Revealing Ecosystem Carbon Sequestration Service Flows Through the Meta-Coupling Framework: Evidence from Henan Province and the Surrounding Regions in China
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Collection and Processing
2.3. Studying Route
2.4. Quantification of Supply and Demand
2.5. Determination of the Carbon Sequestration Supply Zone and Benefit Zone
2.6. Flow Modeling
2.7. Compensation Valuation
2.8. Compensation Strategy Development
3. Results
3.1. Spatial Distribution of Ecosystem Carbon Sequestration Services
3.2. Carbon Sequestration Service Supply Area and Benefit Area
3.3. Carbon Sequestration Service Flow Based on Meta-Coupling Framework
3.3.1. Intra-Coupling
3.3.2. Peri-Coupling
3.3.3. Remote Coupling
3.4. Monetary Value of Ecological Compensation
3.5. Diversified Ecological Compensation Schemes
3.6. Summary of Results
4. Discussion
4.1. The Meta-Coupling Framework Enables a More Systematic and Comprehensive Understanding of Ecosystem Service Flows
4.2. Diversified and Rational Approaches to Ecological Compensation
4.3. Limitations
5. Conclusions
- (1)
- Within Henan Province, Luoyang and Nanyang contributed 521,300 tons and 515,600 tons of carbon sinks, respectively, to eight cities, including Jiaozuo, Zhengzhou, and Kaifeng. Henan Province provided 3.07 million tons of carbon sinks to other provinces, while Changzhi, Xiangyang, and Jinzhong supplied 657,200 tons of carbon sinks to Henan Province.
- (2)
- Through the adjustment of compensation standards based on the internal payment capacity and willingness to pay within Henan Province, Luoyang and Nanyang—identified as CSSAs—are projected to receive ecological compensation of CNY 26.28 million and CNY 26.33 million from internal beneficiary areas. Adjustments in inter-provincial payment capacity and willingness to pay indicate that Henan Province should receive CNY 175.61 million in ecological compensation from external provinces, while the CSSA from those external provinces should receive CNY 18.99 million from Henan Province. Therefore, through the carbon sink flow process between Henan Province and its surrounding provinces, Henan Province can attain a net compensation of CNY 156.62 million.
- (3)
- The meta-coupling framework allows for a thorough consideration of the spatial spillover effects of ecosystem carbon sequestration services, enhancing the accuracy of research results related to ecosystem service flows and corresponding ecological compensation. In determining ecological compensation plans, in addition to traditional monetary compensation from the government, the evaluation system for technology, talent, and fiscal balance can identify strengths and weaknesses among CSSAs and CSBAs, thereby enabling the proposal of targeted and diversified ecological compensation strategies (e.g., technology transfer, financial investment, and talent support) to help bridge the development gap between regions.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Duan, H.; Zhou, S.; Jiang, K.; Bertram, C.; Harmsen, M.; Kriegler, E.; van Vuuren, D.P.; Wang, S.; Fujimori, S.; Tavoni, M.; et al. Assessing china’s efforts to pursue the 1.5 °C warming limit. Science 2021, 372, 378–385. [Google Scholar] [CrossRef] [PubMed]
- Li, T.; Li, J.; Wang, Y. Carbon sequestration service flow in the guanzhong-tianshui economic region of china: How it flows, what drives it, and where could be optimized? Ecol. Indic. 2019, 96, 548–558. [Google Scholar] [CrossRef]
- Smith, P. Soil carbon sequestration and biochar as negative emission technologies. Glob. Change Biol. 2016, 22, 1315–1324. [Google Scholar] [CrossRef] [PubMed]
- Li, X.E.; Hu, Y.N. Measuring Regional Balance of Carbon Sequestration from the Perspective of Supply and Demand: A Case Study of Yangtze River Delta Ecological Greening Development Demonstration Area. Resour. Environ. Yangtze Basin. 2024, 33, 55–65. [Google Scholar]
- Hermann, A.; Schleifer, S.; Wrbka, T. The Concept of Ecosystem Services Regarding Landscape Research: A Review. Living Rev. Landsc. Res. 2011, 5, 5. [Google Scholar] [CrossRef]
- Zhang, M.; Chen, E.; Zhang, C.; Liu, C.; Li, J. Multi-Scenario Simulation of Land Use Change and Ecosystem Service Value Based on the Markov-FLUS Model in Ezhou City, China. Sustainability 2024, 16, 6237. [Google Scholar] [CrossRef]
- Schirpke, U.; Tscholl, S.; Taseer, E. Spatio-temporal changes in ecosystem service values: Effects of land-use changes from past to future (1860–2100). J. Environ. Manag. 2020, 272, 111068. [Google Scholar] [CrossRef] [PubMed]
- Liu, J. Integration across a metacoupled world. Ecol. Soc. 2017, 22. [Google Scholar] [CrossRef]
- Fisher, B.; Turner, R.K.; Morling, P. Defining and classifying ecosystem services for decision making. Ecol. Econ. 2009, 68, 643–653. [Google Scholar] [CrossRef]
- Syrbe, R.; Walz, U. Spatial indicators for the assessment of ecosystem services: Providing, benefiting and connecting areas and landscape metrics. Ecol. Indic. 2012, 21, 80–88. [Google Scholar] [CrossRef]
- Wu, C.; Lu, R.; Zhang, P.; Dai, E. Multilevel ecological compensation policy design based on ecosystem service flow: A case study of carbon sequestration services in the qinghai-tibet plateau. Sci. Total Environ. 2024, 921, 171093. [Google Scholar] [CrossRef] [PubMed]
- Zhai, T.; Chang, M.; Ma, Y.; Huang, L.; Li, L. Exploring the changes and driving mechanisms in the production-transport-consumption process of ecosystem services flow in the yellow river basin under the background of policy changes. Ecol. Indic. 2023, 151, 110316. [Google Scholar] [CrossRef]
- Wu, C.S.; Zhang, P. Discussion on policy formulation of ecological compensation based on ecosystem service. Acta Ecol. Sin. 2023, 43, 10032–10041. [Google Scholar]
- Locatelli, B.; Imbach, P.; Vignola, R.; Metzger, M.J.; Hidalgo, E.J.L. Ecosystem services and hydroelectricity in central america: Modelling service flows with fuzzy logic and expert knowledge. Reg. Environ. Change 2011, 11, 393–404. [Google Scholar] [CrossRef]
- Zank, B.; Bagstad, K.J.; Voigt, B.; Villa, F. Modeling the effects of urban expansion on natural capital stocks and ecosystem service flows: A case study in the puget sound, washington, usa. Landsc. Urban Plan. 2016, 149, 31–42. [Google Scholar] [CrossRef]
- Zhang, J.; He, C.; Huang, Q.; Li, L. Understanding ecosystem service flows through the metacoupling framework. Ecol. Indic. 2023, 151, 110303. [Google Scholar] [CrossRef]
- Hovis, C.L.; Dou, Y.; Herzberger, A.; Liu, J. Through the lens of telecoupling and metacoupling: New perspectives for global sustainability. Sustainability 2021, 13, 2953. [Google Scholar] [CrossRef]
- Herzberger, A.; Chung, M.G.; Kapsar, K.; Frank, K.A.; Liu, J. Telecoupled food trade affects pericoupled trade and intracoupled production. Sustainability 2019, 11, 2908. [Google Scholar] [CrossRef]
- Merz, L.; Yang, D.; Hull, V. A metacoupling framework for exploring transboundary watershed management. Sustainability 2020, 12, 1879. [Google Scholar] [CrossRef]
- Zhai, T.; Zhang, D.; Zhao, C. How to optimize ecological compensation to alleviate environmental injustice in different cities in the yellow river basin? A case of integrating ecosystem service supply, demand and flow. Sustain. Cities Soc. 2021, 75, 113341. [Google Scholar] [CrossRef]
- Larondelle, N.; Lauf, S. Balancing demand and supply of multiple urban ecosystem services on different spatial scales. Ecosyst. Serv. 2016, 22, 18–31. [Google Scholar] [CrossRef]
- Sanchez-Azofeifa, G.A.; Pfaff, A.; Robalino, J.A.; Boomhower, J.P. Costa rica’s payment for environmental services program: Intention, implementation, and impact. Conserv. Biol. 2007, 21, 1165–1173. [Google Scholar] [CrossRef] [PubMed]
- Ouyang, Z.; Zheng, H.; Xiao, Y.; Polasky, S.; Liu, J.; Xu, W.; Wang, Q.; Zhang, L.; Xiao, Y.; Rao, E.; et al. Improvements in ecosystem services from investments in natural capital. Science 2016, 352, 1455–1459. [Google Scholar] [CrossRef] [PubMed]
- Yan, H.; Yang, H.; Guo, X.; Zhao, S.; Jiang, Q. Payments for ecosystem services as an essential approach to improving ecosystem services: A review. Ecol. Econ. 2022, 201, 107951. [Google Scholar] [CrossRef]
- Jiao, M.M.; He, L.; Wang, Y.X. Regional horizontal ecological compensation and ecosystem service value based on water resources pattern and insurance gain. Chin. J. Appl. Ecol. 2023, 34, 751–760. [Google Scholar]
- Lai, M.; Chen, F.G. Eco-compensation standard for ecological conservation of marine protected areas based on opportunity cost method. Acta Ecol. Sin. 2020, 40, 1901–1909. [Google Scholar]
- Ding, Z.M.; Yao, S.B. Theory and valuation of cross-regional ecological compensation for cultivated land: A case study of shanxi province, china. Ecol. Indic. 2022, 136, 108609. [Google Scholar] [CrossRef]
- Niu, J.; Mao, C.; Xiang, J. Based on ecological footprint and ecosystem service value, research on ecological compensation in anhui province, china. Ecol. Indic. 2024, 158, 111341. [Google Scholar] [CrossRef]
- Deng, Y.J.; Hou, M.Y.; Jia, L.; Wang, Y.Q. Ecological compensation strategy of the old revolutionary base areas along the route of Long March based on ecosystem service value evaluation. Chin. J. Appl. Ecol. 2022, 33, 159–168. [Google Scholar]
- Lai, M.; Wu, S.H.; Yin, Y.H.; Pan, T. Accounting for eco-compensation in the three-river headwaters region based on ecosystem service value. Acta Ecol. Sin. 2015, 35, 227–236. [Google Scholar]
- Zheng, H.; Wang, L.; Peng, W.; Zhang, C.; Li, C.; Robinson, B.E.; Wu, X.; Kong, L.; Li, R.; Xiao, Y.; et al. Realizing the values of natural capital for inclusive, sustainable development: Informing china’s new ecological development strategy. Proc. Natl. Acad. Sci. USA 2019, 116, 8623–8628. [Google Scholar] [CrossRef] [PubMed]
- Ouyang, Z.; Song, C.; Zheng, H.; Polasky, S.; Xiao, Y.; Bateman, I.J.; Liu, J.; Ruckelshaus, M.; Shi, F.; Xiao, Y.; et al. Using gross ecosystem product (GEP) to value nature in decision making. Proc. Natl. Acad. Sci. USA 2020, 117, 14593–14601. [Google Scholar] [CrossRef] [PubMed]
- Shaikh, S.F.E.A.; See, S.C.; Richards, D.; Belcher, R.N.; Gret-Regamey, A.; Torres, M.G.; Carrasco, L.R. Accounting for spatial autocorrelation is needed to avoid misidentifying trade-offs and bundles among ecosystem services. Ecol. Indic. 2021, 129, 107992. [Google Scholar] [CrossRef]
- Jia, H.; Chen, H. Spatiotemporal Dynamics and Optimization Management of Ecosystem Service Flows in the Yangtze River Delta Urban Agglomeration, China. Sustainability 2025, 17, 4727. [Google Scholar] [CrossRef]
- Tan, F.; Lu, Z. Regional sustainability system as ecosystem: Case study of china’s two leading economic circles from a keystone perspective. Environ. Dev. Sustain. 2019, 21, 961–983. [Google Scholar] [CrossRef]
- Li, F.; Li, W.H.; Zhen, L.H.; He, Q.W. Estimating eco-compensation requirements for forest ecosystem conservation: A case study in Hainan province, southern China. Outlook Agric. 2010, 40, 51–57. [Google Scholar]
- Du, H.; Zhao, L.; Zhang, P.; Li, J.; Yu, S. Ecological compensation in the beijing-tianjin-hebei region based on ecosystem services flow. J. Environ. Manag. 2023, 331, 117230. [Google Scholar] [CrossRef] [PubMed]
- Dai, H.X.; Xie, H.L.; Chen, L.X.; Gao, Y.Y.; Zhang, J. Evaluation of Carbon Sequestration Service Flow in Min jiang River Basin for Supply and Demand Synergy. Environ. Sci. 2025, 1–15. [Google Scholar] [CrossRef]
- Liang, J.; Pan, J. Identifying carbon sequestration’s priority supply areas from the standpoint of ecosystem service flow: A case study for northwestern china’s shiyang river basin. Sci. Total Environ. 2024, 927, 172283. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.; Yu, L.; Liu, J.; Xu, Z.; Chen, X.; Wu, H.; Zheng, S.; Zhao, Q.; Gong, P. Unveiling interprovincial geographic patterns of 5A-level tourism cultural ecosystem service flows and tourist preferences in China’s metacoupled systems. Appl. Geogr. 2024, 172, 103432. [Google Scholar] [CrossRef]
- Qiu, S.L.; Huang, M.X. Research progress and prospect of realizing the value of ecological products in China. J. Environ. Prot. 2023, 51, 41–45. [Google Scholar]
- Song, C.; Ouyang, Z. Theoretical Connotation and Application Practice of Gross Ecosystem Product (GEP). Frontiers 2023, 18, 92–95. [Google Scholar]
- Ma, Y.; Chen, H.; Yang, M.; Aihemaiti, G.; Lu, W.; Zhao, R. Ecological compensation based on multiscale ecosystem carbon sequestration service flow. J. Environ. Manag. 2024, 372, 123396. [Google Scholar] [CrossRef] [PubMed]
- Deng, J.J.; Chen, L.X.; Yang, C.Y. Evaluation of the importance of ecological corridors in highly urbanized areas: A case study of Shenzhen. Geogr. Res. 2017, 36, 573–582. [Google Scholar]
- Puth, L.M.; Wilson, K.A. Boundaries and corridors as a continuum of ecological flow control: Lessons from rivers and streams. Conserv. Biol. 2001, 15, 21–30. [Google Scholar] [CrossRef]
- Feng, X.; Du, Z.; Tao, P.; Liang, H.; Wang, Y.; Wang, X. Construction of Green Space Ecological Network in Xiongan New Area Based on the MSPA-InVEST-MCR Model. Appl. Sci. 2024, 14, 10760. [Google Scholar] [CrossRef]
- Li, W.; Ma, Z.; Luo, R.; Hong, Y.; Wang, S.; Ma, X.; Bao, Q. Balancing Poverty Alleviation and Ecosystem Vulnerability Reduction: Implication from China’s Targeted Interventions. Sustainability 2025, 17, 2490. [Google Scholar] [CrossRef]
Evaluation Dimension | Evaluation Index |
---|---|
Technical level | R&D investment intensity (%) |
Technical market turnover (ten thousand CNY) | |
Talent level | Employment in non-private urban units (10,000) |
Number of patents granted (pieces) | |
Government fiscal balance level | Outstanding local government debt (100 million CNY) |
CSSA | CSBA | Compensation Amount (CNY Ten Thousand) |
---|---|---|
Luoyang | Xinxiang | 243.63 |
Jiaozuo | 32.41 | |
Zhengzhou | 672.93 | |
Kaifeng | 437.44 | |
Shangqiu | 213.36 | |
Xuchang | 507.06 | |
Zhoukou | 222.10 | |
Puyang | 299.23 | |
Subtotal | 2628.17 | |
Nanyang | Luohe | 476.519 |
Zhengzhou | 872.43 | |
Shangqiu | 285.65 | |
Xuchang | 689.07 | |
Zhoukou | 308.91 | |
Subtotal | 2632.59 | |
Henan Province | Shandong Province | 1257.30 |
Anhui Province | 5668.14 | |
Jiangsu Province | 10,635.34 | |
Subtotal | 17,560.79 | |
Shanxi Province | Henan Province | 1693.78 |
Hubei Province | 205.46 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ji, W.; Liu, S.; Yang, Y.; Liu, M.; Wei, H.; Li, L. Revealing Ecosystem Carbon Sequestration Service Flows Through the Meta-Coupling Framework: Evidence from Henan Province and the Surrounding Regions in China. Land 2025, 14, 1522. https://doi.org/10.3390/land14081522
Ji W, Liu S, Yang Y, Liu M, Wei H, Li L. Revealing Ecosystem Carbon Sequestration Service Flows Through the Meta-Coupling Framework: Evidence from Henan Province and the Surrounding Regions in China. Land. 2025; 14(8):1522. https://doi.org/10.3390/land14081522
Chicago/Turabian StyleJi, Wenfeng, Siyuan Liu, Yi Yang, Mengxue Liu, Hejie Wei, and Ling Li. 2025. "Revealing Ecosystem Carbon Sequestration Service Flows Through the Meta-Coupling Framework: Evidence from Henan Province and the Surrounding Regions in China" Land 14, no. 8: 1522. https://doi.org/10.3390/land14081522
APA StyleJi, W., Liu, S., Yang, Y., Liu, M., Wei, H., & Li, L. (2025). Revealing Ecosystem Carbon Sequestration Service Flows Through the Meta-Coupling Framework: Evidence from Henan Province and the Surrounding Regions in China. Land, 14(8), 1522. https://doi.org/10.3390/land14081522