef]
- Sun, Z.; Wang, X.; Han, T.; Huang, H.; Huang, X.; Wang, L.; Wu, Z. Pipeline Deformation Monitoring Based on Long-Gauge FBG Sensing System: Missing Data Recovery and Deformation Calculation. J. Civil. Struct. Health Monit. 2025. [Google Scholar] [CrossRef]
- Sun, Z.; Li, Y.; Yang, Y.; Su, L.; Xie, S. Splitting Tensile Strength of Basalt Fiber Reinforced Coral Aggregate Concrete: Optimized XGBoost Models and Experimental Validation. Constr. Build. Mater. 2024, 416, 135133. [Google Scholar] [CrossRef]
- Wang, K.; Shen, T.; Wei, J.; Liu, J.; Hu, W. An Intelligent Framework for Deriving Formulas of Aerodynamic Forces between High-Rise Buildings under Interference Effects Using Symbolic Regression Algorithms. J. Build. Eng. 2025, 99, 111614. [Google Scholar] [CrossRef]
- Wei, J.; Shen, T.; Wang, K.; Liu, J.; Wang, S.; Hu, W. Transfer Learning Framework for the Wind Pressure Prediction of High-Rise Building Surfaces Using Wind Tunnel Experiments and Machine Learning. Build. Environ. 2025, 271, 112620. [Google Scholar] [CrossRef]
- Xu, Q.; Li, J.; Fan, Y.; Gao, Z.; Wang, Z.; Xu, L.; Wang, S.; Liu, J. Intelligent Prediction Framework for Axial Compressive Capacity of FRP-RACFST Columns. Mater. Today Commun. 2024, 41, 110999. [Google Scholar] [CrossRef]
- Bagher Shemirani, A. Prediction of Fracture Toughness of Concrete Using the Machine Learning Approach. Theor. Appl. Fract. Mech. 2024, 134, 104749. [Google Scholar] [CrossRef]
- Li, H.; Shi, J.; Li, H.; Tian, G.; Zhang, Z.; Wang, Y.; Zhang, J. A Methodological Study of Slump Prediction and Optimisation of Radioprotective Serpentine Concrete. Constr. Build. Mater. 2024, 451, 138706. [Google Scholar] [CrossRef]
- Gan, X.; Wang, W.; Jiang, C.; Ye, L.; Chen, F.; Zhou, T.; Zhao, Y. Ultrasonic Detection and Deep Learning for High-Precision Concrete Strength Prediction. J. Build. Eng. 2025, 104, 112372. [Google Scholar] [CrossRef]
- Pal, A.; Ahmed, K.S.; Hossain, F.Z.; Alam, M.S. Machine Learning Models for Predicting Compressive Strength of Fiber-Reinforced Concrete Containing Waste Rubber and Recycled Aggregate. J. Clean. Prod. 2023, 423, 138673. [Google Scholar] [CrossRef]
- Wang, Q.; Dai, R.; Zhang, H.; Zheng, H.; Liang, X. Machine Learning-Based Prediction Method for Drying Shrinkage of Recycled Aggregate Concrete. J. Build. Eng. 2024, 96, 110493. [Google Scholar] [CrossRef]
- Zhang, B.; Pan, L.; Chang, X.; Wang, Y.; Liu, Y.; Jie, Z.; Ma, H.; Shi, C.; Guo, X.; Xue, S.; et al. Sustainable Mix Design and Carbon Emission Analysis of Recycled Aggregate Concrete Based on Machine Learning and Big Data Methods. J. Clean. Prod. 2025, 489, 144734. [Google Scholar] [CrossRef]
- Hosseinzadeh, M.; Dehestani, M.; Hosseinzadeh, A. Prediction of Mechanical Properties of Recycled Aggregate Fly Ash Concrete Employing Machine Learning Algorithms. J. Build. Eng. 2023, 76, 107006. [Google Scholar] [CrossRef]
- Sun, Y.; Lee, H.S. An Interpretable Probabilistic Machine Learning Model for Forecasting Compressive Strength of Oil Palm Shell-Based Lightweight Aggregate Concrete Containing Fly Ash or Silica Fume. Constr. Build. Mater. 2024, 426, 136176. [Google Scholar] [CrossRef]
- Liu, L.; Lyu, Y.; Zhou, J.; Zhao, Y.; Sun, W. Effect and Mechanism of the Salt-Alkali Composite for the Improvement of the Early Mechanical Properties of High-Content Fly Ash-Based Filling Materials. Constr. Build. Mater. 2025, 464, 140138. [Google Scholar] [CrossRef]
- Sarfarazi, S.; Mascolo, I.; Modano, M.; Guarracino, F. Application of Artificial Intelligence to Support Design and Analysis of Steel Structures. Metals 2025, 15, 408. [Google Scholar] [CrossRef]
- Ishaq, M.B.; Mohammed, A.S.; Mohammed, A.A. Novel Exploration of Chemical Compounds in Mono-Variate, Bi-Variate, and Multi-Variate Scenarios of Waste Glass Powder as a Cement Replacement in Concrete. Sustain. Chem. Pharm. 2025, 43, 101894. [Google Scholar] [CrossRef]
- Alahmari, T.S.; Kabbo, M.d.K.I.; Sobuz, M.d.H.R.; Rahman, S.A. Experimental Assessment and Hybrid Machine Learning-Based Feature Importance Analysis with the Optimization of Compressive Strength of Waste Glass Powder-Modified Concrete. Mater. Today Commun. 2025, 44, 112081. [Google Scholar] [CrossRef]
- Miao, X.; Chen, B.; Zhao, Y. Prediction of Compressive Strength of Glass Powder Concrete Based on Artificial Intelligence. J. Build. Eng. 2024, 91, 109377. [Google Scholar] [CrossRef]
- Huang, D.; Han, G.; Tang, Z. Optimizing Concrete Strength: How Nanomaterials and AI Redefine Mix Design. Case Stud. Constr. Mater. 2025, 22, e04838. [Google Scholar] [CrossRef]
- Liu, Z.; Zhao, Y.-G.; Ma, L.; Lin, S. Review on High-Strength Recycled Aggregate Concrete: Mix Design, Properties, Models and Structural Behaviour. Structures 2024, 64, 106598. [Google Scholar] [CrossRef]
- Wang, Z.; Wu, B. A Mix Design Method for Self-Compacting Recycled Aggregate Concrete Targeting Slump-Flow and Compressive Strength. Constr. Build. Mater. 2023, 404, 133309. [Google Scholar] [CrossRef]
- Lei, T.; Qiu, J.; Li, L.; Huo, Y.; Zhang, T. Study on Properties of Basalt Fiber Coal Gangue Concrete Modified by Supplementary Cementitious Materials: Mechanics, Durability, Microstructure. J. Build. Eng. 2025, 104, 112271. [Google Scholar] [CrossRef]
- Tam, V.W.Y.; Tam, C.M. A Review on the Viable Technology for Construction Waste Recycling. Resour. Conserv. Recycl. 2006, 47, 209–221. [Google Scholar] [CrossRef]
- Reiter, L.; Wangler, T.; Anton, A.; Flatt, R.J. Setting on Demand for Digital Concrete—Principles, Measurements, Chemistry, Validation. Cem. Concr. Res. 2020, 132, 106047. [Google Scholar] [CrossRef]
- Gu, B.; Li, Q.; Li, C.; Zhao, P.; Hou, P.; Chen, H.; Wang, Y.; Zhao, P.; Cheng, X. Optimization Design of Ultra-Fine Supplementary Cementitious Materials Ultra-High Performance Concrete Mix Proportion Based on Orthogonal Experiment. Constr. Build. Mater. 2024, 453, 139018. [Google Scholar] [CrossRef]
- Wang, C.; Wang, J.; Liu, X.; Cai, Y.; Zhang, Y. Orthogonal Experimental Design for Compressive Strength of Recycled Coarse Aggregate Concrete with Silica Fume-Slag-Fly Ash Hybrid Micro-Powders. Constr. Build. Mater. 2023, 408, 133669. [Google Scholar] [CrossRef]
- Hendi, A.; Mostofinejad, D.; Sedaghatdoost, A.; Zohrabi, M.; Naeimi, N.; Tavakolinia, A. Mix Design of the Green Self-Consolidating Concrete: Incorporating the Waste Glass Powder. Constr. Build. Mater. 2019, 199, 369–384. [Google Scholar] [CrossRef]
- Kalakada, Z.; Doh, J.H.; Zi, G. Utilisation of Coarse Glass Powder as Pozzolanic Cement—A Mix Design Investigation. Constr. Build. Mater. 2020, 240, 117916. [Google Scholar] [CrossRef]
- Luo, X.; Xing, G.; Qiao, L.; Miao, P.; Yu, X.; Ma, K. Multi-Objective Optimization of the Mix Proportion for Dune Sand Concrete Based on Response Surface Methodology. Constr. Build. Mater. 2023, 366, 129928. [Google Scholar] [CrossRef]
- Li, Y.; Li, Y.; Liu, J.; Li, W.; She, L. Optimization of Some Properties of Hydraulic Asphalt Concrete Mix Using RSM and NSGA-II. Constr. Build. Mater. 2024, 438, 137317. [Google Scholar] [CrossRef]
- Shang, X.; Zhang, L.; Chang, J.; Jiao, Y.; Gong, B.; Yang, J.; Zhong, R. Mix Proportion Design and Life Cycle Assessment of Ultra-High-Performance Lightweight Concrete with Hollow Microspheres. Constr. Build. Mater. 2024, 449, 138462. [Google Scholar] [CrossRef]
- DeRousseau, M.A.; Kasprzyk, J.R.; Srubar, W.V. Computational Design Optimization of Concrete Mixtures: A Review. Cem. Concr. Res. 2018, 109, 42–53. [Google Scholar] [CrossRef]
- Shobeiri, V.; Bennett, B.; Xie, T.; Visintin, P. Mix Design Optimization of Waste-Based Aggregate Concrete for Natural Resource Utilization and Global Warming Potential. J. Clean. Prod. 2024, 449, 141756. [Google Scholar] [CrossRef]
- Yuan, Z.; Zheng, W.; Qiao, H. Machine Learning Based Optimization for Mix Design of Manufactured Sand Concrete. Constr. Build. Mater. 2025, 467, 140256. [Google Scholar] [CrossRef]
- Ren, Q.; Ding, L.; Dai, X.; Li, C.; Li, C.; Jiang, Z. Optimizing Mix Design of Concrete with Manufactured Sand for Low Embodied Carbon and Desired Strength Using Machine Learning. Constr. Build. Mater. 2024, 457, 139407. [Google Scholar] [CrossRef]
- Fan, M.; Li, Y.; Shen, J.; Jin, K.; Shi, J. Multi-Objective Optimization Design of Recycled Aggregate Concrete Mixture Proportions Based on Machine Learning and NSGA-II Algorithm. Adv. Eng. Softw. 2024, 192, 103631. [Google Scholar] [CrossRef]
- Deng, Q.; Xiao, J.; Duan, Z.; Li, L.; Guan, X. An Intelligent Mix Design System for Sustainable Concrete Containing Multi-Source Recycled Aggregate. J. Build. Eng. 2024, 96, 110566. [Google Scholar] [CrossRef]
- Wang, D.; Ji, Y.; Xu, W.; Lu, J.; Dong, Q. Multi-Objective Optimization Design of Recycled Concrete Based on the Physical Characteristics of Aggregate. Constr. Build. Mater. 2025, 458, 139623. [Google Scholar] [CrossRef]
- Wakjira, T.G.; Kutty, A.A.; Alam, M.S. A Novel Framework for Developing Environmentally Sustainable and Cost-Effective Ultra-High-Performance Concrete (UHPC) Using Advanced Machine Learning and Multi-Objective Optimization Techniques. Constr. Build. Mater. 2024, 416, 135114. [Google Scholar] [CrossRef]
- Ebrahim, A.F. Design Optimization of High-Performance, Cost-Efficient Concrete Enhanced with Nano-CNTs: A Hybrid Approach Using Machine Learning and NSGA-II. Mater. Today Commun. 2025, 45, 112251. [Google Scholar] [CrossRef]
- Cao, Y.; Zhao, P.; Chen, H.; Liu, Y.; Luo, H.; Qin, Y. Application of Hybrid Intelligent Algorithm for Multi-Objective Optimization of High Performance Concrete in Complex Alpine Environment Highway. Constr. Build. Mater. 2023, 406, 133376. [Google Scholar] [CrossRef]
- Zheng, W.; Shui, Z.; Xu, Z.; Gao, X.; Zhang, S. Multi-Objective Optimization of Concrete Mix Design Based on Machine Learning. J. Build. Eng. 2023, 76, 107396. [Google Scholar] [CrossRef]
- Cao, Y.; Su, F.; Antwi-Afari, M.F.; Lei, J.; Wu, X.; Liu, Y. Enhancing Mix Proportion Design of Low Carbon Concrete for Shield Segment Using a Combination of Bayesian Optimization-NGBoost and NSGA-III Algorithm. J. Clean. Prod. 2024, 465, 142746. [Google Scholar] [CrossRef]
- Wang, S.; Xia, P.; Gong, F.; Zeng, Q.; Chen, K.; Zhao, Y. Multi Objective Optimization of Recycled Aggregate Concrete Based on Explainable Machine Learning. J. Clean. Prod. 2024, 445, 141045. [Google Scholar] [CrossRef]
- Wang, S.; Chen, K.; Liu, J.; Xia, P.; Xu, L.; Chen, B.; Wu, D.; Chen, W. Multi-Performance Optimization of Low-Carbon Geopolymer Considering Mechanical, Cost, and CO2 Emission Based on Experiment and Interpretable Learning. Constr. Build. Mater. 2024, 425, 136013. [Google Scholar] [CrossRef]
- Le Nguyen, K.; Uddin, M.; Pham, T.M. Generative Artificial Intelligence and Optimisation Framework for Concrete Mixture Design with Low Cost and Embodied Carbon Dioxide. Constr. Build. Mater. 2024, 451, 138836. [Google Scholar] [CrossRef]
- Sun, B.; Wang, P.; Guo, J.; Zheng, Y.; Zhang, P.; Wang, J.; Tan, J. Intelligent Mix Design of Steel Fiber Reinforced Concrete Using a Particle Swarm Algorithm Based on a Multi-Objective Optimization Model. J. Build. Eng. 2024, 96, 110653. [Google Scholar] [CrossRef]
- Ahmed, T.; Ali, M.; Akmal, U.; Aslam, F.; Abbass, W.; Aziz, M.; Hamza, M.; Shah, I.; Shah, H.A. Coupled Effect of Waste Glass Powder and Glass Fibers on Mechanical Properties of Concrete: A Step towards the Elimination of Non-biodegradable Waste. Struct. Concr. 2023, 24, 7603–7624. [Google Scholar] [CrossRef]
- Mustafa, T.S.; Mahmoud, A.A.; Mories, E.M.; El Beshlawy, S.A. Flexural Behavior of Reinforced Concrete Slabs Containing Recycled Glass Powder and Steel Fibers. Structures 2023, 54, 1491–1508. [Google Scholar] [CrossRef]
- Kim, I.S.; Choi, S.Y.; Yang, E.I. Evaluation of Durability of Concrete Substituted Heavyweight Waste Glass as Fine Aggregate. Constr. Build. Mater. 2018, 184, 269–277. [Google Scholar] [CrossRef]
- Bisht, K.; Ramana, P.V. Sustainable Production of Concrete Containing Discarded Beverage Glass as Fine Aggregate. Constr. Build. Mater. 2018, 177, 116–124. [Google Scholar] [CrossRef]
- Ismail, Z.Z.; AL-Hashmi, E.A. Recycling of Waste Glass as a Partial Replacement for Fine Aggregate in Concrete. Waste Manag. 2009, 29, 655–659. [Google Scholar] [CrossRef]
- Omer, B.; Saeed, J. Long-Term Effect of Different Particle Size Distributions of Waste Glass Powder on the Mechanical Properties of Concrete. Archit. Civ. Eng. Environ. 2020, 13, 61–75. [Google Scholar] [CrossRef]
- Patel, D.; Shrivastava, R.; Tiwari, R.P.; Yadav, R.K. The Role of Glass Powder in Concrete with Respect to Its Engineering Performances Using Two Closely Different Particle Sizes. Struct. Concr. 2021, 22, E228–E244. [Google Scholar] [CrossRef]
- Abdalla, A.H.; Yahia, A.; Tagnit-Hamou, A. Statistical Modeling of Mechanical and Transport Properties of Concrete Incorporating Glass Powder. J. Sustain. Cem.-Based Mater. 2021, 10, 111–128. [Google Scholar] [CrossRef]
- Jurczak, R.; Szmatuła, F.; Rudnicki, T.; Korentz, J. Effect of Ground Waste Glass Addition on the Strength and Durability of Low Strength Concrete Mixes. Materials 2021, 14, 190. [Google Scholar] [CrossRef]
- García Del Toro, E.M.; Alcala-Gonzalez, D.; Más-López, M.I.; García-Salgado, S.; Pindado, S. Use of Ecofriendly Glass Powder Concrete in Construction of Wind Farms. Appl. Sci. 2021, 11, 3050. [Google Scholar] [CrossRef]
- Abendeh, R.M.; AbuSalem, Z.T.; Bani Baker, M.I.; Khedaywi, T.S. Concrete Containing Recycled Waste Glass: Strength and Resistance to Freeze–Thaw Action. Proc. Inst. Civ. Eng.-Constr. Mater. 2021, 174, 75–87. [Google Scholar] [CrossRef]
- Arivalagan, S.; Sethuraman, V.S. Experimental Study on the Mechanical Properties of Concrete by Partial Replacement of Glass Powder as Fine Aggregate: An Environmental Friendly Approach. Mater. Today Proc. 2021, 45, 6035–6041. [Google Scholar] [CrossRef]
- Yusuf, M.O.; Al-Sodani, K.A.A.; Adewumi, A.A.; Alateah, A.H.; Al-Tholaia, M.M.H.; Shamsah, S.M.I.; Qazi, U.Y.; Alanazi, G.D.S. Microstructural Characteristics, Modeling of Mechanical Strength and Thermal Performance of Industrial Waste Glass Blended Concrete. Appl. Sci. 2022, 12, 8600. [Google Scholar] [CrossRef]
- Khan, F.A.; Shahzada, K.; Sami Ullah, Q.; Fahim, M.; Khan, S.W.; Badrashi, Y.I. Development of Environment-Friendly Concrete through Partial Addition of Waste Glass Powder (WGP) as Cement Replacement. Civ. Eng. J. 2020, 6, 2332–2343. [Google Scholar] [CrossRef]
- Ibrahim, K.I.M. Recycled Waste Glass Powder as a Partial Replacement of Cement in Concrete Containing Silica Fume and Fly Ash. Case Stud. Constr. Mater. 2021, 15, e00630. [Google Scholar] [CrossRef]
- Ibrahim, K. Recycled Waste Glass [WG] in Concrete. GJES 2020, 6, 000627. [Google Scholar] [CrossRef]
- Metwally, I.M. Investigations on the Performance of Concrete Made with Blended Finely Milled Waste Glass. Adv. Struct. Eng. 2007, 10, 47–53. [Google Scholar] [CrossRef]
- Nassar, R.-U.-D.; Soroushian, P. Field Investigation of Concrete Incorporating Milled Waste Glass. J. Solid Waste Technol. Manag. 2011, 37, 307–319. [Google Scholar] [CrossRef]
- Elaqra, H.A.; Haloub, M.A.A.; Rustom, R.N. Effect of New Mixing Method of Glass Powder as Cement Replacement on Mechanical Behavior of Concrete. Constr. Build. Mater. 2019, 203, 75–82. [Google Scholar] [CrossRef]
- Du, H.; Tan, K.H. Properties of High Volume Glass Powder Concrete. Cem. Concr. Compos. 2017, 75, 22–29. [Google Scholar] [CrossRef]
- Islam, G.M.S.; Rahman, M.H.; Kazi, N. Waste Glass Powder as Partial Replacement of Cement for Sustainable Concrete Practice. Int. J. Sustain. Built Environ. 2017, 6, 37–44. [Google Scholar] [CrossRef]
- Du, H.; Tan, K.H. Concrete with Recycled Glass as Fine Aggregates. ACI Mater. J. 2014, 111, 47–57. [Google Scholar] [CrossRef]
- Limbachiya, M.C. Bulk Engineering and Durability Properties of Washed Glass Sand Concrete. Constr. Build. Mater. 2009, 23, 1078–1083. [Google Scholar] [CrossRef]
- Du, H.; Tan, K.H. Waste Glass Powder as Cement Replacement in Concrete. ACT 2014, 12, 468–477. [Google Scholar] [CrossRef]
- Kamali, M.; Ghahremaninezhad, A. Effect of Glass Powders on the Mechanical and Durability Properties of Cementitious Materials. Constr. Build. Mater. 2015, 98, 407–416. [Google Scholar] [CrossRef]
- Zhou, M.; Ke, G. Experiment and its prediction artificial neural networks model study on the compressive strength of waste glass concrete. Concrete 2016, 54–56. [Google Scholar] [CrossRef]
- Liu, G.; Jin, D.; Dai, C.; Gao, P. Mechanical Properties of Glass Powder-Modified Concrete. J. Henan Univ. Sci. Technol. (Nat. Sci.) 2018, 39, 59–62, 7–8. [Google Scholar] [CrossRef]
- Muhedin, D.A.; Ibrahim, R.K. Effect of Waste Glass Powder as Partial Replacement of Cement & Sand in Concrete. Case Stud. Constr. Mater. 2023, 19, e02512. [Google Scholar] [CrossRef]
- Shahriari, B.; Swersky, K.; Wang, Z.; Adams, R.P.; De Freitas, N. Taking the Human Out of the Loop: A Review of Bayesian Optimization. Proc. IEEE 2016, 104, 148–175. [Google Scholar] [CrossRef]
- Song, H.; Ahmad, A.; Farooq, F.; Ostrowski, K.A.; Maślak, M.; Czarnecki, S.; Aslam, F. Predicting the Compressive Strength of Concrete with Fly Ash Admixture Using Machine Learning Algorithms. Constr. Build. Mater. 2021, 308, 125021. [Google Scholar] [CrossRef]
- Seifi, F.; Azizi, M.J.; Akhavan Niaki, S.T. A Data-Driven Robust Optimization Algorithm for Black-Box Cases: An Application to Hyper-Parameter Optimization of Machine Learning Algorithms. Comput. Ind. Eng. 2021, 160, 107581. [Google Scholar] [CrossRef]
- Zhang, Y.; Xu, X. Modulus of Elasticity Predictions through LSBoost for Concrete of Normal and High Strength. Mater. Chem. Phys. 2022, 283, 126007. [Google Scholar] [CrossRef]
- Fan, X.; Lv, S.; Xia, C.; Ge, D.; Liu, C.; Lu, W. Strength Prediction of Asphalt Mixture under Interactive Conditions Based on BPNN and SVM. Case Stud. Constr. Mater. 2024, 21, e03489. [Google Scholar] [CrossRef]
- Yavuz, D.; Akbulut, Z.F.; Guler, S. An Experimental Investigation of Hydraulic and Early and Later-Age Mechanical Properties of Eco-Friendly Porous Concrete Containing Waste Glass Powder and Fly Ash. Constr. Build. Mater. 2024, 418, 135312. [Google Scholar] [CrossRef]
- Sun, J.; Yue, L.; Xu, K.; He, R.; Yao, X.; Chen, M.; Cai, T.; Wang, X.; Wang, Y. Multi-Objective Optimisation for Mortar Containing Activated Waste Glass Powder. J. Mater. Res. Technol. 2022, 18, 1391–1411. [Google Scholar] [CrossRef]
- Huang, B.; Zeng, L.; Wang, C.; Sun, L.; Hu, G. Multi-Objective Optimization of Concrete Mixture Proportions Based on Bi-LSTM and Improved NSGAIII. Mater. Rep. 2024, 0910, 006. Available online: https://link.cnki.net/urlid/50.1078.tb.20241205.0910.006 (accessed on 4 February 2025).
- Yin, P.; Li, J. Effect of Waste Glass Powder on Properties and Micro Pore Structure of Foamed Concrete and Its Value Engineering Analysis. Bull. Chin. Ceram. Soc. 2024, 43, 1021–1029. [Google Scholar] [CrossRef]
- Lai, Y.; Ke, K.; Wang, L.; Wang, L. BIM-Based Intelligent Optimization of Complex Steel Joints Using SVM and NSGA-II. J. Constr. Steel Res. 2024, 223, 109086. [Google Scholar] [CrossRef]
- Wu, C.; Pan, H.; Luo, Z.; Liu, C.; Huang, H. Multi-Objective Optimization of Residential Building Energy Consumption, Daylighting, and Thermal Comfort Based on BO-XGBoost-NSGA-II. Build. Environ. 2024, 254, 111386. [Google Scholar] [CrossRef]
- Zhao, B.; Hu, M.; Ao, X.; Chen, N.; Xuan, Q.; Jiao, D.; Pei, G. Performance Analysis of a Hybrid System Combining Photovoltaic and Nighttime Radiative Cooling. Appl. Energy 2019, 252, 113432. [Google Scholar] [CrossRef]
- Ye, B.; Zhang, Y.; Han, J.; Pan, P. Effect of Water to Binder Ratio and Sand to Binder Ratio on Shrinkage and Mechanical Properties of High-Strength Engineered Cementitious Composite. Constr. Build. Mater. 2019, 226, 899–909. [Google Scholar] [CrossRef]
Ref. | CE (kg/m3) | W (kg/m3) | GA (kg/m3) | S (kg/m3) | GP (kg/m3) | AGE (d) | CS (MPa) |
---|---|---|---|---|---|---|---|
[93] | 221.25–295 | 132.75 | 620 | 502 | 0–737.75 | 28 | 25.32–34.2 |
[94] | 280–400 | 160–175 | 976–1200 | 720–808 | 0–70 | 7–90 | 19.7–60 |
[95] | 315–477 | 167–173 | 998–1008 | 0–792 | 0–914 | 7–91 | 17.7–33.4 |
[16] | 262.5–450 | 157.5–175 | 992–1084 | 661–723 | 0–112.5 | 7–56 | 25.3–56 |
[96] | 379.11 | 151.64 | 1107 | 588.45–799.92 | 0–191.98 | 7–90 | 23.8–46.5 |
[97] | 380 | 201 | 1020 | 572–715 | 0–143 | 3–28 | 26.9–45.9 |
[98] | 297.9–490 | 178.74–200.9 | 776.31–848 | 822.51–956.64 | 0–73.5 | 28–180 | 41.22–67.56 |
[99] | 341–426 | 143.22–178.92 | 1128 | 713 | 0–85 | 7–90 | 36–58.87 |
[100] | 182–372 | 99–263 | 1039–1096 | 391–873 | 0–182 | 1–365 | 2.4–76.3 |
[101] | 200 | 146–174 | 880 | 900 | 0–90 | 7–28 | 13–29.9 |
[102] | 75.9–379.5 | 184 | 1160 | 740 | 0–264 | 2–180 | 0.5–40.4 |
[103] | 313.85–369.23 | 156.93–184.62 | 1200 | 516.92–646.15 | 0–129.23 | 7–60 | 19.2–32.8 |
[104] | 457.66 | 205.95 | 1199.74 | 385.04–550.06 | 0–165.02 | 7–28 | 15.34–26.88 |
[105] | 245–350 | 147 | 1120–1128 | 735–767 | 0–105 | 3–90 | 12–63 |
[106] | 218.2–375 | 206 | 979 | 761 | 0–131.25 | 3–84 | 3.16–26.5 |
[21] | 248.5–355 | 163 | 1185 | 625 | 0–106.5 | 3–180 | 16.2–41.68 |
[107] | 320–400 | 200 | 1188 | 594 | 0–80 | 28 | 26.28–36.06 |
[108] | 400 | 200 | 594–1188 | 594 | 0–594 | 28 | 28.09–38.87 |
[109] | 280–350 | 112–140 | 1281–1293 | 643–649 | 0–70 | 7–91 | 20.01–45.04 |
[110] | 240–312 | 141 | 1063 | 799 | 0–72 | 7–270 | 20.91–50.11 |
[111] | 210–300 | 215 | 1200 | 600 | 0–90 | 2–90 | 8.22–28.01 |
[112] | 152–380 | 185 | 825 | 913–960 | 0–228 | 7–365 | 22.91–62.23 |
[113] | 333.75–445 | 215 | 1005 | 625 | 0–111.25 | 7–365 | 27.02–61.27 |
[114] | 378–578 | 185 | 1048 | 0–741 | 0–741 | 7–90 | 45.82–95.82 |
[115] | 275–355 | 185 | 1290–1300 | 312.5–670 | 0–335 | 3–365 | 10.93–59.58 |
[116] | 152–380 | 185 | 825 | 907–960 | 0–228 | 7–91 | 26.14–63.14 |
[117] | 255.85–320 | 160 | 1020.94 | 782.26 | 0–64.15 | 7–91 | 24.87–52.19 |
[118] | 152.75–354 | 164.5–166.38 | 1246–1313 | 563–729 | 0–123.9 | 7–120 | 10.2–39.3 |
[119] | 170–340 | 170 | 1224–1247 | 560–720 | 0–170 | 7–28 | 10.4–37.8 |
[120] | 372–465 | 200 | 1030 | 715 | 0–93 | 7–90 | 25–65 |
Data Type | Mean | Standard Deviation | Minimum | Maximum |
---|---|---|---|---|
CE | 329.1448 | 80.0057 | 75.9 | 578 |
W | 174.9617 | 22.3842 | 99 | 263 |
GA | 1106.909 | 133.2771 | 594 | 1313 |
S | 654.9478 | 152.055 | 0 | 960 |
GP | 89.52323 | 119.5525 | 0 | 914 |
Age | 53.58059 | 74.85395 | 1 | 365 |
CS | 34.37651 | 14.43581 | 0.5 | 95.82 |
Index | Formula | |
---|---|---|
R2 | (2) | |
MSE | (3) | |
RMSE | (4) | |
MAE | (5) |
ML Model | Hyperparameter | Search Range | Optimal Hyperparameters |
---|---|---|---|
ET | Ensemble Method | [Bag, LSBoost] | LSBoost |
Minimum Leaf Size | [1–418] | 9 | |
Number of Learners | [10–500] | 491 | |
Learning Rate | [0.001–1] | 0.11128 | |
GPR | Sigma | [0.0001–147.6161] | 134.3861 |
Basis Function | [Constant, Zero, Linear] | Constant | |
Kernel Scale | [0.001–1000] | 0.21846 | |
Standardize Data | [True, False] | True | |
DT | Minimum Leaf Size | [1–418] | 2 |
KRR | Learner | [SVM, Least Squares Kernel] | Least Squares Kernel |
Kernel Scale | [0.001–1000] | 877.3523 | |
Regularization Strength | [1.192 × 10−6–1.1962] | 4.8953 × 10−6 | |
Extension Dimension | [100–10,000] | 556 | |
Standardize Data | [True, False] | True | |
ANN | Fully Connected Layers | [1–3] | 3 |
First Layer Size | [1–300] | 293 | |
Second Layer Size | [1–300] | 1 | |
Third Layer Size | [1–300] | 252 | |
Regularization Strength | [1.192 × 10−8–119.6172] | 0.00010326 | |
SVM | Box Constraint | [0.001–1000] | 0.10065 |
Kernel Function | [0.001–1000] | Linear | |
Epsilon | [0.013141–1314.1216] | 0.04278 | |
EL | Learner | [SVM, Least Squares] | Least Squares |
ML Model | R2 | RMSE | MSE | MAE | ||||
---|---|---|---|---|---|---|---|---|
Train | Test | Train | Test | Train | Test | Train | Test | |
ET | 0.954 | 0.959 | 3.157 | 2.949 | 9.967 | 8.698 | 2.033 | 2.007 |
GPR | 0.927 | 0.924 | 3.998 | 4.011 | 15.982 | 16.091 | 2.561 | 2.616 |
DT | 0.802 | 0.848 | 6.578 | 5.675 | 43.272 | 32.203 | 4.149 | 4.078 |
KRR | 0.736 | 0.711 | 7.600 | 7.815 | 57.767 | 61.068 | 5.530 | 5.719 |
ANN | 0.558 | 0.556 | 9.824 | 9.698 | 96.503 | 94.056 | 7.488 | 7.506 |
SVM | 0.542 | 0.558 | 9.991 | 9.727 | 99.814 | 94.607 | 7.516 | 7.210 |
EL | 0.356 | 0.050 | 11.866 | 14.182 | 140.801 | 201.119 | 8.836 | 10.716 |
Input | Cement | Water | Gravel | Sand | GP |
---|---|---|---|---|---|
Cost ($/kg) | 0.113 | 0.00072 | 0.01 | 0.019 | 0.087 |
CO2 (kg/m3) | 0.927 | 0.00013 | 0.022 | 0.00987 | 0.1664 |
Density (kg/m3) | 3150 | 1000 | 2500 | 2650 | 2450 |
Design Strength (MPa) | Optimal Mix Ratio | Pareto Front | W/B | Replacement Rate | |||||
---|---|---|---|---|---|---|---|---|---|
Cement (kg) | Water (kg) | Gravel (kg) | Sand (kg) | GP (kg) | Cost ($/m3) | CO2 Emissions (kg) | |||
15 | 75.90 | 185.22 | 1053.61 | 464.88 | 230.50 | 48.14 | 136.51 | 0.605 | 75.23% |
20 | 138.60 | 187.39 | 1043.51 | 480.21 | 198.60 | 52.64 | 189.25 | 0.556 | 58.90% |
25 | 180.63 | 188.97 | 1047.20 | 464.62 | 185.32 | 55.97 | 225.93 | 0.516 | 50.64% |
30 | 208.87 | 156.61 | 1034.84 | 552.16 | 173.20 | 59.62 | 250.68 | 0.410 | 45.33% |
35 | 237.50 | 142.37 | 1091.40 | 587.59 | 158.60 | 62.80 | 276.38 | 0.359 | 40.04% |
40 | 271.46 | 136.12 | 1049.43 | 615.83 | 148.70 | 65.89 | 305.57 | 0.324 | 35.39% |
45 | 314.18 | 130.09 | 993.88 | 663.81 | 140.00 | 70.31 | 342.97 | 0.286 | 30.83% |
50 | 352.40 | 133.95 | 844.28 | 707.32 | 126.31 | 72.80 | 373.27 | 0.280 | 26.39% |
55 | 376.50 | 126.01 | 848.64 | 773.65 | 113.25 | 75.67 | 394.18 | 0.257 | 23.12% |
60 | 412.56 | 116.53 | 889.09 | 829.36 | 123.91 | 80.71 | 419.18 | 0.217 | 23.10% |
65 | 451.40 | 119.46 | 735.49 | 837.08 | 116.70 | 84.45 | 462.35 | 0.210 | 20.54% |
70 | 487.28 | 118.05 | 665.82 | 872.96 | 136.70 | 90.27 | 497.73 | 0.189 | 21.91% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Peng, J.; Wang, Z.; Xi, M.; Liu, J.; Xu, L. Machine Learning-Assisted Sustainable Mix Design of Waste Glass Powder Concrete with Strength–Cost–CO2 Emissions Trade-Offs. Buildings 2025, 15, 2640. https://doi.org/10.3390/buildings15152640
Zhang Y, Peng J, Wang Z, Xi M, Liu J, Xu L. Machine Learning-Assisted Sustainable Mix Design of Waste Glass Powder Concrete with Strength–Cost–CO2 Emissions Trade-Offs. Buildings. 2025; 15(15):2640. https://doi.org/10.3390/buildings15152640
Chicago/Turabian StyleZhang, Yuzhuo, Jiale Peng, Zi Wang, Meng Xi, Jinlong Liu, and Lei Xu. 2025. "Machine Learning-Assisted Sustainable Mix Design of Waste Glass Powder Concrete with Strength–Cost–CO2 Emissions Trade-Offs" Buildings 15, no. 15: 2640. https://doi.org/10.3390/buildings15152640
APA StyleZhang, Y., Peng, J., Wang, Z., Xi, M., Liu, J., & Xu, L. (2025). Machine Learning-Assisted Sustainable Mix Design of Waste Glass Powder Concrete with Strength–Cost–CO2 Emissions Trade-Offs. Buildings, 15(15), 2640. https://doi.org/10.3390/buildings15152640