Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (146)

Search Parameters:
Keywords = carbon capture systems (CCS)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 1827 KiB  
Article
System Dynamics Modeling of Cement Industry Decarbonization Pathways: An Analysis of Carbon Reduction Strategies
by Vikram Mittal and Logan Dosan
Sustainability 2025, 17(15), 7128; https://doi.org/10.3390/su17157128 - 6 Aug 2025
Abstract
The cement industry is a significant contributor to global carbon dioxide emissions, primarily due to the energy demands of its production process and its reliance on clinker, a material formed through the high-temperature calcination of limestone. Strategies to reduce emissions include the adoption [...] Read more.
The cement industry is a significant contributor to global carbon dioxide emissions, primarily due to the energy demands of its production process and its reliance on clinker, a material formed through the high-temperature calcination of limestone. Strategies to reduce emissions include the adoption of low-carbon fuels, the use of carbon capture and storage (CCS) technologies, and the integration of supplementary cementitious materials (SCMs) to reduce the clinker content. The effectiveness of these measures depends on a complex set of interactions involving technological feasibility, market dynamics, and regulatory frameworks. This study presents a system dynamics model designed to assess how various decarbonization approaches influence long-term emission trends within the cement industry. The model accounts for supply chains, production technologies, market adoption rates, and changes in cement production costs. This study then analyzes a number of scenarios where there is large-scale sustained investment in each of three carbon mitigation strategies. The results show that CCS by itself allows the cement industry to achieve carbon neutrality, but the high capital investment results in a large cost increase for cement. A combined approach using alternative fuels and SCMs was found to achieve a large carbon reduction without a sustained increase in cement prices, highlighting the trade-offs between cost, effectiveness, and system-wide interactions. Full article
Show Figures

Figure 1

24 pages, 2863 KiB  
Article
An Integrated–Intensified Adsorptive-Membrane Reactor Process for Simultaneous Carbon Capture and Hydrogen Production: Multi-Scale Modeling and Simulation
by Seckin Karagoz
Gases 2025, 5(3), 17; https://doi.org/10.3390/gases5030017 - 2 Aug 2025
Viewed by 337
Abstract
Minimizing carbon dioxide emissions is crucial due to the generation of energy from fossil fuels. The significance of carbon capture and storage (CCS) technology, which is highly successful in mitigating carbon emissions, has increased. On the other hand, hydrogen is an important energy [...] Read more.
Minimizing carbon dioxide emissions is crucial due to the generation of energy from fossil fuels. The significance of carbon capture and storage (CCS) technology, which is highly successful in mitigating carbon emissions, has increased. On the other hand, hydrogen is an important energy carrier for storing and transporting energy, and technologies that rely on hydrogen have become increasingly promising as the world moves toward a more environmentally friendly approach. Nevertheless, the integration of CCS technologies into power production processes is a significant challenge, requiring the enhancement of the combined power generation–CCS process. In recent years, there has been a growing interest in process intensification (PI), which aims to create smaller, cleaner, and more energy efficient processes. The goal of this research is to demonstrate the process intensification potential and to model and simulate a hybrid integrated–intensified adsorptive-membrane reactor process for simultaneous carbon capture and hydrogen production. A comprehensive, multi-scale, multi-phase, dynamic, computational fluid dynamics (CFD)-based process model is constructed, which quantifies the various underlying complex physicochemical phenomena occurring at the pellet and reactor levels. Model simulations are then performed to investigate the impact of dimensionless variables on overall system performance and gain a better understanding of this cyclic reaction/separation process. The results indicate that the hybrid system shows a steady-state cyclic behavior to ensure flexible operating time. A sustainability evaluation was conducted to illustrate the sustainability improvement in the proposed process compared to the traditional design. The results indicate that the integrated–intensified adsorptive-membrane reactor technology enhances sustainability by 35% to 138% for the chosen 21 indicators. The average enhancement in sustainability is almost 57%, signifying that the sustainability evaluation reveals significant benefits of the integrated–intensified adsorptive-membrane reactor process compared to HTSR + LTSR. Full article
Show Figures

Figure 1

31 pages, 2421 KiB  
Article
Optimization of Cooperative Operation of Multiple Microgrids Considering Green Certificates and Carbon Trading
by Xiaobin Xu, Jing Xia, Chong Hong, Pengfei Sun, Peng Xi and Jinchao Li
Energies 2025, 18(15), 4083; https://doi.org/10.3390/en18154083 - 1 Aug 2025
Viewed by 175
Abstract
In the context of achieving low-carbon goals, building low-carbon energy systems is a crucial development direction and implementation pathway. Renewable energy is favored because of its clean characteristics, but the access may have an impact on the power grid. Microgrid technology provides an [...] Read more.
In the context of achieving low-carbon goals, building low-carbon energy systems is a crucial development direction and implementation pathway. Renewable energy is favored because of its clean characteristics, but the access may have an impact on the power grid. Microgrid technology provides an effective solution to this problem. Uncertainty exists in single microgrids, so multiple microgrids are introduced to improve system stability and robustness. Electric carbon trading and profit redistribution among multiple microgrids have been challenges. To promote energy commensurability among microgrids, expand the types of energy interactions, and improve the utilization rate of renewable energy, this paper proposes a cooperative operation optimization model of multi-microgrids based on the green certificate and carbon trading mechanism to promote local energy consumption and a low carbon economy. First, this paper introduces a carbon capture system (CCS) and power-to-gas (P2G) device in the microgrid and constructs a cogeneration operation model coupled with a power-to-gas carbon capture system. On this basis, a low-carbon operation model for multi-energy microgrids is proposed by combining the local carbon trading market, the stepped carbon trading mechanism, and the green certificate trading mechanism. Secondly, this paper establishes a cooperative game model for multiple microgrid electricity carbon trading based on the Nash negotiation theory after constructing the single microgrid model. Finally, the ADMM method and the asymmetric energy mapping contribution function are used for the solution. The case study uses a typical 24 h period as an example for the calculation. Case study analysis shows that, compared with the independent operation mode of microgrids, the total benefits of the entire system increased by 38,296.1 yuan and carbon emissions were reduced by 30,535 kg through the coordinated operation of electricity–carbon coupling. The arithmetic example verifies that the method proposed in this paper can effectively improve the economic benefits of each microgrid and reduce carbon emissions. Full article
Show Figures

Figure 1

24 pages, 2410 KiB  
Article
Predictive Modeling and Simulation of CO2 Trapping Mechanisms: Insights into Efficiency and Long-Term Sequestration Strategies
by Oluchi Ejehu, Rouzbeh Moghanloo and Samuel Nashed
Energies 2025, 18(15), 4071; https://doi.org/10.3390/en18154071 - 31 Jul 2025
Viewed by 263
Abstract
This study presents a comprehensive analysis of CO2 trapping mechanisms in subsurface reservoirs by integrating numerical reservoir simulations, geochemical modeling, and machine learning techniques to enhance the design and evaluation of carbon capture and storage (CCS) strategies. A two-dimensional reservoir model was [...] Read more.
This study presents a comprehensive analysis of CO2 trapping mechanisms in subsurface reservoirs by integrating numerical reservoir simulations, geochemical modeling, and machine learning techniques to enhance the design and evaluation of carbon capture and storage (CCS) strategies. A two-dimensional reservoir model was developed to simulate CO2 injection dynamics under realistic geomechanical and geochemical conditions, incorporating four primary trapping mechanisms: residual, solubility, mineralization, and structural trapping. To improve computational efficiency without compromising accuracy, advanced machine learning models, including random forest, gradient boosting, and decision trees, were deployed as smart proxy models for rapid prediction of trapping behavior across multiple scenarios. Simulation outcomes highlight the critical role of hysteresis, aquifer dynamics, and producer well placement in enhancing CO2 trapping efficiency and maintaining long-term storage stability. To support the credibility of the model, a qualitative validation framework was implemented by comparing simulation results with benchmarked field studies and peer-reviewed numerical models. These comparisons confirm that the modeled mechanisms and trends align with established CCS behavior in real-world systems. Overall, the study demonstrates the value of combining traditional reservoir engineering with data-driven approaches to optimize CCS performance, offering scalable, reliable, and secure solutions for long-term carbon sequestration. Full article
Show Figures

Figure 1

20 pages, 5871 KiB  
Article
Carbon Management and Storage for Oltenia: Tackling Romania’s Decarbonization Goals
by Liviu Dumitrache, Silvian Suditu, Gheorghe Branoiu, Daniela Neagu and Marian Dacian Alecu
Sustainability 2025, 17(15), 6793; https://doi.org/10.3390/su17156793 - 25 Jul 2025
Viewed by 427
Abstract
This paper presents a numerical simulation study evaluating carbon dioxide capture and storage (CCS) feasibility for the Turceni Power Plant in Oltenia, Romania, using the nearby depleted Bibești-Bulbuceni gas reservoir. A comprehensive reservoir model was developed using Petrel software, integrating geological and reservoir [...] Read more.
This paper presents a numerical simulation study evaluating carbon dioxide capture and storage (CCS) feasibility for the Turceni Power Plant in Oltenia, Romania, using the nearby depleted Bibești-Bulbuceni gas reservoir. A comprehensive reservoir model was developed using Petrel software, integrating geological and reservoir engineering data for the formations of the Bibești-Bulbuceni structure, which is part of the western Moesian Platform. The static model incorporated realistic petrophysical inputs for the Meotian reservoirs. Dynamic simulations were performed using Eclipse compositional simulator with Peng–Robinson equation of state for a CH4-CO2 system. The model was initialized with natural gas initially in place at 149 bar reservoir pressure, then produced through depletion to 20.85 bar final pressure, achieving 80% recovery factor. CO2 injection simulations modeled a phased 19-well injection program over 25 years, with individual well constraints of 100 bar bottom-hole pressure and 200,000 Sm3/day injection rates. Results demonstrate successful injection of a 60 Mt CO2, with final reservoir pressure reaching 101 bar. The modeling framework validates the technical feasibility of transforming Turceni’s power generation into a net-zero process through CCS implementation. Key limitations include simplified geochemical interactions and relying on historical data with associated uncertainties. This study provides quantitative evidence for CCS viability in depleted hydrocarbon reservoirs, supporting industrial decarbonization strategies. The strategy not only aligns with the EU’s climate-neutral policy but also enhances local energy security by repurposing existing geological resources. The findings highlight the potential of CCS to bridge the gap between current energy systems and a sustainable, climate-neutral future. Full article
Show Figures

Figure 1

22 pages, 1921 KiB  
Article
Cooperative Game-Theoretic Scheduling for Low-Carbon Integrated Energy Systems with P2G–CCS Synergy
by Huijia Liu, Sheng Ye, Chengkai Yin, Lei Wang and Can Zhang
Energies 2025, 18(15), 3942; https://doi.org/10.3390/en18153942 - 24 Jul 2025
Viewed by 305
Abstract
In the context of the dual-carbon goals, this study proposes a cooperative game-theoretic optimization strategy to enhance the energy utilization efficiency, operational efficiency, and cost-effectiveness of integrated energy systems (IESs) while simultaneously reducing carbon emissions, improving operational flexibility, and mitigating renewable energy variability. [...] Read more.
In the context of the dual-carbon goals, this study proposes a cooperative game-theoretic optimization strategy to enhance the energy utilization efficiency, operational efficiency, and cost-effectiveness of integrated energy systems (IESs) while simultaneously reducing carbon emissions, improving operational flexibility, and mitigating renewable energy variability. To achieve these goals, an IES framework integrating power-to-gas (P2G) technology and carbon capture and storage (CCS) facilities is established to regulate carbon emissions. The system incorporates P2G conversion units and thermal components—specifically, hydrogen fuel cells, electrolyzers, reactors, and electric boilers—aiming to maximize energy conversion efficiency and asset utilization. A cooperative game-theoretic optimization model is developed to facilitate collaboration among multiple stakeholders within the coalition, which employs the Shapley value method to ensure equitable distribution of the cooperative surplus, thereby maximizing collective benefits. The model is solved using an improved gray wolf optimizer (IGWO). The simulation results demonstrate that the proposed strategy effectively coordinates multi-IES scheduling, significantly reduces carbon emissions, facilitates the efficient allocation of cooperation gains, and maximizes overall system utility. Full article
Show Figures

Figure 1

40 pages, 1777 KiB  
Review
Nanomaterials for Direct Air Capture of CO2: Current State of the Art, Challenges and Future Perspectives
by Cataldo Simari
Molecules 2025, 30(14), 3048; https://doi.org/10.3390/molecules30143048 - 21 Jul 2025
Viewed by 439
Abstract
Direct Air Capture (DAC) is emerging as a critical climate change mitigation strategy, offering a pathway to actively remove atmospheric CO2. This comprehensive review synthesizes advancements in DAC technologies, with a particular emphasis on the pivotal role of nanostructured solid sorbent [...] Read more.
Direct Air Capture (DAC) is emerging as a critical climate change mitigation strategy, offering a pathway to actively remove atmospheric CO2. This comprehensive review synthesizes advancements in DAC technologies, with a particular emphasis on the pivotal role of nanostructured solid sorbent materials. The work critically evaluates the characteristics, performance, and limitations of key nanomaterial classes, including metal–organic frameworks (MOFs), covalent organic frameworks (COFs), zeolites, amine-functionalized polymers, porous carbons, and layered double hydroxides (LDHs), alongside solid-supported ionic liquids, highlighting their varied CO2 uptake capacities, regeneration energy requirements, and crucial water sensitivities. Beyond traditional temperature/pressure swing adsorption, the review delves into innovative DAC methodologies such as Moisture Swing Adsorption (MSA), Electro Swing Adsorption (ESA), Passive DAC, and CO2-Binding Organic Liquids (CO2 BOLs), detailing their unique mechanisms and potential for reduced energy footprints. Despite significant progress, the widespread deployment of DAC faces formidable challenges, notably high capital and operational costs (currently USD 300–USD 1000/tCO2), substantial energy demands (1500–2400 kWh/tCO2), water interference, scalability hurdles, and sorbent degradation. Furthermore, this review comprehensively examines the burgeoning global DAC market, its diverse applications, and the critical socio-economic barriers to adoption, particularly in developing countries. A comparative analysis of DAC within the broader carbon removal landscape (e.g., CCS, BECCS, afforestation) is also provided, alongside an address to the essential, often overlooked, environmental considerations for the sustainable production, regeneration, and disposal of spent nanomaterials, including insights from Life Cycle Assessments. The nuanced techno-economic landscape has been thoroughly summarized, highlighting that commercial viability is a multi-faceted challenge involving material performance, synthesis cost, regeneration energy, scalability, and long-term stability. It has been reiterated that no single ‘best’ material exists, but rather a portfolio of technologies will be necessary, with the ultimate success dependent on system-level integration and the availability of low-carbon energy. The review paper contributes to a holistic understanding of cutting-edge DAC technologies, bridging material science innovations with real-world implementation challenges and opportunities, thereby identifying critical knowledge gaps and pathways toward a net-zero carbon future. Full article
(This article belongs to the Special Issue Porous Carbon Materials: Preparation and Application)
Show Figures

Graphical abstract

21 pages, 4414 KiB  
Article
Rural Renewable Energy Resources Assessment and Electricity Development Scenario Simulation Based on the LEAP Model
by Hai Jiang, Haoshuai Jia, Yong Qiao, Wenzhi Liu, Yijun Miao, Wuhao Wen, Ruonan Li and Chang Wen
Energies 2025, 18(14), 3724; https://doi.org/10.3390/en18143724 - 14 Jul 2025
Viewed by 271
Abstract
This study combines convolutional neural network (CNN) recognition technology, Greenwich engineering software, and statistical yearbook methods to evaluate rural solar, wind, and biomass energy resources in pilot cities in China, respectively. The CNN method enables the rapid identification of the available roof area, [...] Read more.
This study combines convolutional neural network (CNN) recognition technology, Greenwich engineering software, and statistical yearbook methods to evaluate rural solar, wind, and biomass energy resources in pilot cities in China, respectively. The CNN method enables the rapid identification of the available roof area, and Greenwich software provides wind resource simulation with local terrain adaptability. The results show that the capacity of photovoltaic power generation reaches approximately 15.63 GW, the potential of wind power is 458.3 MW, and the equivalent of agricultural waste is 433,900 tons of standard coal. The city is rich in wind, solar, and biomass resources. By optimizing the hybrid power generation system through genetic algorithms, wind energy, solar energy, biomass energy, and coal power are combined to balance the annual electricity demand in rural areas. The energy trends under different demand growth rates were predicted through the LEAP model, revealing that in the clean coal scenario of carbon capture (WSBC-CCS), clean coal power and renewable energy will dominate by 2030. Carbon dioxide emissions will peak in 2024 and return to the 2020 level between 2028 and 2029. Under the scenario of pure renewable energy (H_WSB), SO2/NOx will be reduced by 23–25%, and carbon dioxide emissions will approach zero. This study evaluates the renewable energy potential, power system capacity optimization, and carbon emission characteristics of pilot cities at a macro scale. Future work should further analyze the impact mechanisms of data sensitivity on these assessment results. Full article
(This article belongs to the Special Issue Recent Advances in Renewable Energy and Hydrogen Technologies)
Show Figures

Figure 1

19 pages, 667 KiB  
Review
A Review of Optimization Methods for Pipeline Monitoring Systems: Applications and Challenges for CO2 Transport
by Teke Xu, Sergey Martynov and Haroun Mahgerefteh
Energies 2025, 18(14), 3591; https://doi.org/10.3390/en18143591 - 8 Jul 2025
Viewed by 417
Abstract
Carbon Capture and Storage (CCS) is a key technology for reducing anthropogenic greenhouse gas emissions, in which pipelines play a vital role in transporting CO2 captured from industrial emitters to geological storage sites. To aid the efficient and safe operation of the [...] Read more.
Carbon Capture and Storage (CCS) is a key technology for reducing anthropogenic greenhouse gas emissions, in which pipelines play a vital role in transporting CO2 captured from industrial emitters to geological storage sites. To aid the efficient and safe operation of the CO2 transport infrastructure, robust, accurate, and reliable solutions for monitoring pipelines transporting industrial CO2 streams are urgently needed. This literature review study summarizes the monitoring objectives and identifies the problems and relevant mathematical algorithms developed for optimization of monitoring systems for pipeline transportation of water, oil, and natural gas, which can be relevant to the future CO2 pipelines and pipeline networks for CCS. The impacts of the physical properties of CO2 and complex designs and operation scenarios of CO2 transport on the pipeline monitoring systems design are discussed. It is shown that the most relevant to liquid- and dense-phase CO2 transport are the sensor placement optimization methods developed in the context of detecting leaks and flow anomalies for water distribution systems and pipelines transporting oil and petroleum liquids. The monitoring solutions relevant to flow assurance and monitoring impurities in CO2 pipelines are also identified. Optimizing the CO2 pipeline monitoring systems against several objectives, including the accuracy of measurements, the number and type of sensors, and the safety and environmental risks, is discussed. Full article
(This article belongs to the Topic Oil and Gas Pipeline Network for Industrial Applications)
Show Figures

Figure 1

31 pages, 1271 KiB  
Article
Assessment of the Projects’ Prospects in the Economic and Technological Development of the Oil and Gas Complex in the Republic of Mozambique
by Tatyana Semenova and Nunes Churrana
Resources 2025, 14(7), 106; https://doi.org/10.3390/resources14070106 - 28 Jun 2025
Viewed by 1070
Abstract
This study is devoted to a comprehensive technical and economic assessment of the prospects for the development of the oil and gas sector in the Republic of Mozambique in the context of the global energy transition. The analysis of key gas projects, including [...] Read more.
This study is devoted to a comprehensive technical and economic assessment of the prospects for the development of the oil and gas sector in the Republic of Mozambique in the context of the global energy transition. The analysis of key gas projects, including Coral South FLNG and Mozambique LNG, focused on their technological features, economic parameters and environmental impact. It is shown that the introduction of floating liquefaction technology reduces capital expenditures, increases operational flexibility, and minimizes infrastructure risks, especially in conditions of geopolitical instability. Based on a comparative analysis of the projects, it was found that the use of modular solutions and the integration of carbon capture and storage (CCS) systems contribute to improving sustainability and investment attractiveness. A patent analysis of technological innovations was carried out, which made it possible to substantiate the prospects for using nanotechnologies and advanced CO2 capture systems for further development of the sector. The results of the study indicate the need to strengthen content localization, develop human capital, and create effective revenue management mechanisms to ensure sustainable growth. The developed strategic development concept is based on the principles of the sixth technological paradigm, which implies an emphasis on environmental standards and technological modernization, including on the basis of nanotechnology. Thus, it is established that the successful implementation of gas projects in Mozambique can become the basis for long-term socio-economic development of the country, provided that technological and institutional innovations are integrated. Full article
(This article belongs to the Special Issue Assessment and Optimization of Energy Efficiency)
Show Figures

Figure 1

24 pages, 4465 KiB  
Article
Case Study of a Greenfield Blue Hydrogen Plant: A Comparative Analysis of Production Methods
by Mohammad Sajjadi and Hussameldin Ibrahim
Energies 2025, 18(13), 3272; https://doi.org/10.3390/en18133272 - 23 Jun 2025
Viewed by 607
Abstract
Blue hydrogen is a key pathway for reducing greenhouse gas emissions while utilizing natural gas with carbon capture and storage (CCS). This study conducts a techno-economic and environmental analysis of a greenfield blue hydrogen plant in Saskatchewan, Canada, integrating both SMR and ATR [...] Read more.
Blue hydrogen is a key pathway for reducing greenhouse gas emissions while utilizing natural gas with carbon capture and storage (CCS). This study conducts a techno-economic and environmental analysis of a greenfield blue hydrogen plant in Saskatchewan, Canada, integrating both SMR and ATR technologies. Unlike previous studies that focus mainly on production units, this research includes all process and utility systems such as H2 and CO2 compression, air separation, refrigeration, co-generation, and gas dehydration. Aspen HYSYS simulations revealed ATR’s energy demand is 10% lower than that of SMR. The hydrogen production cost was USD 3.28/kg for ATR and USD 3.33/kg for SMR, while a separate study estimated a USD 2.2/kg cost for design without utilities, highlighting the impact of indirect costs. Environmental analysis showed ATR’s lower Global Warming Potential (GWP) compared to SMR, reducing its carbon footprint. The results signified the role of utility integration, site conditions, and process selection in optimizing energy efficiency, costs, and sustainability. Full article
Show Figures

Figure 1

40 pages, 2424 KiB  
Review
A Review of Integrated Carbon Capture and Hydrogen Storage: AI-Driven Optimization for Efficiency and Scalability
by Yasin Khalili, Sara Yasemi, Mahdi Abdi, Masoud Ghasemi Ertian, Maryam Mohammadi and Mohammadreza Bagheri
Sustainability 2025, 17(13), 5754; https://doi.org/10.3390/su17135754 - 23 Jun 2025
Viewed by 1214
Abstract
Achieving global net-zero emissions by 2050 demands integrated and scalable strategies that unite decarbonization technologies across sectors. This review provides a forward-looking synthesis of carbon capture and storage and hydrogen systems, emphasizing their integration through artificial intelligence to enhance operational efficiency, reduce system [...] Read more.
Achieving global net-zero emissions by 2050 demands integrated and scalable strategies that unite decarbonization technologies across sectors. This review provides a forward-looking synthesis of carbon capture and storage and hydrogen systems, emphasizing their integration through artificial intelligence to enhance operational efficiency, reduce system costs, and accelerate large-scale deployment. While CCS can mitigate up to 95% of industrial CO2 emissions, and hydrogen, particularly blue hydrogen, offers a versatile low-carbon energy carrier, their co-deployment unlocks synergies in infrastructure, storage, and operational management. Artificial intelligence plays a transformative role in this integration, enabling predictive modeling, anomaly detection, and intelligent control across capture, transport, and storage networks. Drawing on global case studies (e.g., Petra Nova, Northern Lights, Fukushima FH2R, and H21 North of England) and emerging policy frameworks, this study identifies key benefits, technical and regulatory challenges, and innovation trends. A novel contribution of this review lies in its AI-focused roadmap for integrating CCS and hydrogen systems, supported by a detailed analysis of implementation barriers and policy-enabling strategies. By reimagining energy systems through digital optimization and infrastructure synergy, this review outlines a resilient blueprint for the transition to a sustainable, low-carbon future. Full article
Show Figures

Figure 1

35 pages, 9419 KiB  
Article
Multi-Objective Scheduling Method for Integrated Energy System Containing CCS+P2G System Using Q-Learning Adaptive Mutation Black-Winged Kite Algorithm
by Ruijuan Shi, Xin Yan, Zuhao Fan and Naiwei Tu
Sustainability 2025, 17(13), 5709; https://doi.org/10.3390/su17135709 - 20 Jun 2025
Viewed by 441
Abstract
This study proposes an improved multi-objective black-winged kite algorithm (MOBKA-QL) integrating Q-learning with adaptive mutation strategies for optimizing multi-objective scheduling in integrated energy systems (IES). The algorithm dynamically selects mutation strategies through Q-learning to enhance solution diversity and accelerate convergence. First, an optimal [...] Read more.
This study proposes an improved multi-objective black-winged kite algorithm (MOBKA-QL) integrating Q-learning with adaptive mutation strategies for optimizing multi-objective scheduling in integrated energy systems (IES). The algorithm dynamically selects mutation strategies through Q-learning to enhance solution diversity and accelerate convergence. First, an optimal scheduling model is established, incorporating a carbon capture system (CCS), power-to-gas (P2G), solar thermal, wind power, and energy storage to minimize economic costs and carbon emissions while maximizing energy efficiency. Second, the heat-to-power ratio of the cogeneration system is dynamically adjusted according to load demand, enabling flexible control of combined heat and power (CHP) output. The integration of CCS+P2G further reduces carbon emissions and wind curtailment, with the produced methane utilized in boilers and cogeneration systems. Hydrogen fuel cells (HFCs) are employed to mitigate cascading energy losses. Using forecasted load and renewable energy data from a specific region, dispatch experiments demonstrate that the proposed system reduces economic costs and CO2 emissions by 14.63% and 13.9%, respectively, while improving energy efficiency by 28.84%. Additionally, the adjustable heat-to-power ratio of CHP yields synergistic economic, energy, and environmental benefits. Full article
Show Figures

Figure 1

25 pages, 2402 KiB  
Article
Research on Different Energy Transition Pathway Analysis and Low-Carbon Electricity Development: A Case Study of an Energy System in Inner Mongolia
by Boyi Li, Richao Cong, Toru Matsumoto and Yajuan Li
Energies 2025, 18(12), 3129; https://doi.org/10.3390/en18123129 - 14 Jun 2025
Viewed by 626
Abstract
To achieve carbon neutrality targets in the power sector, regions with rich coal and renewable energy resources are facing unprecedented pressure. This paper explores the decarbonization pathway in the power sector in Inner Mongolia, China, under different energy transition scenarios based on the [...] Read more.
To achieve carbon neutrality targets in the power sector, regions with rich coal and renewable energy resources are facing unprecedented pressure. This paper explores the decarbonization pathway in the power sector in Inner Mongolia, China, under different energy transition scenarios based on the Long-Range Energy Alternatives Planning System (LEAP) model. This includes renewable energy expansion, carbon capture and storage (CCS) applications, demand response, and economic regulation scenarios. Subsequently, a combination of the Logarithmic Mean Divisia Index (LMDI) and Slack-Based Measure Data Envelopment Analysis (SBM-DEA) model was developed to investigate the influencing factors and power generation efficiency in low-carbon electricity. The results revealed that this region emphasizes first developing renewable energy and improving the carbon and green electricity market and then accelerating CCS technology. Its carbon emissions are among the lowest, at about 77.29 million tons, but the cost could reach CNY 229.8 billion in 2060. We also found that the influencing factors of carbon productivity, low-carbon electricity structures, and carbon emissions significantly affected low-carbon electricity generation; their cumulative contribution rate is 367–588%, 155–399%, and −189–−737%, respectively. Regarding low-carbon electricity efficiency, the demand response scenario is the lowest at about 0.71; other scenarios show similar efficiency values. This value could be improved by optimizing the energy consumption structure and the installed capacity configuration. Full article
(This article belongs to the Special Issue Energy Transition and Environmental Sustainability: 3rd Edition)
Show Figures

Figure 1

22 pages, 2482 KiB  
Review
Research on the Characteristics of Electrolytes in Integrated Carbon Capture and Utilization Systems: The Key to Promoting the Development of Green and Low-Carbon Technologies
by Guoqing You, Yunzhi Li, Lihan Dong, Yichun Li and Yu Zhang
Energies 2025, 18(12), 3039; https://doi.org/10.3390/en18123039 - 8 Jun 2025
Viewed by 664
Abstract
The core challenge of integrated carbon capture and utilization (ICCU) technology lies in developing electrolytes that combine efficient carbon dioxide (CO2) capture with electrocatalytic conversion capabilities. This review analyzes the structure–performance relationship between electrolyte properties and CO2 electrochemical reduction (eCO [...] Read more.
The core challenge of integrated carbon capture and utilization (ICCU) technology lies in developing electrolytes that combine efficient carbon dioxide (CO2) capture with electrocatalytic conversion capabilities. This review analyzes the structure–performance relationship between electrolyte properties and CO2 electrochemical reduction (eCO2RR), revealing the key regulatory mechanisms. Research shows that the performance of bicarbonate electrolytes heavily depends on the cation type, where Cs+ can achieve over 90% CO selectivity by suppressing the hydrogen evolution reaction (HER) and stabilizing reaction intermediates, though its strong corrosiveness limits practical applications. Although amine absorbents excel in carbon capture (efficiency > 90%), they tend to undergo competitive adsorption during electrocatalysis, making formic acid the primary product (FE = 15%); modifying electrodes with ionomers can enhance their activity by 1.15 times. Ionic liquids (ILs) demonstrate unique advantages due to their tunability: imidazolium-based ILs improve formate selectivity to 85% via carboxylate intermediate formation, while amino-functionalized task-specific ILs (TSILs) achieve a 1:1 stoichiometric CO2 absorption ratio. Recent breakthroughs reveal that ternary IL hybrid electrolytes can achieve nearly 100% CO Faradaic efficiency (FE) through microenvironment modulation, while L-histidine additives boost CH4 selectivity by 23% via interface modification. Notably, constructing a “bulk acidic–interfacial neutral” pH gradient system addresses carbonate deposition issues in traditional alkaline conditions, increasing C2+ product efficiency to 50%. Studies also highlight that cation–anion synergy (e.g., K+/I) significantly enhances C-C coupling through electrostatic interactions, achieving 97% C2+ selectivity on Ag electrodes. These findings provide new insights for ICCU electrolyte design, with future research focusing on machine learning-assisted material optimization and reactor engineering to advance industrial applications. Full article
Show Figures

Figure 1

Back to TopTop