Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (629)

Search Parameters:
Keywords = carbon balance assessment

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 5455 KiB  
Article
Features of Thermal Stabilization of PVC Modified with Microstructured Titanium Phosphate
by Irina N. Vikhareva, Anton Abramian, Dragan Manojlović and Oleg Bol’shakov
Polymers 2025, 17(15), 2140; https://doi.org/10.3390/polym17152140 - 5 Aug 2025
Abstract
Poly(vinyl chloride) (PVC) undergoes thermal degradation during processing and operation, which necessitates the use of effective thermal stabilizers. The purpose of this work is to comprehensively evaluate the potential of new hierarchically structured titanium phosphates (TiP) with controlled morphology as thermal stabilizers of [...] Read more.
Poly(vinyl chloride) (PVC) undergoes thermal degradation during processing and operation, which necessitates the use of effective thermal stabilizers. The purpose of this work is to comprehensively evaluate the potential of new hierarchically structured titanium phosphates (TiP) with controlled morphology as thermal stabilizers of plasticized PVC, focusing on the effect of morphology and Ti/P ratio on their stabilizing efficiency. The thermal stability of the compositions was studied by thermogravimetric analysis (TGA) in both inert (Ar) and oxidizing (air) atmospheres. The effect of TiP concentration and its synergy with industrial stabilizers was analyzed. An assessment of the key degradation parameters is given: the temperature of degradation onset, the rate of decomposition, exothermic effects, and the carbon residue yield. In an inert environment, TiPMSI/TiPMSII microspheres demonstrated an optimal balance by increasing the temperature of degradation onset and the residual yield while suppressing the rate of decomposition. In an oxidizing environment, TiPR rods and TiPMSII microspheres provided maximum stability, enhancing resistance to degradation onset and reducing the degradation rate by 10–15%. Key factors of effectiveness include ordered morphology (spheres, rods); the Ti-deficient Ti/P ratio (~0.86), which enhances HCl binding; and crystallinity. The stabilization mechanism of titanium phosphates is attributed to their high affinity for hydrogen chloride (HCl), which catalyzes PVC chain scission, a catalyst for the destruction of the PVC chain. The unique microstructure of titanium phosphate provides a high specific surface area and, as a result, greater activity in the HCl neutralization reaction. The formation of a sol–phosphate framework creates a barrier to heat and oxygen. An additional contribution comes from the inhibition of oxidative processes and the possible interaction with unstable chlorallyl groups in PVC macromolecules. Thus, hierarchically structured titanium phosphates have shown high potential as multifunctional PVC thermostabilizers for modern polymer materials. Potential applications include the development of environmentally friendly PVC formulations with partial or complete replacement of toxic stabilizers, the optimization of thermal stabilization for products used in aggressive environments, and the use of hierarchical TiP structures in flame-resistant and halogen-free PVC-based compositions. Full article
(This article belongs to the Section Polymer Processing and Engineering)
Show Figures

Figure 1

18 pages, 2365 KiB  
Article
Integrated Environmental–Economic Assessment of CO2 Storage in Chinese Saline Formations
by Wentao Zhao, Zhe Jiang, Tieya Jing, Jian Zhang, Zhan Yang, Xiang Li, Juan Zhou, Jingchao Zhao and Shuhui Zhang
Water 2025, 17(15), 2320; https://doi.org/10.3390/w17152320 - 4 Aug 2025
Abstract
This study develops an integrated environmental–economic assessment framework to evaluate the life cycle environmental impacts and economic costs of CO2 geological storage and produced water treatment in saline formations in China. Using a case study of a saline aquifer carbon storage project [...] Read more.
This study develops an integrated environmental–economic assessment framework to evaluate the life cycle environmental impacts and economic costs of CO2 geological storage and produced water treatment in saline formations in China. Using a case study of a saline aquifer carbon storage project in the Ordos Basin, eight full-chain carbon capture, utilization, and storage (CCUS) scenarios were analyzed. The results indicate that environmental and cost performance are primarily influenced by technology choices across carbon capture, transport, and storage stages. The scenario employing potassium carbonate-based capture, pipeline transport, and brine reinjection after a reverse osmosis treatment (S5) achieved the most balanced outcome. Breakeven analyses under three carbon price projection models revealed that carbon price trajectories critically affect project viability, with a steadily rising carbon price enabling earlier profitability. By decoupling CCUS from power systems and focusing on unit CO2 removal, this study provides a transparent and transferable framework to support cross-sectoral deployment. The findings offer valuable insights for policymakers aiming to design effective CCUS support mechanisms under future carbon neutrality targets. Full article
(This article belongs to the Special Issue Mine Water Treatment, Utilization and Storage Technology)
Show Figures

Figure 1

21 pages, 16545 KiB  
Article
Multi-Objective Land Use Optimization Based on NSGA-II and PLUS Models: Balancing Economic Development and Carbon Neutrality Goals
by Hanlong Gu, Shuoxin Liu, Chongyang Huan, Ming Cheng, Xiuru Dong and Haohang Sun
Land 2025, 14(8), 1585; https://doi.org/10.3390/land14081585 - 3 Aug 2025
Viewed by 296
Abstract
Land use/land cover (LULC) change constitutes a critical driver influencing regional carbon cycling processes. Optimizing LULC structures represents a significant pathway toward the realization of carbon neutrality. This study takes Liaoning Province as a case area to analyze LULC changes from 2000 to [...] Read more.
Land use/land cover (LULC) change constitutes a critical driver influencing regional carbon cycling processes. Optimizing LULC structures represents a significant pathway toward the realization of carbon neutrality. This study takes Liaoning Province as a case area to analyze LULC changes from 2000 to 2020 and to assess their impacts on land use carbon emissions (LUCE) and ecosystem carbon storage (ECS). To accelerate the achievement of carbon neutrality, four development scenarios are established: natural development (ND), low-carbon emission (LCE), high-carbon storage (HCS), and carbon neutrality (CN). For each scenario, corresponding optimization objectives and constraint conditions are defined, and a multi-objective LULC optimization coupling model is formulated to optimize both the quantity structure and spatial pattern of LULC. On this basis, the model quantifies ECS and LUCE under the four scenarios and evaluates the economic value of each scenario and its contribution to the carbon neutrality target. Results indicate the following: (1) From 2000 to 2020, the extensive expansion of construction land resulted in a reduction in ECS by 12.72 × 106 t and an increase in LUCE by 150.44 × 106 t; (2) Compared to the ND scenario, the LCE scenario exhibited the most significant performance in controlling carbon emissions, while the HCS scenario achieved the highest increase in carbon sequestration. The CN scenario showed significant advantages in reducing LUCE, enhancing ECS, and promoting economic growth, achieving a reduction of 0.18 × 106 t in LUCE, an increase of 118.84 × 106 t in ECS, and an economic value gain of 3386.21 × 106 yuan. This study optimizes the LULC structure from the perspective of balancing economic development, LUCE reduction, and ECS enhancement. It addresses the inherent conflict between regional economic growth and ecological conservation, providing scientific evidence and policy insights for promoting LULC optimization and advancing carbon neutrality in similar regions. Full article
Show Figures

Figure 1

30 pages, 4014 KiB  
Article
Spatial Heterogeneity in Carbon Pools of Young Betula sp. Stands on Former Arable Lands in the South of the Moscow Region
by Gulfina G. Frolova, Pavel V. Frolov, Vladimir N. Shanin and Irina V. Priputina
Plants 2025, 14(15), 2401; https://doi.org/10.3390/plants14152401 - 3 Aug 2025
Viewed by 104
Abstract
This study investigates the spatial heterogeneity of carbon pools in young Betula sp. stands on former arable lands in the southern Moscow region, Russia. The findings could be useful for the current estimates and predictions of the carbon balance in such forest ecosystems. [...] Read more.
This study investigates the spatial heterogeneity of carbon pools in young Betula sp. stands on former arable lands in the southern Moscow region, Russia. The findings could be useful for the current estimates and predictions of the carbon balance in such forest ecosystems. The research focuses on understanding the interactions between plant cover and the environment, i.e., how environmental factors such as stand density, tree diameter and height, light conditions, and soil properties affect ecosystem carbon pools. We also studied how heterogeneity in edaphic conditions affects the formation of plant cover, particularly tree regeneration and the development of ground layer vegetation. Field measurements were conducted on a permanent 50 × 50 m sampling plot divided into 5 × 5 m subplots, in order to capture variability in vegetation and soil characteristics. Key findings reveal significant differences in carbon stocks across subplots with varying stand densities and light conditions. This highlights the role of the spatial heterogeneity of soil properties and vegetation cover in carbon sequestration. The study demonstrates the feasibility of indirect estimation of carbon stocks using stand parameters (density, height, and diameter), with results that closely match direct measurements. The total ecosystem carbon stock was estimated at 80.47 t ha−1, with the soil contribution exceeding that of living biomass and dead organic matter. This research emphasizes the importance of accounting for spatial heterogeneity in carbon assessments of post-agricultural ecosystems, providing a methodological framework for future studies. Full article
(This article belongs to the Section Plant–Soil Interactions)
Show Figures

Figure 1

17 pages, 5265 KiB  
Article
Influence of Agricultural Practices on Soil Physicochemical Properties and Rhizosphere Microbial Communities in Apple Orchards in Xinjiang, China
by Guangxin Zhang, Zili Wang, Huanhuan Zhang, Xujiao Li, Kun Liu, Kun Yu, Zhong Zheng and Fengyun Zhao
Horticulturae 2025, 11(8), 891; https://doi.org/10.3390/horticulturae11080891 (registering DOI) - 1 Aug 2025
Viewed by 189
Abstract
In response to the challenges posed by soil degradation in the arid regions of Xinjiang, China, green and organic management practices have emerged as effective alternatives to conventional agricultural management methods, helping to mitigate soil degradation by promoting natural soil recovery and ecological [...] Read more.
In response to the challenges posed by soil degradation in the arid regions of Xinjiang, China, green and organic management practices have emerged as effective alternatives to conventional agricultural management methods, helping to mitigate soil degradation by promoting natural soil recovery and ecological balance. However, most of the existing studies focus on a single management practice or indicator and lack a systematic assessment of the effects of integrated orchard management in arid zones. This study aims to investigate how different agricultural management practices influence soil physicochemical properties and inter-root microbial communities in apple orchards in Xinjiang and to identify the main physicochemical factors affecting the composition of inter-root microbial communities. Inter-root soil samples were collected from apple orchards under green management (GM), organic management (OM), and conventional management (CM) in major apple-producing regions of Xinjiang. Microbial diversity and community composition of the samples were analyzed using high-throughput amplicon sequencing. The results revealed significant differences (p < 0.05) in soil physicochemical properties across different management practices. Specifically, GM significantly reduced soil pH and C:N compared with OM. Both OM and GM significantly decreased soil available nutrient content compared with CM. Moreover, GM and OM significantly increased bacterial diversity and changed the community composition of bacteria and fungi. Proteobacteria and Ascomycota were identified as the dominant bacteria and fungi, respectively, in all management practices. Linear discriminant analysis (LEfSe) showed that biomarkers were more abundant under OM, suggesting that OM may contribute to ecological functions through specific microbial taxa. Co-occurrence network analysis (building a network of microbial interactions) demonstrated that the topologies of bacteria and fungi varied across different management practices and that OM increased the complexity of microbial co-occurrence networks. Mantel test analysis (analyzing soil factors and microbial community correlations) showed that C:N and available potassium (AK) were significantly and positively correlated with the community composition of bacteria and fungi, and that C:N, soil organic carbon (SOC), and alkaline hydrolyzable nitrogen (AN) were significantly and positively correlated with the diversity of fungi. Redundancy analysis (RDA) further indicated that SOC, C:N, and AK were the primary soil physicochemical factors influencing the composition of microbial communities. This study provides theoretical guidance for the sustainable management of orchards in arid zones. Full article
(This article belongs to the Section Fruit Production Systems)
Show Figures

Figure 1

14 pages, 990 KiB  
Article
Comparative Analysis of the Biomass Production and Nutritional Profiles of Two Wild-Type Strains of Yarrowia lipolytica
by David Torres-Añorve and Georgina Sandoval
Appl. Microbiol. 2025, 5(3), 77; https://doi.org/10.3390/applmicrobiol5030077 - 1 Aug 2025
Viewed by 111
Abstract
Sustainability represents a significant global challenge, requiring a balance between environmental impact and the use of natural resources. White biotechnology, which uses microorganisms and enzymes for environmentally friendly products and processes, offers promising solutions to support a growing population. Within this context, the [...] Read more.
Sustainability represents a significant global challenge, requiring a balance between environmental impact and the use of natural resources. White biotechnology, which uses microorganisms and enzymes for environmentally friendly products and processes, offers promising solutions to support a growing population. Within this context, the yeast Yarrowia lipolytica stands out, so we investigated the generation of biomass from two wild strains (ATCC 9773 and NRRL Y-50997) using different carbon sources. Additionally, protein content and amino acid profiles were assessed via standardized analytical methods to evaluate their potential as nutritional yeasts. Both strains demonstrated potential as nutritional yeasts, with biomass productivities of up to 35.5 g/L and 42 g/L, respectively. The protein content was high, with 58.8% for ATCC 9773 and 58.2% for NRRL Y-50997. Furthermore, the strains presented essential amino acid contents of 62.6% and 41.5%, with lysine being the most abundant amino acid. These findings underscore the versatility and productivity of Y. lipolytica, highlighting its potential for sustainable biotechnological applications such as single-cell protein production. Full article
Show Figures

Graphical abstract

25 pages, 1103 KiB  
Article
The Low-Carbon Development Strategy of Russia Until 2050 and the Role of Forests in Its Implementation
by Evgeny A. Shvarts, Andrey V. Ptichnikov, Anna A. Romanovskaya, Vladimir N. Korotkov and Anastasia S. Baybar
Sustainability 2025, 17(15), 6917; https://doi.org/10.3390/su17156917 - 30 Jul 2025
Viewed by 207
Abstract
This article examines the role of managed ecosystems, and particularly forests, in achieving carbon neutrality in Russia. The range of estimates of Russia’s forests’ net carbon balance in different studies varies by up to 7 times. The. A comparison of Russia’s National GHG [...] Read more.
This article examines the role of managed ecosystems, and particularly forests, in achieving carbon neutrality in Russia. The range of estimates of Russia’s forests’ net carbon balance in different studies varies by up to 7 times. The. A comparison of Russia’s National GHG inventory data for 2023 and 2024 (with the latter showing 37% higher forest sequestration) is presented and explained. The possible changes in the Long-Term Low-Emission Development Strategy of Russia (LT LEDS) carbon neutrality scenario due to new land use, land use change and forestry (LULUCF) data in National GHG Inventory Document (NID) 2024 are discussed. It is demonstrated that the refined net carbon balance should not impact the mitigation ambition in the Russian forestry sector. An assessment of changes in the drafts of the Operational plan of the LT LEDS is presented and it is concluded that its structure and content have significantly improved; however, a delay in operationalization nullifies efforts. The article highlights the problem of GHG emissions increases in forest fires and compares the gap between official “ground-based” and Remote Sensing approaches in calculations of such emissions. Considering the intention to increase net absorption by implementing forest carbon projects, the latest changes in the regulations of such projects are discussed. The limitations of reforestation carbon projects in Russia are provided. Proposals are presented for the development of the national forest policy towards increasing the net forest carbon absorption, including considering the projected decrease in annual net absorption by Russian forests by 2050. The role of government and private investment in improving the forest management of structural measures to adapt forestry to modern climate change and the place of forest climate projects need to be clearly defined in the LT LEDS. Full article
(This article belongs to the Section Sustainable Forestry)
Show Figures

Figure 1

26 pages, 4775 KiB  
Article
Effects of Partial Replacement of Cement with Fly Ash on the Mechanical Properties of Fiber-Reinforced Rubberized Concrete Containing Waste Tyre Rubber and Macro-Synthetic Fibers
by Mizan Ahmed, Nusrat Jahan Mim, Wahidul Biswas, Faiz Shaikh, Xihong Zhang and Vipulkumar Ishvarbhai Patel
Buildings 2025, 15(15), 2685; https://doi.org/10.3390/buildings15152685 - 30 Jul 2025
Viewed by 208
Abstract
This study investigates the impact of partially replacing cement with fly ash (FA) on the mechanical performance of fiber-reinforced rubberized concrete (FRRC) incorporating waste tyre rubber and recycled macro-synthetic fibers (MSF). FRRC mixtures were prepared with varying fly ash replacement levels (0%, 25%, [...] Read more.
This study investigates the impact of partially replacing cement with fly ash (FA) on the mechanical performance of fiber-reinforced rubberized concrete (FRRC) incorporating waste tyre rubber and recycled macro-synthetic fibers (MSF). FRRC mixtures were prepared with varying fly ash replacement levels (0%, 25%, and 50%), rubber aggregate contents (0%, 10%, and 20% by volume of fine aggregate), and macro-synthetic fiber dosages (0% to 1% by total volume). The fresh properties were evaluated through slump tests, while hardened properties including compressive strength, splitting tensile strength, and flexural strength were systematically assessed. Results demonstrated that fly ash substitution up to 25% improved the interfacial bonding between rubber particles, fibers, and the cementitious matrix, leading to enhanced tensile and flexural performance without significantly compromising compressive strength. However, at 50% replacement, strength reductions were more pronounced due to slower pozzolanic reactions and reduced cement content. The inclusion of MSF effectively mitigated strength loss induced by rubber aggregates, improving post-cracking behavior and toughness. Overall, an optimal balance was achieved at 25% fly ash replacement combined with 10% rubber and 0.5% fiber content, producing a more sustainable composite with favorable mechanical properties while reducing carbon and ecological footprints. These findings highlight the potential of integrating industrial by-products and waste materials to develop eco-friendly, high-performance FRRC for structural applications, supporting circular economy principles and reducing the carbon footprint of concrete infrastructure. Full article
(This article belongs to the Topic Sustainable Building Development and Promotion)
Show Figures

Figure 1

25 pages, 10240 KiB  
Article
Present and Future Energy Potential of Run-of-River Hydropower in Mainland Southeast Asia: Balancing Climate Change and Environmental Sustainability
by Saman Maroufpoor and Xiaosheng Qin
Water 2025, 17(15), 2256; https://doi.org/10.3390/w17152256 - 29 Jul 2025
Viewed by 331
Abstract
Southeast Asia relies heavily on hydropower from dams and reservoir projects, but this dependence comes at the cost of ecological damage and increased vulnerability to extreme events. This dilemma necessitates a choice between continued dam development and adopting alternative renewable options. Concerns over [...] Read more.
Southeast Asia relies heavily on hydropower from dams and reservoir projects, but this dependence comes at the cost of ecological damage and increased vulnerability to extreme events. This dilemma necessitates a choice between continued dam development and adopting alternative renewable options. Concerns over these environmental impacts have already led to halts in dam construction across the region. This study assesses the potential of run-of-river hydropower plants (RHPs) across 199 hydrometric stations in Mainland Southeast Asia (MSEA). The assessment utilizes power duration curves for the historical period and projections from the HBV hydrological model, which is driven by an ensemble of 31 climate models for future scenarios. Energy production was analyzed at four levels (minimum, maximum, balanced, and optimal) for both historical and future periods under varying Shared Socioeconomic Pathways (SSPs). To promote sustainable development, environmental flow constraints and carbon dioxide (CO2) emissions were evaluated for both historical and projected periods. The results indicate that the aggregate energy production potential during the historical period ranges from 111.15 to 229.62 MW (Malaysia), 582.78 to 3615.36 MW (Myanmar), 555.47 to 3142.46 MW (Thailand), 1067.05 to 6401.25 MW (Laos), 28.07 to 189.77 MW (Vietnam), and 566.13 to 2803.75 MW (Cambodia). The impact of climate change on power production varies significantly across countries, depending on the level and scenarios. At the optimal level, an average production change of −9.2–5.9% is projected for the near future, increasing to 15.3–19% in the far future. Additionally, RHP development in MSEA is estimated to avoid 32.5 Mt of CO2 emissions at the optimal level. The analysis further shows avoidance change of 8.3–25.3% and −8.6–25.3% under SSP245 and SSP585, respectively. Full article
Show Figures

Graphical abstract

24 pages, 6890 KiB  
Article
Multi-Level Transcriptomic and Physiological Responses of Aconitum kusnezoffii to Different Light Intensities Reveal a Moderate-Light Adaptation Strategy
by Kefan Cao, Yingtong Mu and Xiaoming Zhang
Genes 2025, 16(8), 898; https://doi.org/10.3390/genes16080898 - 28 Jul 2025
Viewed by 283
Abstract
Objectives: Light intensity is a critical environmental factor regulating plant growth, development, and stress adaptation. However, the physiological and molecular mechanisms underlying light responses in Aconitum kusnezoffii, a valuable alpine medicinal plant, remain poorly understood. This study aimed to elucidate the adaptive [...] Read more.
Objectives: Light intensity is a critical environmental factor regulating plant growth, development, and stress adaptation. However, the physiological and molecular mechanisms underlying light responses in Aconitum kusnezoffii, a valuable alpine medicinal plant, remain poorly understood. This study aimed to elucidate the adaptive strategies of A. kusnezoffii under different light intensities through integrated physiological and transcriptomic analyses. Methods: Two-year-old A. kusnezoffii plants were exposed to three controlled light regimes (790, 620, and 450 lx). Leaf anatomical traits were assessed via histological sectioning and microscopic imaging. Antioxidant enzyme activities (CAT, POD, and SOD), membrane lipid peroxidation (MDA content), osmoregulatory substances, and carbon metabolites were quantified using standard biochemical assays. Transcriptomic profiling was conducted using Illumina RNA-seq, with differentially expressed genes (DEGs) identified through DESeq2 and functionally annotated via GO and KEGG enrichment analyses. Results: Moderate light (620 lx) promoted optimal leaf structure by enhancing palisade tissue development and epidermal thickening, while reducing membrane lipid peroxidation. Antioxidant defense capacity was elevated through higher CAT, POD, and SOD activities, alongside increased accumulation of soluble proteins, sugars, and starch. Transcriptomic analysis revealed DEGs enriched in photosynthesis, monoterpenoid biosynthesis, hormone signaling, and glutathione metabolism pathways. Key positive regulators (PHY and HY5) were upregulated, whereas negative regulators (COP1 and PIFs) were suppressed, collectively facilitating chloroplast development and photomorphogenesis. Trend analysis indicated a “down–up” gene expression pattern, with early suppression of stress-responsive genes followed by activation of photosynthetic and metabolic processes. Conclusions: A. kusnezoffii employs a coordinated, multi-level adaptation strategy under moderate light (620 lx), integrating leaf structural optimization, enhanced antioxidant defense, and dynamic transcriptomic reprogramming to maintain energy balance, redox homeostasis, and photomorphogenic flexibility. These findings provide a theoretical foundation for optimizing artificial cultivation and light management of alpine medicinal plants. Full article
(This article belongs to the Section Plant Genetics and Genomics)
Show Figures

Figure 1

23 pages, 2443 KiB  
Article
Research on Coordinated Planning and Operational Strategies for Novel FACTS Devices Based on Interline Power Flow Control
by Yangqing Dan, Hui Zhong, Chenxuan Wang, Jun Wang, Yanan Fei and Le Yu
Electronics 2025, 14(15), 3002; https://doi.org/10.3390/electronics14153002 - 28 Jul 2025
Viewed by 285
Abstract
Under the “dual carbon” goals and rapid clean energy development, power grids face challenges including rapid load growth, uneven power flow distribution, and limited transmission capacity. This paper proposes a novel FACTS device with fault tolerance and switchable topology that maintains power flow [...] Read more.
Under the “dual carbon” goals and rapid clean energy development, power grids face challenges including rapid load growth, uneven power flow distribution, and limited transmission capacity. This paper proposes a novel FACTS device with fault tolerance and switchable topology that maintains power flow control over multiple lines during N-1 faults, enhancing grid safety and economy. The paper establishes a steady-state mathematical model based on additional virtual nodes and provides power flow calculation methods to accurately reflect the device’s control characteristics. An entropy-weighted TOPSIS method was employed to establish a quantitative evaluation system for assessing the grid performance improvement after FACTS device integration. To address interaction issues among multiple flexible devices, an optimization planning model considering th3e coordinated effects of UPFC and VSC-HVDC was constructed. Multi-objective particle swarm optimization obtained Pareto solution sets, combined with the evaluation system, to determine the optimal configuration schemes. Considering wind power uncertainty and fault risks, we propose a system-level coordinated operation strategy. This strategy constructs probabilistic risk indicators and introduces topology switching control constraints. Using particle swarm optimization, it achieves a balance between safety and economic objectives. Simulation results in the Jiangsu power grid scenarios demonstrated significant advantages in enhancing the transmission capacity, optimizing the power flow distribution, and ensuring system security. Full article
Show Figures

Figure 1

22 pages, 11876 KiB  
Article
Revealing Ecosystem Carbon Sequestration Service Flows Through the Meta-Coupling Framework: Evidence from Henan Province and the Surrounding Regions in China
by Wenfeng Ji, Siyuan Liu, Yi Yang, Mengxue Liu, Hejie Wei and Ling Li
Land 2025, 14(8), 1522; https://doi.org/10.3390/land14081522 - 24 Jul 2025
Viewed by 249
Abstract
Research on ecosystem carbon sequestration services and ecological compensation is crucial for advancing carbon neutrality. As a public good, ecosystem carbon sequestration services inherently lead to externalities. Therefore, it is essential to consider externalities in the flow of sequestration services. However, few studies [...] Read more.
Research on ecosystem carbon sequestration services and ecological compensation is crucial for advancing carbon neutrality. As a public good, ecosystem carbon sequestration services inherently lead to externalities. Therefore, it is essential to consider externalities in the flow of sequestration services. However, few studies have examined intra- and inter-regional ecosystem carbon sequestration flows, making regional ecosystem carbon sequestration flows less comprehensive. Against this background, the research objectives of this paper are as follows. The flow of carbon sequestration services between Henan Province and out-of-province regions is studied. In addition, this study clarifies the beneficiary and supply areas of carbon sink services in Henan Province and the neighboring regions at the prefecture-level city scale to obtain a more systematic, comprehensive, and actual flow of carbon sequestration services for scientific and effective eco-compensation and to promote regional synergistic emission reductions. The research methodologies used in this paper are as follows. First, this study adopts a meta-coupling framework, designating Henan Province as the focal system, the Central Urban Agglomeration as the adjacent system, and eight surrounding provinces as remote systems. Regional carbon sequestration was assessed using net primary productivity (NEP), while carbon emissions were evaluated based on per capita carbon emissions and population density. A carbon balance analysis integrated carbon sequestration and emissions. Hotspot analysis identified areas of carbon sequestration service supply and associated benefits. Ecological radiation force formulas were used to quantify service flows, and compensation values were estimated considering the government’s payment capacity and willingness. A three-dimensional evaluation system—incorporating technology, talent, and fiscal capacity—was developed to propose a diversified ecological compensation scheme by comparing supply and beneficiary areas. By modeling the ecosystem carbon sequestration service flow, the main results of this paper are as follows: (1) Within Henan Province, Luoyang and Nanyang provided 521,300 tons and 515,600 tons of carbon sinks to eight cities (e.g., Jiaozuo, Zhengzhou, and Kaifeng), warranting an ecological compensation of CNY 262.817 million and CNY 263.259 million, respectively. (2) Henan exported 3.0739 million tons of carbon sinks to external provinces, corresponding to a compensation value of CNY 1756.079 million. Conversely, regions such as Changzhi, Xiangyang, and Jinzhong contributed 657,200 tons of carbon sinks to Henan, requiring a compensation of CNY 189.921 million. (3) Henan thus achieved a net ecological compensation of CNY 1566.158 million through carbon sink flows. (4) In addition to monetary compensation, beneficiary areas may also contribute through technology transfer, financial investment, and talent support. The findings support the following conclusions: (1) it is necessary to consider the externalities of ecosystem services, and (2) the meta-coupling framework enables a comprehensive assessment of carbon sequestration service flows, providing actionable insights for improving ecosystem governance in Henan Province and comparable regions. Full article
(This article belongs to the Special Issue Land Resource Assessment (Second Edition))
Show Figures

Figure 1

20 pages, 1475 KiB  
Article
Design Optimization and Assessment Platform for Wind-Assisted Ship Propulsion
by Timoleon Plessas and Apostolos Papanikolaou
J. Mar. Sci. Eng. 2025, 13(8), 1389; https://doi.org/10.3390/jmse13081389 - 22 Jul 2025
Viewed by 205
Abstract
The maritime industry faces growing pressure to reduce greenhouse gas (GHG) emissions, reflected in the progressive adoption of stricter international energy regulations. Wind-Assisted Propulsion Systems (WAPS) offer a promising solution by significantly contributing to decarbonization. This paper presents a versatile simulation and optimization [...] Read more.
The maritime industry faces growing pressure to reduce greenhouse gas (GHG) emissions, reflected in the progressive adoption of stricter international energy regulations. Wind-Assisted Propulsion Systems (WAPS) offer a promising solution by significantly contributing to decarbonization. This paper presents a versatile simulation and optimization platform that supports the conceptual design of WAPS-equipped vessels and evaluates the viability of such investments. The platform uses a steady-state force equilibrium model to simulate vessel performance along predefined routes under realistic weather conditions, incorporating regulatory frameworks and economic assessments. A multi-objective optimization framework identifies optimal designs across user-defined criteria. To demonstrate its capabilities, the platform is applied to a bulk carrier operating between China and the USA, optimizing for capital expenditure, net present value (NPV), and CO2 emissions. Results show the platform can effectively balance conflicting objectives, achieving substantial emissions reductions without compromising economic performance. The final optimized design achieved a 12% reduction in CO2 emissions, a 7% decrease in capital expenditure, and a 6.6 million USD increase in net present value compared to the reference design with sails, demonstrating the platform’s capability to deliver balanced improvements across all objectives. The methodology is adaptable to various ship types, WAPS technologies, and operational profiles, offering a valuable decision-support tool for stakeholders navigating the transition to zero-carbon shipping. Full article
(This article belongs to the Special Issue Design Optimisation in Marine Engineering)
Show Figures

Figure 1

25 pages, 1344 KiB  
Article
Cloud-Based Data-Driven Framework for Optimizing Operational Efficiency and Sustainability in Tube Manufacturing
by Michael Maiko Matonya and István Budai
Appl. Syst. Innov. 2025, 8(4), 100; https://doi.org/10.3390/asi8040100 - 22 Jul 2025
Viewed by 340
Abstract
Modern manufacturing strives for peak efficiency while facing pressing demands for environmental sustainability. Balancing these often-conflicting objectives represents a fundamental trade-off in modern manufacturing, as traditional methods typically address them in isolation, leading to suboptimal outcomes. Process mining offers operational insights but often [...] Read more.
Modern manufacturing strives for peak efficiency while facing pressing demands for environmental sustainability. Balancing these often-conflicting objectives represents a fundamental trade-off in modern manufacturing, as traditional methods typically address them in isolation, leading to suboptimal outcomes. Process mining offers operational insights but often lacks dynamic environmental indicators, while standard Life Cycle Assessment (LCA) provides environmental evaluation but uses static data unsuitable for real-time optimization. Frameworks integrating real-time data for dynamic multi-objective optimization are scarce. This study proposes a comprehensive, data-driven, cloud-based framework that overcomes these limitations. It uniquely combines three key components: (1) real-time Process Mining for actual workflows and operational KPIs; (2) dynamic LCA using live sensor data for instance-level environmental impacts (energy, emissions, waste) and (3) Multi-Objective Optimization (NSGA-II) to identify Pareto-optimal solutions balancing efficiency and sustainability. TOPSIS assists decision-making by ranking these solutions. Validated using extensive real-world data from a tube manufacturing facility processing over 390,000 events, the framework demonstrated significant, quantifiable improvements. The optimization yielded a Pareto front of solutions that surpassed baseline performance (87% efficiency; 2007.5 kg CO2/day). The optimal balanced solution identified by TOPSIS simultaneously increased operational efficiency by 5.1% and reduced carbon emissions by 12.4%. Further analysis quantified the efficiency-sustainability trade-offs and confirmed the framework’s adaptability to varying strategic priorities through sensitivity analysis. This research offers a validated framework for industrial applications that enables manufacturers to improve both operational efficiency and environmental sustainability in a unified manner, moving beyond the limitations of disconnected tools. The validated integrated framework provides a powerful, data-driven tool, recommended as a valuable approach for industrial applications seeking continuous improvement in both economic and environmental performance dimensions. Full article
Show Figures

Figure 1

29 pages, 3084 KiB  
Article
The Cascade Transformation of Furfural to Cyclopentanone: A Critical Evaluation Concerning Feasible Process Development
by Christian A. M. R. van Slagmaat
ChemEngineering 2025, 9(4), 74; https://doi.org/10.3390/chemengineering9040074 - 19 Jul 2025
Viewed by 271
Abstract
Furfural is a fascinating bio-based platform molecule that can be converted into useful cyclic compounds, among others. In this work, the hydrogenative rearrangement-dehydration of furfural towards cyclopentanone using a commercially available Pt/C catalyst was investigated in terms of its reaction performance to assess [...] Read more.
Furfural is a fascinating bio-based platform molecule that can be converted into useful cyclic compounds, among others. In this work, the hydrogenative rearrangement-dehydration of furfural towards cyclopentanone using a commercially available Pt/C catalyst was investigated in terms of its reaction performance to assess its feasibility as an industrial process. However, acquiring an acceptable cyclopentanone yield proved very difficult, and the reaction was constrained by unforeseen parameters, such as the relative liquid volume in the reactor and the substrate concentration. Most strikingly, the sacrificial formation of furanoic oligomers that precipitated onto the catalyst’s surface was a troublesome key factor that mediated the product’s selectivity versus the carbon mass balance. By applying a biphasic water–toluene solvent system, the yield of cyclopentanone was somewhat improved to a middling 59%, while tentatively positive distributions of reaction components over these solvent phases were observed, which could be advantageous for anticipated down-stream processing. Overall, the sheer difficulty of controlling this one-pot cascade transformation towards a satisfactory product output under rather unfavorable reaction parameters renders it unsuitable for industrial process development, and a multi-step procedure for this chemical transformation might be considered instead. Full article
Show Figures

Figure 1

Back to TopTop